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Machine learning (ML) for text classification has beenwidely used in various domains, such as toxicity detection,
chatbot consulting, and review analysis. These applications can significantly impact ethics, economics, and
human behavior, raising serious concerns about trusting ML decisions. Several studies indicate that traditional
uncertainty metrics, such as model confidence, and performance metrics, like accuracy, are insufficient to
build human trust in ML models. These models often learn spurious correlations during training and predict
based on them during inference. When deployed in the real world, where such correlations are absent, their
performance can deteriorate significantly. To avoid this, a common practice is to test whether predictions are
made reasonably based on valid patterns in the data. Along with this, a challenge known as the trustworthiness
oracle problem has been introduced. So far, due to the lack of automated trustworthiness oracles, the assessment
requires manual validation, based on the decision process disclosed by explanation methods. However, this
approach is time-consuming, error-prone, and not scalable.

To address this problem, we propose TOKI, the first automated trustworthiness oracle generation method
for text classifiers. TOKI automatically checks whether the words contributing the most to a prediction are
semantically related to the predicted class. Specifically, we leverage ML explanation methods to extract the
decision-contributing words and measure their semantic relatedness with the class based on word embeddings.
As a demonstration of its practical usefulness, we also introduce a novel adversarial attack method that targets
trustworthiness vulnerabilities identified by TOKI. We compare TOKI with a naive baseline based solely
on model confidence. To evaluate their alignment with human judgement, experiments are conducted on
human-created ground truths of approximately 8,000 predictions. Additionally, we compare the effectiveness
of TOKI-guided adversarial attack method with A2T, a state-of-the-art adversarial attack method for text
classification. Results show that (1) relying on prediction uncertainty metrics, such as model confidence,
cannot effectively distinguish between trustworthy and untrustworthy predictions, (2) TOKI achieves 142%
higher accuracy than the naive baseline, and (3) TOKI-guided adversarial attack method is more effective with
fewer perturbations than A2T.
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1 Introduction
Machine learning (ML) holds significant importance in contemporary advanced systems, such as
spam detection, clinical text analysis, and vulnerability detection, with text classification being
a primary application. Despite their superior performance during development, ML models can
still fail in real-life scenarios [Caruana et al. 2015; Lapuschkin et al. 2019], raising concerns about
trusting their decisions. When assessing a model, it is important not only to evaluate its general
task-solving ability using metrics, such as prediction uncertainty or classification accuracy, but also
to understand its decision-making process [Liao and Wortman 2024]. Indeed, several studies show
that these metrics alone are insufficient indicators of model reliability [Canbek et al. 2022; Nguyen
et al. 2015], as the model might learn spurious patterns [Ye et al. 2024], leading to overconfident
decisions based on irrelevant features [Geirhos et al. 2020].

An ML model relying on irrelevant features, when faced with unseen data, can misclassify in the
absence of these features or be fooled by them, leading to problematic predictions. We illustrate
this using a Bert-based [Devlin et al. 2019] binary sentiment classifier applied to amazon reviews.
Figure 1 shows four review examples, the model’s predictions, and the probabilities of each class. We
also highlight the important words steering these predictions, which are identified by LIME [Ribeiro
et al. 2016], an explanation method. Orange and blue colors highlight words contributing to the
negative and positive classes, respectively, with darker shades indicating higher importance. The
review in Figure 1a is correctly classified as negative with high confidence. However, a closer look
at the most important words the classifier relies on reveals that these words, such as “back”, “the”,
“anything”, and “through”, are unrelated to either class. When removing some of them, as shown in
Figure 1b, the review is misclassified as positive by the same model, despite negative sentiment in
phrases “too slow”, “rough patch”, “sloggin”, and “give up”. To further explore the potential harm
of this phenomenon, we synthesise a new review using a positive review shown in Figure 1c. This
new review, as illustrated in Figure 1d, is injected with the words “back”, “through”, and “anything”.
Although, these injections do not change the original meaning, the confident correct prediction is
flipped to its opposite. These shifts underscore the importance of assessing whether the learned
patterns are genuinely valid and generalisable or if they are merely based on spurious correlations
within the training data, typically referred to as shortcut learning [Du et al. 2023]. A shortcut
learning model is unlikely to provide correct classifications for the right reasons. Therefore, it
becomes ineffective once deployed in the real world, where spurious correlations are absent.
To ensure the quality of ML systems in a reliable and cost-effective way, considerable effort

has been focused on automating various aspects of the testing process, particularly through
automated test oracles [Barr et al. 2015]. Traditional software testing has inspired automated
test oracles for ML to test various properties, such as correctness, fairness, and robustness using
techniques like metamorphic testing [Guo et al. 2018; Pei et al. 2017]. However, trustworthiness
testing has not received as much attention and consequently remains less resolved [Cho et al.
2024]. Trustworthiness refers to the ability of a model to make reasonable predictions based on
relevant features, such as semantically related words in text classification. Developing automated
test oracles for trustworthiness testing is a long-lasting challenge hindering the broader adoption
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Prediction probabilities 0.999negative 0.001positive

Sounds like a great idea, BUT.......
It read on the back cover like a great book. Inside though is another story. I am halfway thru it 
and I have not seen him CLEAN anything. It is too slow, but I want to still read to find out 
what happens.It is a rough patch now but I am sloggin through. If it does not pick up soon I 
will give up.Welty69

(a) Original text

Prediction probabilities 0.070negative 0.930positive

Sounds like a great idea,  BUT.......
It read on the back cover like a great book. Inside though is another story. I am halfway thru it 
and I have not seen him CLEAN anything. It is too slow, but I want to still read to find out 
what happens. It is a rough patch now but I am sloggin through. If it does not pick up soon I 
will give up.Welty69   
   
(b) Some irrelevant words (strikethrough) removed

Prediction probabilities 0.010negative 0.990positive

I noticed that my garage door wouldn't go down and one of the sensor's led was off. I checked 
with Sears. Their replacement part plus extravagant shipping and handling would make it a 
better value to simply replace the whole garage door opener with a new one.My web search 
revealed this Company's part which turns out is the identical replacement part at a reasonable 
price. I let my 18 year old do the replacement hook up, which took about 20 minutes (we took 
our time). Works like new now.

(c) A trustworthy prediction of a positive review

Prediction probabilities 0.928negative 0.072positive

I noticed that my back door wouldn't go down and one of the sensor's led was off. I checked 
through Sears. Their replacement part plus extravagant shipping and handling would make 
anything a better value to simply replace the whole back door opener with a new one.My web 
search revealed this Company's part which turns out is the identical replacement part at a 
reasonable price. I let my 18 year old do the replacement hook up, which took about 20 
minutes (we took our time). Works like new now.     

(d) Irrelevant words (underlined) injected

Fig. 1. LIME explanations of predictions analysing amazon reviews. Words highlighted in orange and blue
indicate which class, negative or positive, they contribute to, with the shade representing their importance.

of ML models in the real world. Due to the lack of automated trustworthiness oracles, most
studies [Du et al. 2021; Lapuschkin et al. 2019; Ribeiro et al. 2016] rely on human-based evaluation
as the oracle to assess the ML prediction reasoning uncovered by explanation methods [Zhao et al.
2024]. However, this is time-consuming, error-prone, and not scalable [Ye et al. 2024].
In this paper, we focus on the oracle problem of assessing the trustworthiness of predictions

made by text classifiers. Intuitively, trustworthiness assessment can be done by measuring the
semantic relatedness between each decision-contributing word and the class name. However,
measuring the semantic relatedness between two words is non-trivial, as discussed in Section 2.1,
Given a word, there exists a group of words naturally related to it with very similar semantics
like its synonyms. Their semantic similarity can be easily measured with existing metrics, such as
cosine similarity. Some other words can also be related to the target word, but require a semantic
hop, which we call indirectly related words. For example, the words “computer” and “file” are
naturally related. Although the word “extension” may not seem naturally related to “computer”, it is
strongly semantically connected to “file” and thus indirectly related to “computer”. We argue that
examining the distribution of words helps better recognise semantically related words. Based on
this, we propose an automated trustworthiness oracle generation method that leverages explanation
methods to extract decision-contributing words and assesses their semantic relatedness to the
class based on such distribution. The key idea is to identify keywords, which act as anchors for
assessing semantic relatedness and indicate what a text classifier should rely on for predictions.
A prediction is then deemed trustworthy if it is mainly based on these keywords. For instance,
the prediction in Figure 1a is untrustworthy because the top contributing words, “back”, “the”,
“anything”, and “through”, are all semantically unrelated to “negative”. To reveal the negative
impact of vulnerabilities in trustworthiness, we also design an adversarial attack method guided by
trustworthiness oracles. Our main contributions are summarised as follows.

• TOKI, the first approach for generating automated trustworthiness oracles.
• A novel attack method that targets trustworthiness vulnerabilities identified by TOKI.
• A benchmark for trustworthiness assessment for text classification, which contains approxi-
mately 8,000 predictions in various domains, such as topic classification, sentiment analysis,
clinical mental text classification, hate speech detection, and software issue management.

• An investigation on the relation between the uncertainty and trustworthiness of predictions,
revealing that relying on prediction uncertainty metrics, such as model confidence, overlooks
untrustworthy high-confidence predictions and trustworthy low-confidence predictions.

• Ablation studies and comparative evaluations of TOKI. For trustworthiness assessment, we
compare TOKI with a naive baseline solely based on model confidence. For adversarial attacks,
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we compare our method with A2T [Yoo and Qi 2021], a state-of-the-art (SOTA) adversarial
attack method. The results show TOKI’s superior effectiveness and efficiency.

2 Problem Definition, Preliminary, and Motivation
This section clarifies the definition of trustworthiness used in the paper, the trustworthiness oracle
problem, and our intuition to address it.

2.1 Definition of Trustworthiness
Trustworthiness is a complex concept that has raised numerous scholarly debates among researchers.
This paper focuses on trustworthiness, in particular, whether a model makes predictions based
on valid and reasonable patterns rather than spurious ones. Hence, we adopt the definition of
trustworthiness proposed by Kästner et al. [2021] as shown in Definition 1.

Definition 1. An ML model is trustworthy to a stakeholder in a given context if and only if it
works properly in the context and the stakeholder has justified belief in it.

They also distinguish trustworthiness from trust: trustworthiness is a system’s property, as recog-
nised by prior studies as a critical non-functional requirement [Riccio et al. 2020], whereas trust is
the perception a person has towards it. Hence, people can still trust an untrustworthy system.

According to Definition 1, understanding a model thoroughly helps justify our beliefs about how
well it works. Model explanations can serve as a means to gain this understanding [Wiegreffe and
Pinter 2019], thereby promoting trustworthiness [Bussone et al. 2015; Kästner et al. 2021]. There
are two main types of model explanations: global [Caruana et al. 2015], which provides insights
into the entire model’s inner workings, and local [Li et al. 2016; Mohebbi et al. 2021; Ribeiro et al.
2016], which focuses on individual predictions. Local explanations, by breaking down a model
into its components, allow users to grasp its functionality and decision-making process in a way
that aligns with human cognitive patterns. Hence, they are more readily applicable [Adadi and
Berrada 2018]. In text classification, various local explanations have been developed, such as feature
attribution-based [Li et al. 2016; Mohebbi et al. 2021], attention-based [Barkan et al. 2021; Yeh
et al. 2024], and counterfactual [Treviso et al. 2023] explanations. While other local explanations
are subject to extensive debate [Jain and Wallace 2019], feature attribution-based explanations,
such as LIME [Ribeiro et al. 2016], have proven to be effective, faithful, and widely used [Mariotti
et al. 2024]. Hence, we leverage these explanations to uncover the reasoning behind individual
predictions by highlighting the most relevant features contributing to those predictions. Exploring
alternative explanations for assessing trustworthiness is an interesting avenue for future work.

A trustworthy model should make correct predictions, and the reasoning behind them, supported
by explanations, should also be plausible. We propose the definition of a trustworthy prediction.

Definition 2. A trustworthy prediction is correct and the reasoning behind it is also plausible.

In the context of text classification, a trustworthy prediction should rely on words in the input text
that align with human reasoning. To simulate human judgement, the reasoning behind a prediction
can be considered plausible if words contributing the most to the prediction are semantically
related to the predicted class. We follow the definition of semantic relatedness described by
Budanitsky and Hirst [2006]. Words can be semantically related by lexical relationships, such as
meronymy (car–wheel) and antonymy (hot–cold), or just by any kind of functional association
or other “non-classical relations” (pencil–paper, penguin–Antarctica, and rain–flood) [Morris and
Hirst 2004]. It is important to distinguish semantic relatedness from semantic similarity. Semantic
relatedness is a more general concept [Budanitsky and Hirst 2006] while semantic similarity refers
to the degree of overlap or resemblance in meaning between two words [Slimani 2013]. For example,
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Prediction probabilities 0.823negative 0.177positive

Sounds like a right on, way.......
It read on the back cover like a great book. Inside though is another story. I am halfway thru it 
and I have not seen him CLEAN anything. a is too slow, but I want to still read to find out 
what happens.over is a rough patch now but I am sloggin through. If it does not pick up soon 
she will keep up.Welty69        

(a) An adversarial example generated by TextAttack

Prediction probabilities 0.999negative 0.001positive

Sounds like a great recommendation, NEVERTHELESS.......
This read on this end cover like a great book. Inside though is another story. Me am halfway 
thru it and me haven't seen him CLEAN whatsoever. This is too obtuse, but me want to still 
read to find out what happens.This is a rough patch now but me am sloggin by. If it doesn't 
pick up soon me will give up.Welty69

(b) An adversarial example generated manually

Fig. 2. LIME explanations of predictions analysing amazon reviews. Bold words represent perturbations,
while words highlighted in orange and blue indicate their contribution to the negative or positive class,
with the shade reflecting their importance.

“desk” and “chair” are semantically related but not semantically similar, “desk” and “table”, on the
other hand, are both semantically related and semantically similar. It is also important to note that
semantically relatedness is contextual, meaning two words are semantically related in a specific
context, but might not in others. For instance, “bank” in “the bank exploits small firms” is semantically
related to economics, while “bank” in “we walked along the river bank” is not.
Definition 2 describes a trustworthy prediction, referring to local trustworthiness. In contrast,

global trustworthiness is the ability to make trustworthy predictions across a broad range of inputs.
A globally trustworthy model can perfectly interpret every input like human domain experts.
Although achieving global trustworthiness is the ultimate goal, it is challenging due to the more
complex architectures and training procedures required, which result in higher computational
costs. Therefore, we focus on local trustworthiness of individual predictions. While most observed
predictions by a model are trustworthy, this does not directly mean the entire model is trustworthy.

2.2 Trustworthiness and Robustness
Sharing the same goal of improving the model’s generalisability, robustness testing might be able to
identify problems that can be spotted during trustworthiness testing. Local robustness measures the
model’s ability to retain its prediction on a sample under perturbations, also known as adversarial
examples [Zhang et al. 2020b], that do not affect human perception and decision. For example,
replacing a few words in Figure 1a with their synonyms should not alter a human’s decision to
classify it as negative. If the model fails to maintain its original prediction on this adversarial
example, we can conclude that the adversarial example reveals a local robustness issue.
Before investigating the oracle problem of model trustworthiness, one important question we

need to answer is that to what extent does the trustworthiness problem differ from the robustness
problem? More essentially, are there any issues that can be uncovered during trustworthiness
testing but not during robustness testing? When a model’s prediction is trustworthy on a sample,
the prediction is correct and based on justifiable reasons. This prediction is not necessarily robust,
meaning it might be altered under minor perturbations, such as replacing the decision-essential
words with their semantic equivalents, or removing/modifying the decision-unessential ones. On
the other hand, when a prediction by the model is robust, it is still possible that the model relies
on some justifiable shortcut reasons, resulting in problematic predictions in the future where the
shortcuts are absent or the shortcuts appear in samples having opposite classes. Hence, we conclude
that the trustworthiness problem overlaps with the robustness problem, but they are not the same.

We differentiate trustworthiness from robustness by revisiting the prediction in Figure 1a, show-
ing that robustness testing is unable to identify issues in the model’s behavior, but trustworthiness
testing can. TextAttack [Morris et al. 2020], a framework implementing several SOTA adversarial
example generation methods, is applied to attack [Zhang et al. 2020b] the model on the same text in-
put. An additional adversarial example is generated manually to preserve grammar and semantic by
replacing orange-highlighted words in Figure 1a with their synonyms from WordNet [Miller 1995].
The substitutions are ① idea–recommendation, ② BUT–NEVERTHELESS, ③ It–This, ④ the–this,
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⑤ back–end,⑥ anything–whatsoever,⑦ slow–obtuse,⑧ I–me,⑨ through–by,⑩ not–n’t. Figures 2a
and 2b, with bold words representing perturbations, show LIME explanations for two predictions to
adversarial examples generated by TextAttack and manually, respectively. All adversarial examples
fail to attack the model since it maintains the same prediction. This indicates that although the
model is robust against certain adversarial examples, its prediction can still be untrustworthy.

2.3 Trustworthiness Oracle
ML testing involves providing a model with inputs and observing its responses. The oracle prob-
lem in ML testing is the challenge of determining whether these responses are appropriate. In
trustworthiness testing, a response is an explainable prediction, as described in Definition 3.

Definition 3. For the classifier 𝑚, 𝑥 is an individual data input into 𝑚, and 𝑝 = ⟨𝑦, 𝑒⟩ is the
explainable prediction to 𝑥 of𝑚, where 𝑦 is the predicted class and 𝑒 is the explanation.

The explainable prediction 𝑝 assigns the input 𝑥 to the predicted class𝑦, with its reasoning explained
by the explanation 𝑒 . The explanation 𝑒 is a list of decision-contributingwords and the corresponding
importance scores measuring their contribution to the prediction 𝑝 .

Three cases can occur with an explainable prediction: (1) incorrect, (2) correct due to semantically
related words, and (3) correct due to semantically unrelated words. In the first case, investigating
incorrectness becomes more important than trustworthiness assessment. Although the explanation
might hint at why the prediction is incorrect, we leave this interesting avenue for future work. In
this way, this paper only focuses on differentiating the last two cases, meaning that it examines
only correct explainable predictions in the context of trustworthiness testing. We then adopt the
definition of test oracles from Barr et al. [2015]. Definition 4 describes trustworthiness test data
while Definition 5 defines trustworthiness oracles.

Definition 4. For the classifier𝑚, X is the dataset correctly predicted by𝑚 and P is the set of
correct explainable predictions to an instance of𝑚. Trustworthiness test data forms the set 𝑇 = 𝑋 ⊎ 𝑃 .

Definition 5. A trustworthiness oracle𝐷 : 𝑇 ↦→ B is a function from an instance of trustworthiness
test data 𝑡 to true or false, indicating whether the prediction p in t is trustworthy according to Definition 2.

A trustworthiness oracle is a predicate that determines whether the prediction in an individual
trustworthiness test data is trustworthy according to Definition 2. The trustworthiness oracle
formulated in Definition 5 can be applied to any text classifier, as long as there is an explanation
method that uncovers the reasoning behind its predictions in the form of word attributions.

2.4 Applications of Trustworthiness Oracles
The trustworthiness problem exists in various ML applications. For example, a clinical mental
text classifier from social media posts shows good held-out performance but might rely on irrel-
evant clues frequently present in the training data, such as post tags, job positions, and special
occasions [Harrigian et al. 2020]. When deployed in the real world, such classifier is unlikely to
perform well on unseen data. Hence, it is crucial to assess the reasoning of ML models to detect
any behavioral issues before deploying them in real-world scenarios, rather than only evaluating
their classification performance using metrics such as accuracy, recall, and F1-score.
Figure 3a shows a traditional development process of ML systems. AI engineers collect all

available data, preprocess and split it into training and test sets. The training data is used to train
the model, while the test data evaluates its performance. If the model performs poorly, the engineers
improve the learning algorithm to enhance performance. Once the model achieves good held-out
performance, it can be deployed in the real world. However, its performance often deteriorates due
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(a) Traditional development process
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(b) Integration with trustworthiness testing

Fig. 3. Comparison between two ML system development processes: without and with trustworthiness
testing. Blue lines indicate the differences between these processes.

to the model’s reliance on spurious correlations learned during training, making it overconfident
in held-out evaluations. In the real world, where these correlations are absent, the model tends
to misclassify unseen data. A common solution is to augment the dataset with new manually
annotated data and retrain the model, which is costly and inefficient.
Figure 3b shows the process integrated with trustworthiness testing. In addition to evaluating

traditional performance metrics, this process also assesses the model’s behavior behind correct
predictions. In this process, trustworthiness oracles determine whether a prediction is trustworthy
or based on spurious correlations. Identifying such issues allows the engineers to mitigate the
impact of spurious correlations, ensure the model is correct for the right reasons, and improve its
generalizability. If undetected, these issues can lead to problematic predictions in the future. Human
annotations often serve as trustworthiness oracles, but this approach is not scalable [Ye et al. 2024].
Integrating automated trustworthiness oracles into the software engineering (SE) lifecycle for
ML systems can greatly advance their development and applications. Automated trustworthiness
oracles enable the automation of trustworthiness testing, which is vital and closely intertwined
with other SE activities [Riccio et al. 2020]. This is especially valuable in the iterative development
of ML systems where performance and trustworthiness must be evaluated and refined [Martínez
et al. 2022]. Specifically, automated trustworthiness oracles support continuous integration and
delivery pipelines by automating trustworthiness testing for ML systems. They also serve as a tool
for monitoring ML systems in real-world environments, particularly in online testing or DevOps
workflows, to verify whether predictions are trustworthy in real time, and test with real-world and
corner-cased inputs. Moreover, the outputs of trustworthiness oracles provide actionable insights
for feedback-driven repairing and improving processes, reducing the need for human intervention.

In addition, trustworthiness oracles help assess the trustworthiness of systems in SE that employ
ML for text classification.ML has beenwidely used in SE for text classification, automating numerous
tasks to enhance planning, design, and maintenance. For example, sentiment analysis has been
applied to various SE artifacts, including git commit comments [Sinha et al. 2016], JIRA issues [Ortu
et al. 2015], and apps’ reviews [Panichella et al. 2015]. It also helps assess developers’ psychological
states [Guzman and Bruegge 2013], and analyse sentiment on Q&A sites like StackOverflow to
recommend improvements for source code [Rahman et al. 2015] or to identify problematic API design
features [Zhang and Hou 2013]. In addition to sentiment analysis, other tasks, such as software
requirement classification [Pérez-Verdejo et al. 2020] and project issue categorisation [Schulte et al.
2024], have also been integrated with ML to reduce human effort and improve efficiency. Hence,
automated trustworthiness oracles offer opportunities to foster greater trust in these systems, both
within SE domains and more broadly.

3 TOKI: Trustworthiness Oracle through Keyword Identification
As outlined in Section 2, a prediction is considered trustworthy if its reasoning is plausible. In text
classification, a trustworthy prediction should rely on words semantically related to the predicted
class. We argue that examining the distribution of words helps better recognise these semantically
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Fig. 4. The process of TOKI, with blue and yellow background colors indicating the first and second pipelines.

related words. Specifically, directly related words can act as anchors, and words indirectly related to
the class are likely to form clusters around them. Following this intuition, we presentTrustworthiness
Oracle through Keyword Identification (TOKI). The key idea of TOKI is to use a list of keywords
for each class to indicate what a text classifier should rely on for predictions. To identify these
keywords, TOKI selects clusters containing directly related words and their surrounding indirectly
related words. A prediction is then deemed trustworthy if it mainly relies on the keywords of the
predicted class. While the ultimate goal is to identify a complete list of keywords, this is impractical
due to resource and computational constraints. Hence, we identify only a partial list of keywords
by extracting decision-contributing words from the classifier’s responses on the training data and
applying clustering analysis to them. Since not all decision-contributing words are genuinely related
to the class, clustering analysis also helps separate related words from unrelated ones. Figure 4
describes TOKI with two pipelines: keyword identification and trustworthiness label computation.

3.1 Keyword Identification
ML models learn correlations in training data, including both valid and spurious ones [Geirhos
et al. 2020]. Therefore, not all predictions are solely based on the spurious correlations. Predictions
reflecting the valid correlations rely on words semantically related to the predicted class, regardless
of their importance scores. While the spurious correlations can make predictions untrustworthy,
TOKI identifies keywords for each class through the valid correlations, following four steps.

Step 1: Explaining. To extract keywords, we focus on analysing the reasoning behind correct
predictions, as incorrect ones might provide meaningless reasoning. Therefore, TOKI identifies the
decision-contributing words from instances that have been predicted correctly in the training set.
Let 𝑋 , 𝑓 (·), and 𝑐 represent the training set, the text classifier, and the true class, respectively. The
explaining step is formalised in Equation 1, which returns a list of explanations 𝐸𝑐 for each class 𝑐 .

𝐸𝑐 =
{
𝑒 (𝑓 , 𝑥) | 𝑥 ∈ 𝑋, 𝑓 (𝑥) = 𝑐

}
(1)

TOKI leverages the explanation method 𝑒 (·, ·) to measure the contribution 𝑠 of each word𝑤 to a
prediction. Several methods, such as LIME [Ribeiro et al. 2016], achieve this by locally approximating
the model as an interpretable surrogate model. Other methods [Li et al. 2016] perturb input and
evaluate model output changes. Another common way [Mohebbi et al. 2021] is to compute the
gradient of the output with respect to the input. These methods explain the prediction 𝑓 (𝑥) in the
form of 𝑒 (𝑓 , 𝑥) = {⟨𝑤, 𝑠⟩}, a list of top decision-contributing words with their importance scores.

Step 2: Word pool construction. A word pool of decision-contributing words and their averaged
importance scores across explanations is created for each class, as formalised in Equation 2.

𝑊𝑐 =
{
⟨𝑤, 𝑠𝑤⟩ | 𝑤 ∈ 𝐸𝑐

}
, where 𝑠𝑤 =

∑
𝑒∈𝐸𝑐 ,⟨𝑤,𝑠𝑖 ⟩∈𝑒 𝑠𝑖∑
𝑒∈𝐸𝑐 ,⟨𝑤,𝑠𝑖 ⟩∈𝑒 1

(2)
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Words in the explanations 𝐸𝑐 are categorised based on the predicted class 𝑐 , with their importance
scores averaged. This results in a word pool𝑊𝑐 = {⟨𝑤, 𝑠𝑤⟩} for the class 𝑐 , containing words and
their averaged importance scores. The averaged importance score 𝑠𝑤 also indicates the correlation
between the word𝑤 and the class 𝑐 .

Step 3: Word clustering. The word pool𝑊𝑐 of the class 𝑐 contains both keywords and unrelated
words. To distinguish them and collect both directly related and indirectly related words, TOKI
clusters the word pool𝑊𝑐 , as formalised in Equation 3.

𝐶𝑐 = hierarchical_cluster
(
𝑊𝑐 , 𝜃dist

)
(3)

Words in𝑊𝑐 are transformed into embeddings by embedding methods. As the number of clusters is
unknown, hierarchical clustering [Nielsen 2016] is applied to group these word embeddings based
on their cosine similarities. Clusters 𝐶𝑐 of the class 𝑐 are obtained by cutting the dendrogram, a
hierarchical tree of relationships between the word embeddings, at the threshold distance 𝜃dist .

Step 4: Keyword selection. The list of keywords is identified by selecting the clusters of words
semantically related to the class name, as described in Equation 4.

𝐾𝑐 =
⋃
𝐶𝑖 ∈𝐶𝑐

{
𝐶𝑖 | 𝑠𝑖𝑚

(
𝐶𝑤
𝑖
, 𝑐
)
≥ 𝜃 relate

}
, and 𝐹𝑐 =𝑊𝑐 \ 𝐾𝑐 (4)

In TOKI, the word cluster 𝐶𝑖 is directly related to the class 𝑐 if 𝑠𝑖𝑚
(
𝐶𝑤
𝑖
, 𝑐
)
≥ 𝜃 relate . Here, 𝐶𝑤𝑖 is the

mean vector of all the embeddings of words in 𝐶𝑖 , 𝑠𝑖𝑚(·, ·) measures the cosine similarity between
two word embeddings, and 𝜃 relate is the threshold relatedness. After this step, the list of keywords
𝐾𝑐 of the class 𝑐 is identified while the remaining words form a list of non-keywords 𝐹𝑐 .

While 𝜃dist needs manual configuration, 𝜃 relate can be automatically estimated by turning it into a
binary classification problem. The key idea to determine 𝜃 relate is that related pairs of words can be
found via synonyms. To accomplish this, the top 1,000 most common English words are taken from
WordNet [Miller 1995]. Then, TOKI uses Merriam-Webster Dictionary [2002] to find all single-word
synonyms of each word, resulting in approximately 32,000 pairs of related words. Another 32,000
random pairs of words are generated from WordNet to create a list of unrelated pairs. Finally, TOKI
determines the value of 𝜃 relate through a binary search on the word embeddings of these lists. At
each iteration, all 64,000 pairs are classified, with each pair of words considered as related if the
cosine similarity between two word embeddings is higher than or equal to the current 𝜃 relate . The
search stops when precision and recall for both related and unrelated classifications are balanced.
The value of 𝜃 relate varies depending on the word embedding method, as different methods have
their unique ways of embedding, thereby impacting the measurement of similarity between words.

3.2 Trustworthiness Label Computation
The second pipeline of TOKI, as highlighted in yellow in Figure 4, focuses on assessing the trustwor-
thiness of a correct prediction. The trustworthiness label is determined by comparing the impacts
between related and unrelated decision-contributing words based on their total importance scores.
To determine whether a decision-contributing word is related to the class, TOKI uses keywords as
anchors to assess semantic relatedness. We define an indicator function 𝑟 (𝑤, 𝑐) for this purpose
by checking whether the nearest word in𝑊𝑐 to𝑤 is a keyword, as shown in Equation 5. We then
formalise the second pipeline in Equation 6.

𝑟 (𝑤, 𝑐) =

1, if max

⟨𝑤𝑖 ,_⟩∈𝐾𝑐

𝑠𝑖𝑚(𝑤𝑖 ,𝑤) ≥ max
⟨𝑤𝑖 ,_⟩∈𝐹𝑐

𝑠𝑖𝑚(𝑤𝑖 ,𝑤),

0, otherwise.
(5)
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𝐼𝑆 rel =
∑︁

⟨𝑤𝑖 ,𝑠𝑖 ⟩∈𝑒 (𝑓 ,𝑥𝑡 )
𝑠𝑖 ∗ 𝑟 (𝑤𝑖 , 𝑐) , 𝐼𝑆unr =

∑︁
⟨𝑤𝑖 ,𝑠𝑖 ⟩∈𝑒 (𝑓 ,𝑥𝑡 )

𝑠𝑖 ∗ (1 − 𝑟 (𝑤𝑖 , 𝑐)) , and 𝐷 (𝑓 , 𝑥𝑡 , 𝑐, 𝑒) = 𝐼𝑆 rel ≥ 𝐼𝑆unr (6)

TOKI leverages the explanation method 𝑒 (·, ·) to extract decision-contributing words for the pre-
diction to the given input 𝑥𝑡 . For each word𝑤 , TOKI identifies the most similar word in the word
pool𝑊𝑐 of the predicted class 𝑐 , which is constructed in the first pipeline, by measuring the cosine
similarity between their embeddings. The semantic relatedness between each word and the class is
determined by checking whether the most similar word is a keyword. Next, TOKI computes the total
importance scores 𝐼𝑆 rel and 𝐼𝑆unr for semantically related and unrelated words, respectively. Based
on the difference between them, the trustworthiness oracle 𝐷 finally assigns a trustworthiness
label (trustworthy or untrustworthy) to the prediction.

Word embeddings themselves can be biased due to their training data [Torregrossa et al. 2021],
potentially affecting the ability to measure semantic relatedness. To mitigate this, TOKI applies
ensemble learning [Leon et al. 2017] by employing different word embedding methods. We use
both static embedding methods [Bojanowski et al. 2017; Shazeer et al. 2016], which produce a single
output for each word and contextual embedding methods [Cer et al. 2018; Devlin et al. 2019], which
generate different vectors for the same word based on its context. Each method has a different
way of vectorizing words, resulting in different similarity measurements between them. In the
first pipeline, this affects the computation of 𝜃 relate and the keyword identification. In the second
pipeline, different embedding methods identify different similar words in the word pool, leading to
different decisions about how the word is related to the class. Decisions made by all embedding
methods are combined using plurality voting [Leon et al. 2017] in both pipelines.

Plurality voting is a simple yet effective voting method where each voter selects a single option,
and the option with the most votes wins. In the first pipeline, a word receives a vote from an
embedding method if the method identifies it as a keyword. The word is ultimately classified as
a keyword if it receives the highest number of votes across all embedding methods. Similarly, in
the second pipeline, a word is considered related to a class if it is identified as such by the highest
number of embedding methods in the ensemble.

4 Targeted Adversarial Attacks on Trustworthiness Vulnerabilities
We introduce a novel adversarial attack method guided by TOKI. The key idea is to weaken valid
correlations by replacing words with similar ones that are weakly correlated to the original class,
while strengthening spurious correlations by injecting unrelated words strongly correlated to other
classes. Table 1 compares TOKI-guided attack method with existing adversarial attack methods,
exemplified by the SOTA A2T [Yoo and Qi 2021].
A2T uses the gradient of the loss to determine the substitution order of words based on their

importance scores in the prediction. It then iteratively replaces each word with synonyms generated
from a counter-fitted word embedding model [Mrkšić et al. 2016]. This embedding model is injected
with antonymy and synonymy constraints into vector space representations to improve its ability to
assess semantic similarity. For example, traditional word embedding models like GloVe [Pennington
et al. 2014] consider “expensive” similar to its antonyms, “cheaper” and “inexpensive”. In contrast,
the counter-fitted word embedding model prefers synonyms like “costly” and “overpriced”. A2T also
sets a modification rate to constrain the maximum number of perturbations allowed. The generated
texts are subsequently filtered to ensure part-of-speech consistency and semantic preservation by
evaluating the cosine similarity between the sentence encodings of the original and perturbed texts.
A2T has been validated and demonstrated as a strong adversarial attack method [Zhou et al. 2024].

Our method follows the same architecture as A2T. The key difference is that it finds synonyms
in word pools𝑊 constructed by TOKI, based on word-class correlations measured by the averaged
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Table 1. Comparing TOKI-guided attack method (Ours) and A2T [Yoo and Qi 2021]

Components TOKI-guided attack method (Ours) A2T [Yoo and Qi 2021]
Word Ranking Method Gradient-based Word Importance Gradient-based Word Importance
Source of Synonyms Trustworthiness Oracle Counter-fitted Embedding
Word Substitution Word Embedding +Word-Class Correlation Word Embedding

Constraints
Modification Rate

DistilBERT Cosine Similarity
Part-of-Speech Consistency

Modification Rate
DistilBERT Cosine Similarity
Part-of-Speech Consistency

While the story does seem
pretty unbelievable at times, it’s

awfully fun to watch.

While the story does seem
pretty unbelievable at times, it’s

awfully humorous to watch.

A2T

Trular

While the story does seem
pretty unbelievable at times, it’s
awfully entertaining to watch.

Replaced word: entertaining Replaced word: unbelievable

While the story does seem
pretty extraordinary at times,

it’s awfully fun to watch.failed success

success

Original text

 TOKI

While the story does seem
pretty unbelievable at times, it’s

awfully fun to watch.

While the story does seem
pretty unbelievable at times, it’s

awfully humorous to watch.

A2T

Trular

While the story does seem
pretty unbelievable at times, it’s
awfully entertaining to watch.

Replaced word: entertaining Replaced word: unbelievable

While the story does seem
pretty extraordinary at times,

it’s awfully fun to watch.failed success

success

Original text

 TOKI

Fig. 5. Adversarial examples generated by TOKI (Ours) and A2T. Words highlighted in orange or blue show
their contribution to the negative or positive class, with the shade indicating their level of importance.

importance scores 𝑠 . To replace a word, TOKI-guided attack method checks whether the word is
related to the original predicted class. If it is, the word is replaced with a similar keyword of that
class that has a low importance score. Otherwise, it is replaced with a similar non-keyword from
other classes that has a high importance score. This mechanism tricks the model into using unrelated
words as cues for predictions to cause misclassification, increasing the likelihood of successful
attacks while reducing the number of perturbations.

Figure 5 compares adversarial examples generated by TOKI and A2T on the same input, showing
that A2T requires more perturbations to succeed. The text is initially predicted as positive mainly
based on the words “entertaining” and “unbelievable”. A2T first substitutes “entertaining” with
“fun”, a synonym identified by the counter-fitted word embedding model. However, this change fails
to attack the model, as the positive clues “fun” and “unbelievable” still dominate. A2T then replaces
“unbelievable” with its synonym “extraordinary”. This time, the overall impact of positive clues is
reduced, allowing the negative clue “awfully” to dominate. A2T substitutes words based only on
the semantic meaning, requiring two substitutions to create a successful adversarial example. In
contrast, TOKI-guided attack method replaces “entertaining” with a similar word “humorous”. This
word is deemed weakly correlated to the positive class by TOKI in this case, allowing the negative
clues to dominate and alter the prediction with just one substitution.

5 Trustworthiness Benchmark
Trustworthiness oracles aim to determine whether a prediction is trustworthy, as described in
Section 2. Evaluating them requires datasets containing model predictions, corresponding explana-
tions, and trustworthiness labels (trustworthy or untrustworthy). We call them “trustworthiness
datasets” to distinguish them from “datasets” used to train and validate ML models. However,
limited trustworthiness datasets are available for such evaluation [Schlegel et al. 2022].
Dong’s trustworthiness dataset. The human-based evaluation conducted by Dong [2018]

is one of the most relevant studies. This evaluation uses two datasets: a subset [Ribeiro et al.
2016] of the 20 newsgroups (20news) differentiating Christianity from Atheism, and movie reviews
with sentiment labels. In the evaluation, text inputs, highlighting the top words identified by the
explanation method, are shown to crowdworkers. They then guess the system’s output and state
their confidence on a five-point Likert scale, ranging from “strongly disagree” to “strongly agree”.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE106. Publication date: July 2025.



FSE106:12 L. Nguyen Tung, S. Cho, X. Du, N. Neelofar, V. Terragni, S. Ruberto, A. Aleti

Table 2. Trustworthiness benchmark

Dataset Data Statistics Model Under Test Number of
top words

Importance
TypeTrust Untrust Total Model Type Accuracy

movie [Dong 2018] 311 47 358 Multilayer perceptron
(MLPs)

0.832 10, 20 importance
20news [Dong 2018] 0.939 equivalent

CAMS [Garg et al. 2022] 1,206 739 1,945 mentalbert-base-
uncased 0.397 10 importance

equivalent
HateXplain
[Mathew et al. 2021] 3,002 304 3,306 bert-base-uncased 0.797 10 importance

equivalent

Issues [Schulte et al. 2024] 2,187 45 2,232 sebert-base 0.945 10 importance
different

Ours

amazon_polarity

226 19 245

roberta-base-cased 0.960

5, 10, 20 importance
different

ag_news bert-base-uncased 0.934
rotten_tomatoes distilbert-base-uncased 0.841
yahoo_answers_topics bert-base-uncased 0.750
imdb distilbert-base-uncased 0.928
emotion distilbert-base-uncased 0.926

To derive a trustworthiness dataset, only answers, where the model correctly predicts the output,
are selected from the original crowdworkers’ responses. The answers, where crowdworkers either
guess incorrectly with high confidence (4–5) or correctly with low confidence (1–2), are deemed
untrustworthy. Other answers, where the crowdworkers guess correctly with high confidence
(4–5), are trustworthy. Trustworthiness labels from the crowdworkers for the same prediction are
combined using plurality voting [Leon et al. 2017] to determine the final trustworthiness label.

CAMS and HateXplain. CAMS [Garg et al. 2022] is a corpus for classifying mental health issues
from social media posts, while HateXplain [Mathew et al. 2021] is a dataset for hate speech detection.
Both datasets provide ground-truth explanations for each instance. In CAMS, annotations highlight
phrases used as inferences for predictions. In HateXplain, tokens are labeled as 0 or 1 to indicate
whether they are part of the explanation. Trustworthiness datasets are created by explaining the
models and comparing these explanations with the ground-truth ones. To measure the plausibility
of the reasoning behind predictions, we follow Zini et al. [2022] and use explanation precision
= |𝐸 ∩ 𝐺 | / |𝐸 |, where 𝐸 is the model explanation and 𝐺 is the ground-truth explanation. High
precision suggests that the model explanation is unlikely to provide a word not in the ground-truth
explanation. A prediction is then considered trustworthy if its explanation precision ≥ 0.5.
Issues: A SE-specific dataset. We adopt the study of Schulte et al. [2024], which analyses

explanations for the automated classification of bug and non-bug issues, a critical task in SE. These
issues are reported in issue tracking systems, such as JIRA or Github. Each prediction is explained
by explanation methods, such as LIME [Ribeiro et al. 2016]. The authors then review the explanation
based on multiple criteria, assigning a score of +1 if satisfied, 0 if neutral, and -1 if not. To assess
a prediction’s trustworthiness, we focus on two criteria: related and unambiguous. Specifically,
related means there is a clear relationship between the important words of the explanation and the
prediction. On the other hand, unambiguous implies there are no words of mixed meaning or all
words are used in their correct meaning with respect to the explanation. Predictions are deemed
trustworthy if the average score of these two criteria is greater than 0. If the average score is lower
than 0, they are deemed untrustworthy. We finally combine these decisions of all annotators using
plurality voting [Leon et al. 2017] to determine the final trustworthiness label for each prediction.

Importance-different trustworthiness dataset.We create an additional trustworthiness dataset
that considers the distribution of importance scores of words. Six datasets and correspondingmodels
are selected from Huggingface: amazon_polarity, ag_news, rotten_tomatoes, yahoo_answers_topics,
imdb, and emotion. We randomly sample 1,000 predictions and have three trained participants
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annotating their trustworthiness. For each prediction, the annotators first guess the output of the
text input. They then review the model prediction and its explanation generated by LIME [Ribeiro
et al. 2016], a SOTA method known for its effectiveness and faithfulness [Mariotti et al. 2024;
Zhao et al. 2024]. Finally, the prediction is manually labelled as trustworthy or untrustworthy by
annotators. Only predictions where both the model and annotators guess the correct output are
considered. The trustworthiness label for each prediction is determined by plurality voting [Leon
et al. 2017] based on all annotations. It is observed that the annotators often deem a prediction
untrustworthy if unrelated words receive significantly higher importance scores in its explanation.

Explanation method. Three methods are used to extract decision-contributing words.
• LIME approximates the model locally with an interpretable model on perturbed samples
created around the input [Ribeiro et al. 2016]. Our experiments use 5,000 perturbed samples.

• Word omission [Li et al. 2016] estimates the contribution of individual words by deleting them
and measuring the change in probability for the predicted class [Dong 2018].

• Gradient computes the output gradient with respect to the input [Mohebbi et al. 2021].
Models under test. For our new datasets, popular fine-tuned models from Huggingface are

chosen. For the remaining datasets, models provided by the authors are used. Table 2 summarises
the final trustworthiness benchmark, the models under test, and their corresponding accuracies.

6 Evaluation
This section describes a series of experiments conducted to evaluate how well TOKI addresses the
trustworthiness oracle problem and adversarial attacks text classifiers.

6.1 Baselines
We adopt a naive approach, named Naive, which assesses trustworthiness based on model confi-
dence. Naive considers a prediction untrustworthy if its confidence is lower than a threshold 𝜃 conf .
For ablation studies, we use a TOKI’s variant, called TOKI (–K.I), which directly measures the relat-
edness between decision-contributing words and class names without identifying keywords [Cho
et al. 2024]. We also compare TOKI-guided attack method with A2T [Yoo and Qi 2021], a SOTA
adversarial attack method that has been validated to be strong and effective [Zhou et al. 2024].

6.2 ResearchQuestions
We answer three research questions to investigate the trustworthiness problem and evaluate TOKI.
RQ1. Does a prediction’s uncertainty reflect its trustworthiness?

RQ1.1. How are prediction uncertainty and trustworthiness related?
RQ1.2. What is the optimal configuration for 𝜃 conf of Naive?

RQ2. How effective and efficient is TOKI in trustworthiness assessment?
RQ2.1. What is the optimal configuration for 𝜃dist?
RQ2.2. How effective is TOKI compared to Naive?
RQ2.3. How does identifying keywords affect TOKI’s effectiveness and efficiency?
RQ2.4. What is the impact of different explanation methods on TOKI?

RQ3. How effective is TOKI-guided attack method compared to A2T?

6.3 Metrics
Trustworthiness assessment. We emphasise that our evaluations focus on the effectiveness of trust-
worthiness oracles in classifying predictions as trustworthy or not, rather than assessing the
trustworthiness of ML models themselves. The effectiveness of trustworthiness oracles is deter-
mined by the alignment between their generated trustworthiness labels and human-annotated
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ones that reflect human perceptions of trustworthiness in the benchmark shown in Table 2. We
frame trustworthiness oracles as binary classifiers with trustworthy and untrustworthy labels and
evaluate their effectiveness using standard performance metrics for binary classification.

• Accuracy: the proportion of predictions correctly labelled as trustworthy or untrustworthy.
• Precision, sensitivity, and F1-score: the performance in detecting trustworthy predictions.
• Specificity: the performance in detecting untrustworthy predictions.
• Geometric mean (G-mean): the balance between the classification performance on trustworthy
and untrustworthy predictions, computed as

√︁
sensitivity × specificity.

This usage of these metrics differs from that of model confidence in RQ1, which is assumed to
be an unsuitable indicator of trustworthiness. G-mean serves as a balanced metric for evaluating
classification performance on both trustworthy and untrustworthy predictions. A higher G-mean
indicates better alignment between the trustworthiness benchmark and the oracles. Additionally,
the efficiency of the trustworthiness oracles is assessed by their processing time in seconds.

Adversarial attack. We report the attack success rate (ASR), defined as # of successful attacks
# of total attacks , and the

number of perturbations (NP) to evaluate effectiveness. We also use Bert [Devlin et al. 2019] and
USE [Cer et al. 2018] scores to assess cosine similarity between original and adversarial examples.

6.4 Experimental Setup
We use six word embedding methods for TOKI’s word embedding ensemble model. ① NNLM [Ben-
gio et al. 2000] learns embeddings and language models using a feedforward neural network.
② GloVe [Pennington et al. 2014] generates word embeddings from corpus word-to-word co-
occurrence matrices. ③ Swivel [Shazeer et al. 2016] generates low-dimensional embeddings from
feature co-occurrence matrices. ④ FastText [Bojanowski et al. 2017] represents each word as
a bag of character n-grams, capable of embedding misspelled, rare, or out-of-vocabulary words.
⑤ USE [Cer et al. 2018] encodes sentences into embeddings for transfer learning to other tasks.
⑥ Bert [Devlin et al. 2019] is the first deeply bidirectional, unsupervised language representation,
pre-trained on a large text corpus to condition both left and right contexts of each word.
We use the trustworthiness benchmark described in Section 5 to evaluate trustworthiness

oracles. For our datasets, 2,000 training instances are randomly sampled for explanations in TOKI’s
first pipeline, while all training instances are used in the remaining datasets. Trustworthiness
oracles employing LIME, omission, and gradient explanations are denoted by the suffixes “-lime”,
“-omis”, and “-grad”, respectively. Regarding adversarial attacks, we implement our method using
TextAttack [Morris et al. 2020], which already includes A2T’s implementation [Yoo and Qi 2021],
and use A2T’s default settings for both. We then attack random samples of up to 8,000 instances
from each dataset in Table 2. Experiments are run 10 times on a Macbook M3 Pro with 12-core
CPU, 18-core GPU, 18GB RAM, and 512GB SSD. The final results are averaged across these runs.

6.5 Results
RQ1: Relation between prediction uncertainty and trustworthiness. We use model confidence as a
metric to assess the uncertainty of ML predictions. Figure 6 addresses RQ1.1 by illustrating the
distribution of model confidence for two trustworthiness labels on the benchmark shown in Table 2.
The majority of high confidence predictions are trustworthy. Highly confident (0.9–1.0) predictions
that are trustworthy account for 76%–99% of predictions with highly strong confidence. Similarly,
trustworthy predictions with high confidence (0.8–0.9) represent 49%–91% of high confidence
predictions. While predictions with strong confidence are likely to be trustworthy, several confident
predictions are still untrustworthy. Confident (0.8–1.0) but untrustworthy predictions make up
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Fig. 6. The distribution of predictions’ confidence across trustworthiness labels.
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Fig. 7. ROC curves of Naive.

0.0 0.2 0.4 0.6 0.8 1.0
θconf

0.0
0.2
0.4
0.6
0.8
1.0

G
-m
ea
n

Fig. 8. Naive with different 𝜃 conf .

0.0 0.2 0.4 0.6 0.8 1.0
θdist

0.0
0.2
0.4
0.6
0.8
1.0

G
-m
ea
n

Fig. 9. TOKI with different 𝜃dist .

2%–29% of all confident predictions. In contrast, predictions with low confidence (<0.8) can also be
trustworthy, with 51%–92% of low confidence predictions being trustworthy.
We now address RQ1.2, finding the optimal value of 𝜃 conf for Naive, which relies solely on

model confidence. Figure 7 shows receiver-operating characteristic (ROC) curves of Naive across
trustworthiness datasets. Only the ROC curve for Issues is slightly closer to the top-left corner
of the plot, while the others are near the random curve. Notably, the ROC curve for the new
trustworthiness dataset falls below the random curve. This indicates that model confidence is
limited in distinguishing between trustworthy and untrustworthy predictions. Figure 6 further
shows that increasing 𝜃 conf on the y-axis decreases the false positive rate, where untrustworthy
predictions are labeled as trustworthy, but also increases the false negative rate, where trustworthy
predictions are labeled as untrustworthy. In other words, increasing 𝜃 conf enhances specificity but
reduces sensitivity. Hence, we choose to maximise G-mean as the criterion to find 𝜃 conf . Figure 8
illustrates Naive’s effectiveness in G-mean with different values of 𝜃 conf . As the value of 0.9 achieves
the best G-mean for Naive, we set 𝜃 conf to 0.9 for the remaining experiments.

Answer to RQ1: Uncertainty metrics of ML predictions, such as model confidence, are not
suitable for assessing their trustworthiness. Although high confidence predictions tend to
be trustworthy, relying on these metrics easily overlooks both trustworthy low confidence
predictions and untrustworthy high confidence predictions.

RQ2: Effectiveness and Efficiency of TOKI. Intuitively, increasing 𝜃dist leads to an over-inclusion
of words as keywords, which results in a bias towards classifying predictions as trustworthy.
This increases sensitivity while reducing specificity. Conversely, decreasing 𝜃dist causes related
keywords to be overlooked, leading to a bias towards classifications of predictions as untrustworthy,
thereby reducing sensitivity and increasing specificity. Hence, we also address RQ2.1 by measuring
the effectiveness of TOKI-lime with various values of 𝜃dist using G-mean, a metric that balances
sensitivity and specificity. Figure 9 reveals that the optimal value of 𝜃dist ranges from 0.2 to 0.4,
depending on the models under test. Across all trustworthiness datasets, when 𝜃dist exceeds 0.6,
G-mean drops significantly. In this case, TOKI considers all words as keywords and biases for
labeling predictions as trustworthy. In the subsequent experiments, we set 𝜃dist to 0.3, as it balances
the effectiveness across the benchmark.
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Table 3. Comparison between TOKI (Ours), Naive, and a TOKI’s variant that is without keyword identification
(indicated by the suffix –K.I) against the trustworthiness benchmark

Dataset Method Acc (↑) Pre (↑) Sen (↑) F1 (↑) Spec (↑) G-mean
(↑)

Training
Instances

Keyword
Identification

Time (↓s)

Test
Instances

Trustworthiness
Label Computa-
tion Time (↓s)

D
on

g’
s

[D
on

g
20
18
]

TOKI-lime (Ours) 0.930 0.947 0.974 0.960 0.638 0.789
2,509

4,866

358

1,053
TOKI-omis (Ours) 0.882 0.912 0.956 0.934 0.392 0.612 98 379
TOKI-grad (Ours) 0.853 0.944 0.891 0.917 0.387 0.587 41 704
Naive 0.771 0.893 0.836 0.864 0.340 0.533 ✗ ✗ ✗
TOKI-lime (–K.I) 0.302 0.985 0.209 0.345 0.915 0.437

✗ ✗
1,051

TOKI-omis (–K.I) 0.285 0.956 0.192 0.320 0.902 0.416 377
TOKI-grad (–K.I) 0.233 1.000 0.170 0.290 0.968 0.406 702

CA
M
S

[G
ar
g
et

al
.2
02
2]

TOKI-lime (Ours) 0.878 0.872 0.941 0.905 0.775 0.854
2,158

198,359

1,945

224,540
TOKI-omis (Ours) 0.735 0.840 0.622 0.715 0.864 0.733 30,030 31,968
TOKI-grad (Ours) 0.539 0.888 0.499 0.639 0.719 0.599 2,366 3,116
Naive 0.615 0.768 0.543 0.636 0.732 0.631 ✗ ✗ ✗
TOKI-lime (–K.I) 0.422 0.648 0.343 0.449 0.551 0.435

✗ ✗
224,435

TOKI-omis (–K.I) 0.442 0.557 0.232 0.327 0.683 0.398 31,912
TOKI-grad (–K.I) 0.388 0.836 0.356 0.500 0.531 0.435 3,071

H
at
eX

pl
ai
n

[M
at
he
w

et
al
.2
02
1]

TOKI-lime (Ours) 0.933 0.966 0.961 0.963 0.661 0.797
2,364

352,721

3,306

464,720
TOKI-omis (Ours) 0.855 0.928 0.904 0.916 0.538 0.697 4,630 4,913
TOKI-grad (Ours) 0.684 0.375 0.385 0.380 0.785 0.550 5,334 7,303
Naive 0.640 0.942 0.645 0.765 0.605 0.624 ✗ ✗ ✗
TOKI-lime (–K.I) 0.103 0.953 0.014 0.027 0.984 0.117

✗ ✗
464,606

TOKI-omis (–K.I) 0.137 0.879 0.010 0.020 0.975 0.099 4,818
TOKI-grad (–K.I) 0.737 0.586 0.020 0.039 0.979 0.140 7,271

Is
su
es

[S
ch
ul
te

et
al
.

20
24
] TOKI-lime (Ours) 0.958 0.993 0.963 0.978 0.689 0.815 3,090 585,523

2,232
353,754

Naive 0.944 0.983 0.959 0.971 0.200 0.312 ✗ ✗ ✗
TOKI-lime (–K.I) 0.109 0.913 0.010 0.019 0.489 0.007 ✗ ✗ 6,358

O
ur
s TOKI-lime (Ours) 0.922 0.977 0.938 0.957 0.737 0.831 12,000 1,126,453
245

23,892
Naive 0.861 0.925 0.925 0.925 0.105 0.312 ✗ ✗ ✗
TOKI-lime (–K.I) 0.408 0.968 0.403 0.569 0.474 0.437 ✗ ✗ 23,849

The next experiment compares TOKI, Naive, and TOKI (–K.I) with different explanation methods
against the benchmark outlined in Table 2. The experimental results are presented in Table 3.

• RQ2.2: Comparing TOKI and Naive. TOKI consistently outperforms Naive across all datasets.
Naive occasionally shows good precision, sensitivity and F1-score but relatively low specificity
and G-mean, especially on Dong’s, Issues, and our trustworthiness datasets. This indicates
that Naive is biased toward labeling predictions as trustworthy, resulting in misclassifying
untrustworthy predictions as trustworthy.

• RQ2.3: Ablation study – the effect of keywords. TOKI (–K.I) underperforms compared to TOKI
with low accuracy and G-mean across all datasets. On Dong’s and HateXplain trustworthiness
datasets, TOKI (–K.I) shows high specificity and precision, but other metrics remain low.
This suggests a bias against labeling predictions as trustworthy, leading to misclassifying
trustworthy predictions as untrustworthy. In terms of efficiency, TOKI (–K.I) and TOKI have
similar processing times for computing trustworthiness labels, indicating that most of the
time is spent on explaining predictions. Although keyword identification is time-consuming,
it is only run once to assess the trustworthiness of a batch of predictions.

• RQ2.4: The impact of explanation methods. We investigate this using Dong’s, CAMS, and
HateXplain datasets, as other datasets only use LIME. Overall, TOKI demonstrates the best ef-
fectiveness with the SOTA LIME. TOKI-lime achieves higher accuracy and G-mean compared
to TOKI-omis and TOKI-grad, while other metrics show no significant differences, except
for the CAMS dataset. Explanation methods also impact TOKI’s efficiency. TOKI-lime is
significantly slower due to LIME’s sampling of 5,000 neighbors, while omission and gradient
are more lightweight. The model complexity also affects TOKI’s efficiency, as the fine-tuned
models consume more time than the two simpler MLPs in Dong’s dataset.
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Table 4. Experimental results comparing TOKI-guided attack method and A2T [Yoo and Qi 2021]

Dataset Instances TOKI-guided attack method (Ours) A2T
SAR (↑) Avg.NP (↓) Bert (↑) USE (↑) SAR (↑) Avg.NP (↓) Bert (↑) USE (↑)

movies 728 0.994 11.399 0.994 0.996 0.994 11.531 0.994 0.996
20news 926 0.458 21.058 0.977 0.979 0.456 21.089 0.976 0.979
CAMS 4,316 0.812 4.807 0.983 0.968 0.765 5.500 0.981 0.966
HateXplain 3,846 0.351 1.887 0.952 0.933 0.325 1.915 0.951 0.931
Issues 3,090 0.220 3.629 0.967 0.975 0.168 4.255 0.960 0.972
amazon_polarity 8,000 0.362 5.976 0.974 0.969 0.187 7.316 0.970 0.963
ag_news 7,600 0.192 2.481 0.965 0.949 0.151 2.668 0.963 0.952
rotten_tomatoes 1,066 0.500 1.626 0.952 0.921 0.334 1.898 0.950 0.919
yahoo_answers_topics 8,000 0.372 4.107 0.955 0.954 0.307 4.726 0.953 0.952
imdb 8,000 0.800 7.473 0.983 0.985 0.650 9.786 0.981 0.982
emotion 2,000 0.643 1.152 0.961 0.927 0.517 1.235 0.957 0.926

Table 5. Several adversarial examples: blue words indicate perturbations in the text, ✓ and ✗ represent
successful and failed attacks, respectively

Original [toxic]: If I am amoderatemuzzy and do not stand
against the extremists within my religion, I am a worthless
dog who deserves the title of muzzy terrorist period.

Original [medication]: When I manage to get a small victory
against depression and “wake up”, I still have to fight against
the pain that doesn’t let me move without moaning.

A2T [normal ✓]: If I am a moderate muzzy and do not
stand against the extremists within my cults, I am a pointless
dog who merits the title of muzzy terrorist periods.

A2T [jobs and careers ✓]: When I manage to get a small win
against downturn and “wake up”, I still have to fight against the
grief that doesn’t let me move without whining.

TOKI [normal ✓]: If I am a mild muzzy and do not stand
against the extremists within my religion, I am a worthless
dog who deserves the title of muzzy terrorist period.

TOKI [jobs and careers ✓]: When I manage to get a small
victory against stressors and “wake up”, I still have to fight
against the pain that doesn’t let me move without moaning.

Original [joy]: He is old enough to no longer feel that I
am the only acceptable answer in the dark.

Original [negative]: Despite its visual virtuosity, “Naqoyqatsi”
is banal in its message and the choice of material to convey it.

A2T [sadness ✓]: He is longtime enough to no longer feel
that I am the only agreeable answer in the gloomy.

A2T [negative ✗]: Though its visual virtuosity, “Naqoyqatsi” is
banal in its messaging and the choices of materials to convey it.

TOKI [love ✓]: He is old enough to no longer feel that I
am the only accepted answer in the dark.

TOKI [positive ✓]: Despite its visual virtuosity, “Naqoyqatsi”
is insipid in its message and the choice of material to convey it.

Answer to RQ2: TOKI outperforms the naive baseline based solely on model confidence,
achieving the best effectiveness with LIME explanations. Without identifying keywords, TOKI’s
ability to measure semantic relatedness is limited, which can misclassify trustworthy predictions
as untrustworthy. In terms of efficiency, TOKI depends on the explanation methods and the
model complexity, as most of its processing time is spent on explaining predictions.

RQ3: Effectiveness of TOKI-guided attack method. Table 4 compares the effectiveness of TOKI-guided
attack method and A2T [Yoo and Qi 2021]. Overall, TOKI-guided attack method outperforms A2T,
achieving a higher ASR and lower NP across all models. Adversarial examples generated by TOKI
also have higher Bert and USE scores than those by A2T, except for the USE score on the ag_news
dataset, demonstrating TOKI’s ability to preserve the semantic meaning of the original texts.
Table 5 displays several adversarial examples generated by both methods. It is observed that TOKI
can effectively find synonyms to attack with fewer perturbed words, while A2T requires more
perturbations and sometimes fails. Interestingly, in Dong’s dataset, A2T performs nearly as well
as the proposed method, likely because the models are simple MLPs and more easily attacked
than transformer-based models in other datasets. However, in other datasets, the proposed method
outperforms A2T by 2.6%–17.5% in ASR and requires 0.1–1.34 fewer NP. These results underscore the
effectiveness of TOKI-guided attack method, particularly against models using SOTA architectures.
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Answer to RQ3: The adversarial attack method guided by TOKI outperforms the SOTA A2T.
Our method achieves a higher success rate with fewer perturbations than A2T while preserving
the semantic meaning of the original texts.

7 Discussion
7.1 Implications
Prediction uncertainty and trustworthiness. Experimental results show that highly confident
predictions are more likely to be trustworthy. However, high confidence does not guarantee
trustworthiness, and low confidence predictions can still be trustworthy. Relying on prediction
uncertainty is ineffective for trustworthiness assessment, overlooking both trustworthy low and
untrustworthy high confidence predictions. Prior work has a complex debate over the impact of
prediction uncertainty, mainly on human trust in ML models. Several studies [Bussone et al. 2015;
Nguyen et al. 2015] suggest that prediction uncertainty has a limited impact on human trust [Ovadia
et al. 2019; Rechkemmer and Yin 2022]. Other studies [Zhang et al. 2020a] show that prediction
certainty can improve human trust in ML models and increase the willingness to rely on high
confidence predictions. However, we argue that whether prediction certainty increases human
trust or not, it does not translate into improving the model’s trustworthiness. Model certainty can
lead to overreliance on ML decisions without reflecting the true trustworthiness of the model. The
model may make decisions based on spurious correlations, being confident in them rather than
valid correlations in the training data. This fits the distinction between trust and trustworthiness
defined by Kästner et al. [2021], where people can still trust an untrustworthy model.

Automated trustworthiness oracles. TOKI identifies keywords for each class and uses them
to measure the semantic relatedness between words and the class, effectively capturing the char-
acteristics of classes. This makes TOKI outperform the baselines, including its variant that omits
keywords to measure relatedness, which is biased for untrustworthy predictions.

Regarding adversarial attacks, examples generated by TOKI are more effective in attackingmodels
than those created by A2T. By leveraging correlations between words and classes, our method
generates adversarial examples likely to trigger trustworthiness vulnerabilities. This enables TOKI-
guided attack method to achieve a higher attack success rate with fewer perturbations than existing
adversarial attack methods. This finding highlights the negative impact of trustworthiness issues
and the need for trustworthiness oracles, which remain underexplored in the research community.

Implications for software engineering. Trustworthiness is a crucial non-functional requirement
of ML systems [Riccio et al. 2020]. Trustworthiness oracles enable automating trustworthiness
testing, which is particularly valuable in the iterative development of ML systems. They support
continuous integration and delivery pipelines, monitoring in real-world SE environments, such as
online testing or DevOps, and handling corner-cased and real-world inputs. Since TOKI is efficient
and lightweight, it can be directly applied in online settings and real-world environments without
extensive training, requiring only a one-time keyword identification. This makes TOKI a practical
safety net for software systems that rely on ML text classification. TOKI’s outputs also provide
actionable insights for feedback-driven improvement, reducing the need for human intervention.

Text classification is also a primary application in SE domains to automate tasks such as sentiment
analysis of SE artifacts, including git commit comments, JIRA issues, and app reviews, assessing
developers’ psychological states, analysing Q&A sites like StackOverflow, software requirements
classification, and project issue categorisation. Integrating such oracles can foster greater trust in
ML4SE systems and significantly advance their development and deployment.
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7.2 Threats to Validity
Threats to internal validity can be related to the faithfulness of explanations, which refers to how
accurately the explanations reflect a model’s reasoning [Mariotti et al. 2024]. To assess this, we
evaluate TOKI using three explanation methods, including LIME, omission, and gradient. Another
threat to internal validity is the bias in word embedding methods due to their training data. We
mitigate this by using ensemble learning with multiple word embedding methods.
To reduce threats to external validity, we evaluate TOKI on approximately 8,000 predictions

across 11 models and datasets in various domains, including topic classification, sentiment analysis,
clinical mental text classification, hate speech detection, and software issue classification. We also
employ TOKI with various explanation methods to assess its performance.
Threats to construct validity can arise from the trustworthiness benchmark. We leverage

existing studies, which do not directly label predictions as trustworthy or not, by measuring the
explanations’ plausibility. To mitigate the threats, we collect an additional, more straightforward
trustworthiness dataset. The bias in human annotations is addressed by combining all human-
annotated trustworthiness labels for each prediction using plurality voting [Leon et al. 2017].

8 Related Work
8.1 Machine Learning Testing
Various testing techniques have emerged to assess different aspects of ML models. For example, test
input generation methods [Guo et al. 2018; Pei et al. 2017; Tian et al. 2018] are used detect defects,
guided by test adequacy criteria [Ma et al. 2018; Pei et al. 2017]. Several methods aim to debug and
repair models [Dutta et al. 2019; Krishnan and Wu 2017]. Other methods, such as A2T [Yoo and Qi
2021], focus on adversarial attacks [Morris et al. 2020; Zhang et al. 2020b] to assess model robustness.
The oracle problem [Barr et al. 2015] is also a significant area of interest. Two main approaches are
primarily used to address the oracle problem: metamorphic testing [Ramanagopal et al. 2018; Xie
et al. 2020] and cross-referencing [Guo et al. 2018; Pei et al. 2017]. Considerable efforts have been
made to test various properties of ML models, such as accuracy, relevance, efficiency, robustness,
fairness, and interpretability [Zhang et al. 2022]. However, testing the trustworthiness of ML models
remains a significant challenge. Several metrics have been proposed to quantify the concept of
trustworthiness [Cheng et al. 2020; Kaur et al. 2021]. However, different from other properties,
much of the work on trustworthiness testing relies on human interpretation within their systems.

8.2 Explanation Method
Local explanations, in contrast to global counterparts, focus on how a specific input leads to
a prediction. This makes them particularly suitable for understanding ML predictions. In text
classification, various methods have been developed to generate local explanations.

Feature attribution-based explanations assess the relevance of individual input features, such as
words, to a model’s prediction. Some [Dong 2018; Li et al. 2016] achieve this by removing, masking,
or modifying input features, and observing the impact on the prediction. Others calculate the
gradient of the output with respect to the input [Mohebbi et al. 2021]. Methods like LIME [Ribeiro
et al. 2016] approximate the model’s behaviour with simpler, interpretable models.

Attention-based explanations leverage the attention mechanism, which often serves as a means
to attend to the most relevant part of inputs [Wiegreffe and Pinter 2019]. Intuitively, they can
capture meaningful correlations between intermediate states of the inputs, potentially explaining
the model’s predictions [Zhao et al. 2024]. Hence, many approaches [Barkan et al. 2021; Yeh et al.
2024] aim to explain the predictions solely based on the attention weights or by analysing the
knowledge encoded in the attention.
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Counterfactual explanations reveal model behavior by demonstrating how slight input changes
impact outputs, highlighting key features influencing predictions [Zhao et al. 2024]. Originally
applied to ML tasks with explicit features and tabular datasets [Guidotti 2024], these explanations
have since been extended to other tasks, including text classification [Treviso et al. 2023].

While other local explanation methods are subject to extensive debate [Jain and Wallace 2019],
feature attribution explanations, such as the SOTA LIME [Ribeiro et al. 2016], have proven to
be effective, faithful [Mariotti et al. 2024], and widely used by AI practitioners. Therefore, this
paper focuses on feature attribution-based explanations. Exploring other local explanations for
trustworthiness testing is a promising direction, which we leave for future work.

8.3 Making Use of Explanations
Explanations have served as a valuable tool for testing and improving ML models [Zhao et al.
2024]. Various studies have used explanations to understand and debug models. Ribeiro et al. [2016]
demonstrated the usefulness of local explanations in various tasks, such as model comparison and
trust assessment. Lapuschkin et al. [2019] introduced a semi-automated approach that characterises
and validates classification strategies. Thomas et al. [2019] used explanations to uncover input-
prediction patterns. Several studies [Yoo and Qi 2021; Zhang et al. 2020b] have applied explanations
in adversarial attacks, primarily to determine word substitution order based on word importance.
To the best of our knowledge, this paper introduces the first approach that leverages explanations to
make perturbations, specifically, by weakening valid correlations and strengthening spurious ones.
Explanations have also been integrated into the learning process to improve model performance
and reliability. Ross et al. [2017] proposed an approach to discover multiple models for the same
task with different classification strategies, allowing domain experts to choose the best one. Chen
and Ji [2022] used explanations to improve the adversarial robustness of language models. Other
studies [Ghai et al. 2021; Schramowski et al. 2020] leveraged explanations to make models right for
the right scientific reasons. Similarly, Du et al. [2021] developed a framework to mitigate shortcuts,
focusing on stop words, punctuation, and numbers. Recent studies [Linhardt et al. 2024] have also
applied explanation regularisation to mitigate the impact of spurious correlations.

9 Conclusion
We investigate the trustworthiness oracle problem of text classifiers. Statistical evaluation reveals
that while highly confident predictions are more likely to be trustworthy, some still lack trustwor-
thiness due to reliance on spurious correlations. We propose TOKI, an automated trustworthiness
oracle generation method. Experiments compare the effectiveness and efficiency of TOKI, TOKI’s
ablation variant and the naive approach against the trustworthiness benchmark on ten models and
datasets. Results show that TOKI outperforms other approaches. We also introduce a TOKI-guided
adversarial attack method, which proves to be more effective than the SOTA A2T. In addition,
several directions remain open for future work. We plan to explore alternative explanations, such
as attention-based and counterfactual explanations, as well as other word embedding methods like
sentence-transformers [Reimers and Gurevych 2019]. Further experiments on SE-specific datasets
are also necessary to gain more insights into the trustworthiness problem in SE. Moreover, adapting
TOKI to other data types, such as images and speech, presents a promising avenue in the future.

Data Availability.
Our data and replicate package are available at [Lam et al. 2024].
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