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A paradigm shift is underway in Software Engineering, with AI systems such as LLMs playing an increasingly

important role in boosting software development productivity. This trend is anticipated to persist. In the next

years, we expect a growing symbiotic partnership between human software developers and AI. The Software

Engineering research community cannot afford to overlook this trend; we must address the key research

challenges posed by the integration of AI into the software development process. In this paper, we present our

vision of the future of software development in an AI-driven world and explore the key challenges that our

research community should address to realize this vision.
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1 Introduction
In the dawn of computing (1940s), programmers wrote machine code, consisting of binary in-

structions to directly program computers’ hardware. It was quickly understood that programming

needed a higher level of abstraction from the hardware [7]. This allowed programmers to

write code that is more readable, understandable, and portable across different hardware. From

assembly language (a more human-readable representation of machine code) to scripting languages

(e.g., Python and JavaScript), the past 70 years of programming languages and practices have

witnessed a continuous pursuit of a higher level of abstraction [29]. This is to increase developers’

efficiency and at the same time cope with the demand for increasingly complex software systems.

While the introduction of high-level programming languages has played a major role in allowing

software developers to write concise and expressive code, a paradigm shift occurred in the early

2000s with the widespread use of APIs (Application Programming Interfaces) and libraries.

Before that, programmers had to write extensive amounts of code to perform even basic tasks. The

shift towards using APIs and libraries had a profound impact on the efficiency and capabilities of

software development [49, 118]. Programming can now be informally summarised as chaining the
inputs and outputs of API calls, allowing an even higher level of abstraction.
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The intuitive, informative, and concise nature of variable and API names is bringing our pro-

grams closer to resembling human language. Additionally, the ongoing evolution of higher-level

programming languages unmistakably demonstrates a trend towards making language constructs

more closely aligned with human speech [29]. Can this trend continue and eventually programming
will reach the pinnacle of abstraction: natural language? This is very unlikely. Human speech lacks

the basic criteria of programming languages (e.g., lack of ambiguity). However, this does not mean

that software engineers can not be aided in writing programs by specifying their intent in natu-

ral languages. Developers have been using StackOverflow.com (SO), to search for solutions of

programming tasks using natural language as queries. Indeed, SO and similar Q&A websites for

developers [89] have become crucial tools to boost developer productivity [65, 65, 74, 78, 86, 88, 92].

The recent rise of Large Language Models (LLMs) [117], especially following the global

launch of GPT3.5, GPT4o and more recently, o1, by OpenAI, have brought another revolution of

programming, rapidly overshadowing platforms like SO [20]. While program synthesis from natural

language queries has been a subject of research for many years [32], the performance of recent

LLMs has shown results that were unthinkable just a few years ago [16, 23, 27, 35]. Now, developers

no longer need to search on SO for code snippets; instead, they can directly ask GPT (or other LLMs),

and even have conversational interactions to better understand and improve the generated code.

Recently, SO removed statistics on its daily visit counts and officially addressed concerns about

declining website traffic in a blog post
1
. The post acknowledges the decline in visits and attributes

the trend to the release of GPT-4. We are witnessing a paradigm shift in software development

where software engineers use LLMs and other AI systems to boost their productivity [25, 76].

We can confidently say that LLMs, alongside high-level programming languages, libraries, and

developer Q&A websites, have become essential tools for modern software development [25].

LLMs are here to stay. Indeed, their capabilities and performance in a wide range of software

engineering tasks are set to improve in the future. This is due to the increasing availability of

open-source code for training purposes, alongside the ongoing efforts of the AI community to

enhance LLM performance. As such, over the next decade, we anticipate that software engineers

will continue to use LLMs (or similar AI systems) in software development.

Our research community must acknowledge and address the opportunities and challenges

that arise from the use of AI in software engineering. Concerns persist regarding the quality of

AI-generated code [56], with notable issues regarding security and privacy [110].

Yet, there are numerous opportunities presented by the versatile capabilities of LLMs, especially

when fine-tuned for specific tasks, code bases, or company practices. For example, recent research

demonstrates that fine-tuned LLMs outperform general-purpose LLMs in code review tasks [68,

75]. Indeed, software engineering involves much more than writing code. LLMs have proven

highly effective in various software engineering tasks beyond code generation [36], including

documentation generation [30, 61], testing [80, 113], code review [68, 75], and program repair [45,

101, 102].

Our research community stands at the forefront of this revolution, we need to tempestively

address the challenges of the symbiotic partnership between human developers and AI.

In this paper, we present our vision of the potential future of an AI-driven software engineering,

alongside the key research challenges and opportunities associated with the increasing integration

of AI into the software engineering process. In particular, we propose the conceptual design of a

framework to harness AI capabilities for automating, augmenting, and optimizing various stages of

1
https://stackoverflow.blog/2023/08/08/insights-into-stack-overflows-traffic/
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the software development lifecycle, including requirements analysis, design, coding, testing, and

maintenance.

2 A Current Snapshot of AI Tools in Software Development
This section highlights examples of current tools and platforms that demonstrate how AI (in

particular LLMs) are transforming software engineering workflows. While this is not an exhaustive

list, it includes some popular and well-established tools that are widely applicable in development

pipelines. Research prototypes are excluded, focusing instead on mature tools ready for real-world

use. These examples cover specific applications such as code generation, documentation, and bug

fixing, showing how LLMs are becoming integral to modern software engineering practices. We

acknowledge that this landscape is shifting very rapidly, and these tools, while the state-of-the-art at

the time of writing in December 2024 could be superseded even by the time this article is published.

GitHub Copilot
2
is a pioneering tool in AI-powered development owned by Microsoft. It is

powered by OpenAI’s large language models, and can be integrated with popular IDEs to assist

developers by suggesting code completions. It offers context-aware code completions based on

the current files and project structure. The 2024 Q2 financial report of Microsoft reports that

GitHub Copilot grew its paid customer base by 30% quarter-over-quarter to a total of 1.3 million

developers and 50,000 organizations
3
. Tools like GitHub Copilot have been found to significantly

boost software developer productivity [119].

Amazon released CodeWhisperer
4
, its own version of an AI code assistant. Differently from

GitHubCopilot, which is general purpose,CodeWhisperer specializes in AWS cloud development,

providing tailored guidance and suggestions for AWS-specific coding and infrastructure.

Another recent example is Windsurf by Codeium
5
, recognized as the first “agentic IDE”

that seamlessly incorporates AI features into development that go beyond code suggestions. It

is a fork of Visual Studio Code that enables developers to: (i) Prompt the AI to build an entire

application, breaking it down into manageable tasks; (ii) Automatically create files, suggest package

installations, and manage dependencies; (iii) Review and refine its own code.

Similarly,Cursor
6
, another fork of Visual Studio Code, automatically fixes generated code and

supports app creation by breaking tasks into smaller steps. Cursor offers extensive customization

through the .cursorrules file format, enabling developers to adapt AI behavior for specific

frameworks and languages.
7

LLMs are also reshaping the way documentation is created and optimized. Tools such as LLM

Text
8
help developers extract and summarize relevant context from various sources, including

GitHub repositories, npm packages, and YouTube videos. UiHub
9
is another tool that leverages

LLMs for software engineering. Its enables large-scale repository analysis, allowing developers to

build advanced development tools and applications.

These concrete examples showcase how current LLMs are effectively being integrated into

software engineering, offering developers powerful capabilities to boost productivity, streamline

workflows, and improve code quality. The few examples we discussed unmistakenly show that the

2
https://github.com/features/copilot

3
https://www.microsoft.com/en-us/investor/events/fy-2024/earnings-fy-2024-q2

4
https://docs.aws.amazon.com/codewhisperer/

5
https://codeium.com/windsurf

6
https://www.cursor.com/

7
https://dotcursorrules.com/

8
http://llmtext.com/

9
https://uithub.com/
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Fig. 1. Logical architecture of the envisioned future symbiosis of Software Engineers and AI

evolution of software development is increasingly pointing toward autonomous multi-agent

systems, where AI systems independently make decisions during software development [34].

This evolution inspires, motivates, and informs our framework for the future of software engi-

neering, providing evidence that we are heading in that direction. As we embrace this trajectory,

it becomes crucial to address the challenges ahead and necessitates rethinking how to better

accommodate these intelligent AI-powered agent collaborators.

3 AI-Driven Software Engineering
Figure 1 overviews our envisioned AI-driven software development framework. While certain

aspects of this frameworkmay appear overly optimistic about the capabilities of future AI systems, it

presents an interesting thought process for understanding the potential symbiotic synergy between

AI and software developers. Moreover, it sheds light on the research challenges that our community

must address to realize this vision someday. Indeed, such a vision is not completely unrealistic.

We know that current AI systems can accomplish most of the specified tasks, albeit with limited

quality [30, 38, 45, 61, 80, 101, 113].

The framework touches all main phases of the Software Development Life Cycle: Requirement

Engineering, Software Design, Implementation, Testing, and Maintenance. Note that we are not

assuming a waterfall model, the cycles may overlap, especially in agile development methodologies

where development cycles are shorter and more flexible.

The main Actors in our framework are software engineers (e.g., developers, architects, and

testers) and a generic AI system (e.g., an LLM). It is important to mention that we believe we

are still very far from completely replacing software engineers with prompt engineers. Capable

software engineers (with prompt engineering training) will remain indispensable for understanding,

reviewing, improving, combining, validating, and maintaining the source code generated by AI. In

the short and medium term future, AI is merely a tool to enhance software developers’ productivity.

While it can automate certain tasks, we assume the presence of humans in the loop.

Stakeholders (e.g., end users, product owners) are also involved in the framework during the

requirement engineering process. AI, equipped with chatbot capabilities, can initiate conversations

with stakeholders to elicit, analyse, specify, and validate requirements.

With our proposed framework, software engineers can either directly create or update the

artifacts (i.e., requirements, design, production and test code) or instruct the AI (e.g., through

prompt engineering) on how to do that. We envision a bi-directional communication between

humans and AI, where humans can ask questions or provide instructions, and the AI can notify the

software engineers of any detected issues or opportunities for improvement. Software engineers

will communicate with AI through conversational interactions facilitated by the conversational

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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capabilities of LLMs. This interface empowers engineers to seek clarifications and explanations

about the artifacts as well as the AI system’s output [54].

Another important clarification is that, for simplicity, Figure 1 represents a single AI system.

In reality, different tasks would be handled by specialized AI agents [100], each fine-tuned for its

particular function. These subsystems may either operate autonomously or require direct input

from software engineers, depending on the nature of the task.

In particular, the AI agents must effectively communicate with each other and with various soft-

ware analysis tools responsible for gathering information on the software artifacts in development.

As the number of available AI systems continues to grow, to prevent information overload, humans

will interact with a single unified interface. Similar to mediator bots [77], an orchestrator of

AIs can efficiently manage all interactions with the AI agents behind the scenes. We envision that

the AI’s orchestrator will constantly monitor changes in the artifacts (after every update from

engineers or from the agents) and invoke the dedicated AI agent to check for consistency and

integrity of the artifacts.

From a technical perspective, our framework is a multi-AI agent system [100]. AI agents are

artificial entities that can autonomously perceive and act within their environment to achieve

specific goals [100]. These agents typically consist of four key components: planning, memory,

perception, and action [100]. The planning and memory components serve as the brain controlled

by the AI (e.g., LLM), while perception and action enable the agent to interact with its environment

and perform specific tasks. While a single-agent system is specialized for solving individual tasks,

collaboration between multiple agents (i.e., multi-agent systems) enables the handling of more

complex tasks. In the context of software engineering, multi-agent systems can support end-to-end

software development processes [34, 55]. We envision that the AI orchestrator will coordinate the

perception, and action of each agent. We refer readers to the recent survey on Large Language

Model-Based Agents for software engineering by Liu et al. [55], which provides a comprehensive

review of LLM-based agents in software engineering.

Achieving such a symbiotic partnership between human developers and AI presents several

challenges. First, we must not underestimate the difficulties that the orchestrator will face in

adapting LLM-based agents to fit existing software engineering tools, processes, and practices. It

remains unclear whether entirely new processes and workflows are needed or if LLM-based agents

can integrate seamlessly into current ones. Additionally, software developers need training to

effectively use LLMs, including recognizing when they are hallucinating. While the framework will

automate most interactions with the AI, we believe communication between developers and AI will

remain essential—especially when humans seek explanations for the AI’s outputs or wish to provide

creative insights to improve the software artifacts. To achieve this, developers must be proficient

in prompt engineering to communicate effectively with LLMs and guide them toward desired

outputs. This is a completely new skill for developers and should be incorporated into existing

software engineering education curricula. Furthermore, while AI will undoubtedly be valuable in

automating repetitive tasks, human creativity will continue to play a crucial role. Ensuring that

creativity remains a dominant force in the workflow presents a significant challenge. Recognizing

when AI requires human input versus when it can act independently will be critical.

AI Multi-Agent System: The primary research challenge in integrating AI into the software

development process will be orchestrating the various AI subsystems that focus on specific

development tasks and seamlessly integrating them using a single human-AI interface.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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3.1 Requirements Engineering
Gathering requirements accurately is crucial for the success of any software project [112]. Unclear

or incomplete requirements can lead to misunderstandings, delays, and ultimately project failures.

When requirements are not effectively gathered, developers will build features that do not align

with stakeholder expectations and needs, resulting in wasted time and resources. However, this

process is often challenging, as understanding stakeholder needs is a complex activity. For

example, ambiguities in natural language, stakeholders not always knowing what they truly need

or want, and evolving expectations contribute to this complexity. Moreover, translating complex

functional or non-functional requirements into technical specifications can be difficult. This makes

the requirements elicitation phase complex, time-consuming, and prone to errors.

Recent studies show that AI, particularly LLMs, can assist in requirements engineering activi-

ties [4, 59, 66]. These models are capable of analyzing, organizing, and summarizing large amounts

of data, and, as a result, they can play a crucial role in the preliminary phase of requirements

elicitation [66]. Stakeholders can provide documentation in any form, and LLMs can summarize

large documents or translate them into formal requirement specifications. In particular, we en-

vision AI supporting three key requirements engineering activities: elicitation, validation, and

summarization.

AI-Assisted Requirements Elicitation: AI-driven agents, such as chatbots powered by LLMs,

could assist by engaging stakeholders in human-like conversations to elicit requirements. These

agents are capable of generating clarifying questions and suggestions to help stakeholders articulate

their needs more clearly. Moreover, they can propose relevant examples or scenarios to facilitate

discussions and clarify ambiguities. For example, AI agents could produce mockups of interfaces

or rapid prototypes to confirm understanding of user needs. This is particularly useful when

stakeholders describe their envisioned solutions to a problem rather than the underlying problem.

AI systems must ensure that stakeholders’ proposed solutions do not limit innovative designs.

Dependency parsing can further enhance the elicitation process by structuring stakeholder input,

identifying ambiguities, and generating follow-up questions to refine unclear requirements. It can

also classify functional and non-functional requirements, ensuring that captured requirements are

both structured and actionable [22].

Given the complexity and importance of requirements elicitation, we believe software engineers

will remain in the loop. They should oversee these AI-stakeholder interactions in real time or review

them afterward, refining and validating the gathered requirements, and intervening when necessary

to improve the elicitation process. While AI can facilitate communication, engineers are essential

for interpreting non-verbal cues and ensuring stakeholders fully understand the discussion [98].

However, future advancements in multimodal models could allow AI systems to better interpret

non-verbal cues such as facial expressions and gestures, enhancing their ability to fully capture

stakeholder intent. This would reduce some of the reliance on engineers for this aspect, although

human oversight would likely remain crucial for more complex, high-stakes discussions. This

further emphasizes the need for an engineer’s involvement in the elicitation phase, especially in

cases where nuanced human communication is critical.

AI-Assisted Requirements Validation: While AI can contribute significantly during the

elicitation phase, its true value lies in the validation of requirements. AI can continuously and auto-

matically analyze requirements to detect inconsistencies, contradictions, and ambiguities. Using

Named Entity Recognition (NER), AI can assist in refining these specifications by identifying vague

references or conflicts in Software Requirements Specifications (SRS), ensuring consistency and

reducing ambiguity [64]. More importantly, AI can regularly monitor evolving software artifacts

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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(e.g., source code, documentation, tests) to ensure alignment with the requirement and suggest

corrective actions when needed. Additionally, as AI systems increasingly participate in validation,

it’s important to ensure that their outputs are ethically sound and unbiased. Regular audits and

transparency in how AI reaches decisions will help prevent biased recommendations from influ-

encing projects, ensuring that validation processes remain fair and accurate. By maintaining a

link between the requirements and software artifacts, AI could also predict the potential impact of

changes in requirements by analyzing dependencies across the project, helping to assess risks of

changing the requirements.

Requirement Summarisation and Refinement: LLMs can assist by summarizing long or com-

plex requirements, allowing engineers and stakeholders to focus on the most important details. By

processing large volumes of text, LLMs can extract key points and streamline the language, making

it easier to identify priorities. A challenge here will be to ensure prioritisation is fair and considers

needs of minority groups (e.g., accessibility concerns). The natural language processing capabilities

of AI can also help improve clarity by simplifying complex phrasing and ensuring consistent

terminology is used across all documents and discussions, reducing the risk of misunderstandings

between teams.

Requirement Engineering: The main research challenge will be to enable AI agents that

can understand user needs to effectively validate the requirements ensuring accuracy and

completeness.

3.2 Software Design
The integration of AI in software engineering holds immense potential in assisting with the design

phase. Building on well-defined requirements, AI can assist in proposing initial design suggestions

to align functional and non-functional needs. These suggestions can serve as starting points for

further refinement and validation by the engineers and stakeholders.We believe human involvement

will remain essential in this step, as the design phase should not—and does not need to—be fully

automated. Design artifacts are a vital communication tool between engineers and stakeholders.

Additionally, AI can aid in design validation by generating visual artifacts, such as UML diagrams [1]

or C4 models, helping engineers explore different solutions and ensure they meet the project’s

requirements. These design artifacts, ranging from prototypes to models and diagrams, offer a more

structured and less ambiguous way to communicate design intentions compared to using natural

language alone (requirements). We envision several key ways in which AI can enhance the design

process and improve communication between engineers and stakeholders.

Prototypes sketching: Requirements written in natural language, while essential for early-

stage communication, often suffer from ambiguity, especially when describing complex systems.

Prototypes and sketches offer a way to mitigate this issue by providing visual and structural

representations of software design. AI-driven tools can automatically generate such artifacts based

on requirements. These prototypes could be as simple as sketches, serving as a tangible starting

point for discussions among engineers and stakeholders. This approach mirrors the use of paper

sketches in traditional design processes, making early-stage design clearer and more accessible to

non-technical audiences. This allows for early feedback and adjustments, accelerating the design

iteration process. By creating these early-stage prototypes, AI not only aids in communication but

also helps in validating ideas against requirements and constraints. AI can greatly improve this

process by quickly and automatically generating mock UIs and tangible artifacts.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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Multi-Level Design Artifacts for Different Stakeholders: One of the critical challenges

in software design is communicating with stakeholders who have varying levels of technical

expertise. While developers may require detailed, low-level design documents, project managers

and business stakeholders often benefit from high-level, conceptual overviews. AI can facilitate

the creation of multi-level design artifacts that take into account these different audiences. For

instance, AI could generate a high-level system overview using the C4 model
10
, which provides four

layers of abstraction for system design: context, containers, components, and code. At the same

time, the AI system could automatically produce more detailed, low-level diagrams for developers

(e.g., UML class diagrams, UML sequence diagrams, state machine diagrams, component and

deployment diagrams). By maintaining consistency across these different levels, AI will help ensure

that all stakeholders, regardless of technical proficiency, have a clear and accurate understanding

of the design. Moreover, AI can personalize the level of detail provided based on the user’s role,

dynamically adjusting the complexity of design artifacts. This adaptability enhances communication

and collaboration between technical and non-technical teams, making software development more

inclusive and efficient. We envision fine-tuned LLMs trained on design artifacts, source code, and

requirements seamlessly generating and synchronizing these different levels of design artifacts.

MaintainingUp-to-Date DesignDocumentation:One of the persistent challenges in software

development is keeping software design documentation synchronized with the actual codebase,

especially as changes are made during development. AI could automate this process, ensuring

that design artifacts reflect the current state of the system. For example, an AI system could be

integrated with version control tools to automatically update architecture diagrams when code

modifications are committed. This eliminates the need for manual diagram updates, which are often

overlooked, leading to outdated and potentially misleading documentation. AI-driven automation

of this process enhances the reliability of design documentation and ensures it remains useful

throughout the development lifecycle.

Validating Design Solutions: Beyond creating and maintaining design artifacts, AI can also

contribute to the validation of design solutions. AI systems, trained on best practices and past

project data, can analyze proposed designs for flaws or inefficiencies. For instance, AI could simulate

different architectural choices and highlight potential bottlenecks, performance issues, or security

vulnerabilities in early design stages. By using AI to validate designs, software engineers can receive

real-time feedback on their decisions, reducing the risk of encountering major issues later in the

development process. AI can also help in identifying trade-offs between different design alterna-

tives, such as balancing non-functional requirements, for example balancing performance with

maintainability or scalability. The ability to foresee potential problems in design helps developers

make more informed, data-driven decisions, leading to more robust and efficient systems.

Explainability and Trust in AI Design Tools: A critical factor in the successful integration of

AI in software design is explainability. While AI systems can propose design suggestions or evaluate

trade-offs, these recommendations must be accompanied by clear, interpretable explanations.

Explainable AI (XAI) [24] techniques are essential to build trust among developers, who must

understand the reasoning behind AI-generated suggestions to make informed decisions. Research

into XAI is particularly important in the context of software design, where trust and transparency

are paramount. AI should be able to justify its choices, explain the benefits and drawbacks of each

design alternative, and provide insights into the long-term implications of design decisions. This

transparency will help developers feel more confident in relying on AI for complex design tasks

and foster greater collaboration between humans and machines. Explainable AI is an important

10
C4 Model: https://c4model.com/
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and active research topic in the AI community [24, 106], and more work is needed to leverage

explainability techniques in the context of software design.

Software Design: An important research challenge will be to understand how software

engineers can effectively integrate AI into their design workflows, communicate with them,

and interpret their suggestions. In particular, AI must provide explanations for their design

suggestions to increase trust and facilitate human understanding.

3.3 Software Development and Testing
We envision that software development and testing will be intertwined, as automated testing should

be conducted to verify the correctness of the components generated by AI, as well as their seamless

integration into the code base. Given a set of unimplemented requirements, AI will automatically

generate and test the production code, after which humans and AI will collaborate to improve and

verify it. Indeed, AI is already being used to automatically generate code and its associated tests,

for example GitHub’s Copilot. However, we envision several ways AI code generation will evolve.

Ensuring high quality code: First, it is important that AI-generated code is correct (behaves

as expected). Code generated by existing LLMs is not always correct [69]. We envision significant

improvements in the correctness of AI-generated code, particularly as systems learn from the

selections and refinements of generated code made by software engineers. Thus, it is also important

that code generated is understandable while humans remain in the loop. There is a risk, as more AI

generated code is integrated into software systems and is fed back into training data for future

code generation, that understandability will be reduced.

Other quality attributes like reliability, security, scalability, and performance will also be impor-

tant as more code is generated by AI. This can be particularly challenging given that there will

be large variations in the training data when it comes to these attributes. For example, research

has found that AI generated code is often insecure, but can be improved by effective prompt

engineering [31]. Thus, more work is needed to ensure these quality attributes are considered in

AI code generation models and good prompt engineering will continue to be important. Education

in software engineering will need to integrate prompt engineering into the curriculum.

AI-Assisted updates: It is well known that software requirements continuously change. Changes

can occur for many reasons, including changing user needs, changing environments, or new

regulations. The complexity of evolving software to keep up with these changes was recognised

decades ago by Lehman [51]. Agile processes and methods have been created to enable software

teams to better respond to these continuous changes [99]. We envision that, as requirements change,

AI can also automatically validate the new requirements (as described in the previous section)

and generate changes to the associated code and tests. A challenge here is that requirements

might be too high level, and it is difficult to decompose high-level requirements into low-level

implementation details. However, we believe that as AI advances, we will move further in this

direction.

By producing corresponding tests, the requirements can be automatically verified to ensure the

system fulfills the changed or added requirements. This brings promise of more advanced end-user

software engineering [14], where users of software systems can work together with AI systems to

specify changes. This could enable more customised and personalised software systems. This is

enabled through the advancements we described in previous sections, particularly the ability for

AI to validate requirements and produce prototype sketches. With these, stakeholders and users

without technical expertise can continuously refine their requests until the desired prototypes are
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obtained. Automated code and test generation could then proceed to enable these personalisations.

However, this also brings maintenance challenges, which we discuss further in the next section.

Sharing of validated AI-generated code: An important opportunity arises from the potential

sharing of low-level implementations generated by AI within the open-source community. Low-

level implementations could be generated as stateless and immutable APIs. The advantage is that

these APIs undergo human and automated verification and testing, including security checks

to mitigate vulnerabilities. This enables reuse in other projects rather than regenerating from

scratch. By accessing existing databases of AI-generated APIs, AI systems can explore alternatives

before generating new code. This concept parallels the notion of "APIzation" recently explored for

Stack Overflow code snippets [92, 93]. However, caution must be taken to ensure adherence to

open-source licensing and governance when reusing or sharing AI-generated APIs.

This can also help with sustainability challenges given the high cost of code generation in regards

to energy consumption [33]. We see sustainability of AI systems a key research challenge in the

coming years. As AI code generation continues to mature and AI capabilities increase, code should

be continually improved to ensure quality is maintained. Research efforts can look into how this

can be done while reducing energy consumption.

Software Development: Ensuring generated code is correct, understandable, reliable, secure,

and scalable, while also considering energy consumption of the AI models, is a key research

challenge. Prompt engineering will continue to be important.

Testing will play a crucial role, as we need to ensure the correctness of the LLM-generated

code and its integration with the codebase. Test cases can, of course, be created by developers, but

they can also be generated automatically. The latter type of test cases will be crucial for verifying

AI-generated code.

Researchers are exploring the use of LLMs to generate test cases [9, 21, 53, 58, 70, 81, 103, 109],

showing promising results. Therefore, we assume that an LLM-based agent dedicated to test case

generation will be included in our framework.

However, we envision that such LLM-based agents will work in combination with automated test

generators (e.g., Randoop [71], EvoSuite [28], and Pynguin [60]) to improve the quality and fault

detection effectiveness of the generated tests. We are already witnessing the first attempt of this

combination, yielding promising results [52]. While LLMs can be somewhat effective in generating

test cases [80, 113], current LLMs do not guarantee compilable or runnable test cases [113].

Therefore, an integration with traditional test generators that compile and run test cases is

necessary. Additionally, the feedback from compiling and running test cases is known to be

extremely useful in improving LLM-generated tests [80, 113], or automatically generate test cases

in general (e.g., feedback-directed approach [72]). More research is needed to better exploit the

synergy and complementarity of LLMs and traditional test case generators [52].

Indeed, generating effective oracles that correctly distinguish between correct and incorrect

executions is crucial. We cannot expect humans to write oracles for (many) AI-generated test

cases; we need automatically generated oracles. Unit test generators (e.g., Randoop [71] and

Evosuite [28]) generate (regression) oracles based on the implemented behavior, not the intended

one. They capture the implemented behavior of the program with assertions that predicate on the

values returned by method calls and fail if a future version leads to behavioral differences. Thus,

they are only useful in a regression testing scenario, and their effectiveness is usually evaluated in
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such a scenario [41, 83]. Regarding AI-generated code, the regression scenario is not useful as we

want to expose faults in the current version of AI-generated code.

Although recent research shows that LLM-based agents for test generation often produce oracles

that capture the actual program behavior instead of the expected behavior [11, 48, 116], their overall

effectiveness remains limited and still far from completely addressing the oracle problem [48].

Metamorphic Testing (MT) [17] could be the key to address this challenge. MT alleviates the

oracle problem by using relations among the expected outputs of related inputs as oracles [18].

Research shows that such relations, called Metamorphic Relations (MRs), exist in virtually any

software system [82]. MT proves highly beneficial when integrated into automated test generation,

as a single MR can be applied to all test automatically generated inputs that satisfy the input relation.

However, MT’s automation and effectiveness depend on the availability of MRs. The automated

generation or discovery of MRs presents a challenging and largely understudied problem [2,

18, 19, 82]. Only recently has the research community begun addressing metamorphic relation

generation from different angles [5, 6, 12, 104, 105, 114, 115]. More research is needed on MR

generation [5, 6, 105] and oracle/generation improvement [39, 40, 67, 90, 91] to facilitate effective

testing of AI-generated code.

Interestingly, recent research has explored using LLMs for metamorphic testing of software

systems [3, 85, 97], including automatically generating MRs [62, 84, 87, 95, 104]. These studies show

the potential of LLMs to fully automate MT.

Software Testing: The key research challenge will be to automatically generate test cases

with effective oracles to verify AI-generated code.

3.4 Software Maintenance
We envision an AI-powered maintenance phase that remains constantly active in the background.

The AI will monitor a wide range of external information sources about the software product and

its ecosystem to proactively gather potential issues or opportunities for improvement.

Indeed, issues or maintenance opportunities are often buried in a large amount of sources,

such as bug reports, automated alerts, error logs, discussions on developer forums, and feedback

from app stores [94, 96]. While current AI tools like Snyk’s DeepCoode focus on real-time code

analysis for security vulnerabilities and code quality, we envision future AI systems extending this

capability by analysing and aggregating insights from diverse, unstructured data sources. Such

systems will be capable of autonomously extracting relevant insights, identifying potential issues,

and proposing appropriate fixes or improvements to the software artifacts.

In particular, there are important ethical considerations when new product improvements and

feature requests can be gathered from the crowd. The AI system should not solely focus on the most

popular feature requests and issues but also those that are less popular but might target minority

and disability groups [26, 63]. Further, the AI cannot simply add every feature users suggest, some

consideration with the product strategy must be considered [47]. AI systems can be trained on the

product strategy documents to ensure new features align with the overall vision for the product.

The strategy will need to be continuously kept up-to-date and while AI can likely assist with this,

humans must be kept in the loop.

Another way AI can assist in software maintenance is by keeping track of the context and history

of a software project. AI can learn from the project’s history to avoid repeating mistakes from the

past. Detailed comments on design decisions and bug fixes can enable this, and explainable AI, as

discussed above, can automatically create such details in the future.
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Additionally, software exists within an ecosystem of external libraries. The libraries that

a project depends on may release new versions to address vulnerabilities or bugs, making it

essential to keep dependencies up to date. However, major updates can introduce breaking changes

or compatibility issues with the existing codebase. The AI system should automate minor and

patch updates but carefully assess major upgrades, which often require more adaptation due

to potential incompatibilities. By analyzing the project’s dependency history and identifying

necessary code modifications, the AI can ensure that security and performance improvements are

applied without disrupting existing functionality. Furthermore, the AI should detect and resolve

static [42, 44] or behavioral [43] breaking changes, reducing manual intervention and supporting

developers in maintaining stable software. Future research could build on work in automated

program repair [50, 57] to further enhance these capabilities.

As described in the previous section, advancements in AI code generation will enable more

sophisticated end-user programming. Users can specify new features to customise and personalise

their software systems, leading to challenges in terms of software maintenance due to the potential

proliferation of different software versions. AI should be capable of continuously updating these

personalised versions, ensuring that new features and optimisations from the main version remain

accessible to users who have made customisations. Additionally, gate-keeping mechanisms will

likely need to be developed to prevent personalisations from introducing security vulnerabilities or

other issues.

Another potential challenge is to ensure adherence to software licenses. Currently, AI-generated

code does not automatically account for the licenses of the software used in its training data, leading

to concerns about potential violations. For example,Copyleft licenses require that any modified or

extended version of the code remains under the same license and attributes the original source [13].

Tools like GitHub Copilot have faced criticism for reusing open-source code without appropriate

attribution or compliance with these licensing terms [8]. Companies like OpenAI, GitHub, and

Microsoft argue that using publicly available code to train AI systems falls under fair use. However,

this legal position remains contentious, and future regulations may require AI-generated code to

explicitly include attribution and license details. Addressing these legal challenges would necessitate

advancements in AI code generation systems, ensuring they can identify and apply the correct

licenses to any code they produce.

Software Maintenance: The primary research challenge will be to enable AI to autonomously

process and utilize a vast amount of external information effectively to identify potential issues

or opportunities for improvement. The AI should achieve this while ensuring fairness in its

decision-making process and adherence to strategic direction.

4 Limitations and Risks
The synergistic collaboration between software developers and AI (in particular, LLMs) offers

immense benefits. For example, automating repetitive tasks or augmenting human effort can allow

developers to focus on higher-level design and problem-solving. However, it also comes with certain

limitations and risks.

LLM-Specific Limitations and Risks

Correctness Issues: LLMs, especially in complex software engineering tasks, may “hallucinate”,

produce incorrect, incomplete, ormisleading outputs [108].While LLMs are continuously improving,

it is expected that they will eventually hit a ceiling. As discussed in our framework, automated
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checking and validation of LLM-generated outputs (possibly involving non-AI tools) will be essential

to address these limitations. For instance, combining LLM code generation with a compiler to verify

correctness is a promising trend that is already emerging [10].

Homogeneity of Code: A potential issue in the future is that as more developers integrate AI

into their workflows, LLMs may increasingly train on LLM-generated code. This could reduce

the diversity of code practices over time, as LLMs tend to reaffirm patterns seen in their training

data (e.g., public GitHub repositories). While this could make code more uniform and easier to

understand for humans, it might also prevent exploration of alternative or potentially better coding

practices. Additionally, such bias could lead to slow or insecure code being perpetuated by LLMs.

Ethical and Fairness Concerns: Being trained on large amounts of data, LLMs are inherently

biased toward common software practices and ways of thinking [37], which may not fully con-

sider cultural or gender diversity. For example, previous research has found gender differences

in various cognitive facets including information processing style with women more likely to

prefer a comprehensive approach and have all information available before starting a task [15]. It

is unknown if such cognitive diversity leads to differences in code style. This risk may be amplified

by the above risk of homogeneous code, where the dominant way of thinking can be proliferated

as code becomes more homogeneous. This is a general risk of AI, and addressing it is a critical

challenge that requires effort from the AI community. Fine-tuning SE-specific LLM models to

include sensitivity to ethical and fairness issues is an important step in mitigating this risk. More

research is also needed to understand diversity of thought in relation to software design and code

and how this can be maintained, or even broadened through increased participation, with LLMs.

Data Privacy: LLMs services like OpenAI have the potential to memorize sensitive or proprietary

information and expose it to other users. Additionally, input data could be used as training data

for future versions of the model [107, 110]. This is a serious risk, prompting many companies to

use local or private LLM instances to ensure data privacy. We believe local LLM instances will

become increasingly common, although they raise sustainability concerns. A centralized system

(e.g., OpenAI models) is typically more cost-efficient for large-scale usage. However, private LLMs

can be trained or fine-tuned with project- and company-specific data, enhancing performance for

specialized tasks.

AI-General Limitations and Risks

Over-Reliance on AI: Relying too heavily on AI may reduce developers’ problem-solving and

critical thinking skills, as they become overly dependent on AI-generated solutions. This can lead

to a loss of software engineering skills if humans become reliant on AI. This is of specific concern

given the non-deterministic nature of AI. For example, reliance on a calculator, which was also

controversial when first introduced, will always produce the same output given the same inputs,

but the same is not true for AI systems. Software engineering skills are still needed to ensure

quality of software systems. Similarly, people without software engineering expertise, may be

overly confident in their abilities when leveraging LLMs. There is a broader risk that software

developers might write less code over time, as their job could mainly become reviewing code

generated by AI. This could lead to frustration and less sense of ownership over the codebase.

Malicious Activities: Bad actors might exploit LLMs to generate malicious code or automate

unethical practices, posing significant security risks. This is another reason why humans must

remain in control and maintain their software engineering skills.
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Computational Requirements: The high computational demands of AI (especially LLMs) can

increase costs and environmental impact [79]. However, recent advancements have shown that

smaller, more efficient models can achieve good performance (e.g., see GPT-4o-mini
11
). We believe

the key lies in determining task complexity automatically and delegating only the most complex

tasks to expensive LLM models [46].

5 Conclusions
This paper presented a vision of a symbiotic partnership betweenAI and software developers

motivated and inspired by recent advances in AI. This paper also discussed some key research

challenges that need to be addressed by the software engineering community. While this paper

focuses on specific software engineering challenges, it is essential to acknowledge broader AI-

related concerns such as security, safety, bias, and privacy. Although not covered here, these issues

are crucial but fall more within the domain of the AI community, and hopefully will be addressed

soon.

We cannot ignore the opportunities that lie ahead. Nor should we disregard the concerns associ-

ated with them. Specifically, we must exercise caution against over-reliance on AI. While the

next generations of software engineers should be trained in prompt engineering and AI, this should

not overshadow the necessity of core software engineering knowledge. Human judgment remains

indispensable for critically assessing AI-generated artifacts. It is crucial to emphasize again that AI

serves as a tool to enhance developers’ productivity and cannot (in the near future) replace humans.

Putting too much trust on the software artifacts generated by AI can have serious repercussions on

the quality and safety of our software systems [73, 111].

This paper serves also as a call to arms for our community. We need multi-disciplinary

collaborations across our community to address the key challenges and achieve the envisioned

symbiotic partnership between human developers and AI. While our vision is ambitious, we believe

that a five to ten-year time frame is reasonable for realizing it.
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