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SUMMARY

Concurrency testing is an important activity to expose concurrency faults in thread-safe classes. A concurrent
test for a thread-safe class is a set of method call sequences that exercise the public interface of the class from
multiple threads. Automatically generating fault-revealing concurrent tests within an affordable time-budget
is difficult due to the huge search space of possible concurrent tests.
In this paper, we present DEPCON`, a novel approach that reduces the search space of concurrent tests
by leveraging statically computed dependencies among public methods. DEPCON` exploits the intuition
that concurrent tests can expose thread-safety violations that manifest exceptions or deadlocks, only if
they exercise some specific method dependencies. DEPCON` provides an efficient way to identify such
dependencies by statically analyzing the code, and relies on the computed dependencies to steer the test
generation towards those concurrent tests that exhibit the computed dependencies.
We developed a prototype DEPCON` implementation for Java, and evaluated the approach on 19 known
concurrency faults of thread-safe classes that lead to thread-safety violations of either exception or deadlock
type. The results presented in this paper show that DEPCON` is more effective than state-of-the-art approaches
in exposing the concurrency faults. The search space pruning of DEPCON` dramatically reduces the search
space of possible concurrent tests, without missing any thread-safety violations. Copyright © 2021 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Concurrent programming allows developers to take advantage of widely-spread multi-core and
parallel architectures. Synchronizing concurrent threads can be extremely complex, and can lead to
subtle concurrency failures that are hard to reveal and prevent [1]. The incorrect synchronization
of concurrent threads that access shared memory locations may lead to race conditions, atomicity
violations and deadlocks. Race conditions and atomicity violations occur when different threads
access shared memory locations in a wrong order, and produce erroneous results. Deadlocks occur
when different threads acquire shared locks in a wrong order, and cannot progress.

Concurrent object-oriented programs often rely on thread-safe classes, which encapsulate most
synchronization-related challenges [2, 3, 4]. Thread-safe classes guarantee that their synchronization
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mechanism prevents multiple threads incorrectly access shared instances of the class [5]. Concurrency
faults in thread-safe classes lead to thread-safety violations, which can cause serious issues in
concurrent programs that rely on such classes. Preventing failures in programs that handle concurrency
with thread-safe classes amounts to prevent thread-safety violations in the thread-safe classes [6, 7].
Exposing thread-safety violations is difficult because they often manifest non-deterministically, under
specific execution orders of shared memory accesses (thread interleavings) [8, 9].

An effective approach to expose thread-safety violations is the automated generation of concurrent
tests [3, 8, 9, 10, 11, 12]. Concurrent tests expose thread-safety violations by exploring different
combinations of test inputs and thread interleavings [10]. Concurrent tests for thread-safe classes
consist of multiple threads that concurrently invoke public methods on shared instances of the class
under test [3, 12, 13]. Figure 2 on page 7 shows a concurrent test for BufferedInputStream, a JDK
(buggy) class shown in Figure 1.

The combinatorial explosion of both test inputs and thread interleavings makes it extremely
difficult to identify critical combinations of inputs and interleavings that expose thread-safety
violations [3, 8, 9, 10]. Approaches to automatically generate concurrent tests aim to identify
combinations of method call invocations that can expose thread-safety violations [8, 9, 10, 14].
Finding such combinations is challenging because there exists a myriad of possible concurrent tests
for any non-trivial thread-safe class. Generating a large number of concurrent tests is often infeasible
because of the high cost of exploring the interleaving space of many concurrent tests [12, 15, 16].
Popular approaches address this challenge with coverage-driven test generation strategies that steer
test generation towards not-yet-explored interleavings, thus avoiding the high cost of exploring the
interleaving space of redundant tests [8, 9, 10, 11].

Recently, we provide empirical evidence that many concurrent tests that increase interleaving
coverage cannot expose thread-safety violations, and proposed the concurrent test generator
DEPendency-driven CONcurrency Testing (DEPCON) [17]. DEPCON exploits the intuition that
only methods that can both interleave and access the same shared memory locations (parallel
and conflict dependent, respectively) can lead to (non-deadlock) thread-safety violations when
executed concurrently. DEPCON improves the effectiveness of concurrent test generation because it
avoids generating and exploring the interleaving space of concurrent tests that do not manifest both
parallel and conflict dependencies.

DEPCON statically analyses the class under test to compute a summary of the public methods of the
class (pre-processing phase). These summaries contain information about both the shared-memory
accesses and the synchronization operations of the corresponding methods. DEPCON uses such
summaries to compute the parallel and conflict dependencies among the public methods of the class
under test. The results that we report in our ICST paper [17] show that DEPCON dramatically reduces
the number of generated tests as much as 35.35ˆ (7.17ˆ on average), and exposes thread-safety
violations as much as 33.50ˆ (4.87ˆ on average) faster than state-of-the-art approaches [8]. The
results also show that the pre-processing phase is efficient (it requires less than two seconds on
average) and complete (it does not prevent the detection of any thread-safety violation).

A major limitation of DEPCON is that it targets only concurrency faults in thread-safe classes that
manifest thread-safety violations as runtime exceptions [17], namely race conditions and atomicity
violations. DEPCON ignores resource deadlocks, which is an important class of concurrency faults
that manifest thread-safety violations with endless hangs [18]. A deadlock occurs when the progress
of a program is halted as a running thread attempts to acquire a lock already held by another
thread [19]. DEPCON is inadequate to expose thread-safety violations of resource deadlock type for
two reasons. First, the parallel and conflict dependencies that we presented in the earlier version
of this work do not capture the deadlock condition. Second, DEPCON generates concurrent tests
with exactly one instance of the class under test shared among the concurrent threads. While this
assumption is reasonable for race conditions and atomicity violations [17], it is not adequate for
deadlocks. In fact, to expose deadlocks, it is often necessary to share different instances of the class
under test among the concurrent threads [19, 20].

In this paper, we present DEPCON`, a new approach to automatically generate concurrent tests
to reveal deadlocks. DEPCON` extends the initial idea of DEPCON of pruning the search space
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with parallel and conflict dependency analysis, by proposing a new dependency analysis that we call
double-lock dependency analysis. This analysis captures the necessary (but not sufficient) condition
of deadlock in thread-safe classes: the concurrent execution of methods can acquire the same pair of
locks in the opposite order. We present an effective and efficient way to statically compute double-
lock dependencies among methods, and show how DEPCON` steers the concurrent test generation
towards concurrent tests that manifest the computed double-lock dependencies. We carefully design
DEPCON` to ensure that the generated tests share multiple instances of the class under test, and
properly exercise the circumstances for deadlocks (as captured by the double-lock dependency).

We evaluated DEPCON` on four known deadlock faults in popular thread-safe classes. Our results
show that DEPCON` can effectively expose the deadlocks within 15 seconds on average, while
the state-of-that-art techniques COVCON [8] and DEPCON cannot expose the deadlocks with a
time-budget of one hour.

This paper contributes to the state of the art by presenting

(i) a holistic approach called DEPCON` that combines static parallel and conflict dependency
analysis with double-lock analysis to generate tests that efficiently target both data races and
deadlocks in thread-safe classes,

(ii) the insight that an efficient static computation of parallel, conflict and double lock dependencies
can effectively steer dynamic test generation towards thread-safety violations,

(iii) a prototype implementation of the approach,

(iv) a set of experimental data that show the advantages and limitations of DEPCON` with respect
to DEPCON, and confirm the effectiveness of DEPCON` in exposing deadlocks in thread-safe
classes.

The remainder of this paper is organized as follows. Section 2 introduces preliminary concepts to
make the paper self-contained. Section 3 introduces the DEPCON` approach. Section 4 defines the
parallel, conflict and double-lock dependencies based on the method summaries. Section 5 describes
how DEPCON` computes the method summaries (preprocessing phase). Section 6 explains how
DEPCON` generates concurrent tests by leveraging the computed parallel, conflict and double-
lock dependencies. Section 7 presents the experiments that we conducted to evaluate our approach.
Section 8 discusses the related work on generating concurrent tests. Section 9 summarizes the main
contribution of this paper and discusses promising research directions.

2. PRELIMINARIES: GENERATING CONCURRENT TESTS FOR THREAD-SAFE CLASSES

This section presents the background information on generating concurrent tests for exposing
concurrency faults in thread-safe classes, which is needed to make the paper self contained. It also
defines the type of concurrency faults that DEPCON` targets.

2.1. Testing Concurrent Object-Oriented Programs

In this paper we consider concurrent object-oriented programs that implement the shared-
memory programming paradigm. A concurrent object-oriented program is composed of a set of
classes, whose methods and fields can be concurrently executed and accessed from multiple threads,
respectively. Shared-memory concurrent object-oriented programs, hereafter concurrent programs,
concurrently execute threads that interact, exchange data, and synchronize with one another by
accessing shared memory locations [21, 22].

The execution of a concurrent program with a given input can be modeled as an ordered
sequence of shared-memory write and read accesses. A non-deterministic scheduler determines
the execution order of threads. The order of accesses to shared-memory locations is fixed within
one thread, but can vary across threads. Such non-deterministic orders of shared-memory accesses
are called interleavings [14]. A concurrent program executed with the same input often manifests

Copyright © 2021 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2021)
Prepared using stvrauth.cls DOI: 10.1002/stvr



4 TERRAGNI AND PEZZÈ

different interleavings that may result in different program behaviors. This makes testing shared-
memory concurrent programs challenging because exposing erroneous behaviors with testing requires
exploring both the input and interleaving spaces [7, 10].

2.2. Thread Synchronization

Developers prevent undesirable concurrent interleavings, hereafter faulty interleavings, by means
of synchronization mechanisms that limit the way in which concurrent threads can interleave
at runtime. Examples of synchronization mechanisms are locks, mutexes and semaphores. The
complexity of thread synchronization challenges the development of concurrent programs that are
both correct (avoid all faulty interleavings) and efficient (guarantee a high degree of parallelism) [14].

Thread synchronization often suffers from concurrency faults due to both under and over-
synchronization issues. Under-synchronization allows more interleavings than it should, introducing
subtle concurrency faults, like race conditions [23], atomicity violations [24], atomic-set serializability
violations [25] and order violations [7]. Over-synchronization denies more interleavings than it should,
introducing deadlocks [26] and performance degradation. Exposing concurrency faults at testing
time is difficult because they often manifest under specific and often rare non-deterministic thread
interleavings [6].

2.3. Thread-Safe Classes

Developers of concurrent programs often rely on thread-safe classes to avoid the complexity of
implementing a correct and efficient synchronization.

Definition 1 (from Goetz et al. [5]). An object-oriented class is thread-safe if it behaves correctly
when the same instance of the class is accessed from multiple threads, regardless of the scheduling
or interleaving of the execution of those threads by the runtime environment, and with no additional
synchronization or other coordination on the part of the calling code (i.e., client code).

Client code accesses a class instance via the public interface of the class, that is, by invoking its
public methods. Thread-safe classes address the important challenge of synchronizing concurrent
memory accesses in a correct and efficient way. In other words, thread-safety is a contract that the
developers of thread-safe classes make to the client code.

By delegating the burden of thread synchronization to thread-safe classes, developers of client
code can concurrently use the same instance of a thread-safe class without additional synchronization.
Relying on thread-safe classes simplifies the development of client code, but concurrency faults in
thread-safe classes may lead to thread-safety violations.

Definition 2. A thread-safety violation of a thread-safe class is a deviation from the expected
behavior of the class when concurrently accessed.

Thread-safety violations are hard to find, reproduce, and debug. Concurrency faults may hide in
rare thread interleavings that do not occur during testing but manifest in production. It is common for
some concurrency faults to escape rigorous testing and lead to failures in the field [3,6]. Ensuring the
correctness of thread-safe classes is of paramount importance. It identifies concurrency faults in the
implementation of the thread-safe classes, and thus in the programs that rely on them.

2.4. Generating Tests for Thread-Safe Classes

Recently, researchers proposed concurrent test generation approaches [3, 8, 9, 10, 11, 12, 27] to
automatically expose thread-safety violations. These techniques alternatively generate concurrent
tests and explore their interleaving spaces, to expose thread-safety violations at runtime. The core
idea is to pair a test generator that creates concurrent tests with an interleaving explorer that checks if
the generated tests can manifest thread interleavings that trigger thread-safety violations.
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Definition 3. A concurrent test (ct) for a thread-safe class under test consists of multiple concurrently
executing threads that invoke the public methods of the class under test accessing the same shared
objects.

More specifically, a concurrent test is a set of sequences of method calls that exercise the public
interface of the class under test from multiple threads [3]. Each call in a sequence consists of a
method signature, a possibly empty list of input variables (method parameters), and an optional
output variable (method return value). A concurrent test consists of a prefix and a set of suffixes.

A prefix is a method call sequence that creates instances of the class under test to be accessed
concurrently from multiple threads. A prefix can invoke additional methods to bring the instances
into states that may expose errors. A suffix is a call sequence that is executed concurrently with other
suffixes, after executing the common prefix. All suffixes share the object instances that the prefix
creates, and use them as input parameters for calls in the suffix. Accessing the same shared instances
is necessary to trigger shared-memory accesses. In this paper, we generate tests with exactly two
concurrent suffixes, in line with state-of-the-art concurrent test generators [10]. This is motivated by
Lu et al.’s bug characteristic study [28] that reports that 96% of the considered concurrency faults
can manifest by executing only two threads.

Linearizability [29, 30] is a popular correctness criterion for object-oriented concurrent programs.
In the context of concurrent test generation, linearizability provides effective automated oracles for
exposing thread-safety violations. Linearizability compares the behavior of a concurrent execution
of a test ct with the behavior of all permutations of the outermost method calls in ct that maintain
the order of calls in each thread [29, 30]. Linearizability has shown to be very effective in exposing
thread-safety violations, when applied to concurrent test generation for thread-safe classes [3, 8].

Definition 4. Thread-safety oracle [3] A concurrent test exposes a thread-safety violation if and only
if one of its interleavings manifests an erroneous behavior that is not manifested in any method-level
linearization of the test.

Such erroneous behavior can be visible, as in the case of uncaught runtime exceptions and endless
hangs, or subtle, as in the case of wrong output and corrupted or invalid program states [31]. In this
paper, we consider only visible types of thread-safety violations: uncaught runtime exceptions and
endless hangs.

In this context, thread-safety oracles are precise (do not report spurious thread-safety violations)
but incomplete (may miss some thread-safety violations). They are precise because uncaught runtime
exceptions and endless hangs that occur in a concurrent but not in a sequential usage of the class
are thread-safety violations under the commonly accepted definition of thread-safety [5]. They are
incomplete as not every thread-safety violation manifests an exception or an endless hang. Thread-
safety violations can also manifest in a wrong output or in a corrupted or invalid program state.
As such, the thread-safety oracle of Definition 4 may classify a concurrent execution as correct
even though it exposes a thread-safety violation. However, Lu et al.’s study indicates that „70% of
concurrency faults lead to exceptions or endless hangs [28]. Thus, we expect that this oracle detects a
relevant amount of concurrency faults.

In the following we discuss the uncaught runtime exceptions and endless hangs faults that we
consider in this work, and present two examples of faulty thread-safe classes. For each example
we show a concurrent test that exposes the thread-safety violation, a runtime exception in the first
example and an endless hang in the second.

2.5. Thread-safety Violations of Exception Type

Targeted concurrency faults Thread-safety violations of exception type refer to a wide range of
concurrency faults that include data races [23], atomicity violations [24] and atomic-set serializability
violations [25]. Indeed, our concurrent test generation for thread-safety violations of exception type
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public class BufferedInputStream extends FilterInputStream {

[…] // omitted methods

private void ensureOpen() throws IOException {
if (in == null)

throw new IOException("Stream closed");
}

public synchronized void mark(int readlimit) {
marklimit = readlimit;
markpos = pos;

}

public synchronized int read() throws IOException {
ensureOpen();
if (pos >= count) {

fill();
if (pos >= count)

return -1;
}

return buf[pos++] & 0xff;
}

1
2
3
4

5
6
7
8

13
14
15
16
17
18
19
20
21

// missing synchronization
public void close() throws IOException{ 

if (in == null)
return;

in.close();
in = null;
buf = null;

}

22
23
24
25
26
27
28  

public synchronized int available() throws IOException {
ensureOpen();
return (count - pos) + in.available();

}

9
10
11
12

Figure 1. Buggy version of the JDK class BufferedInputStream, Bug id 4728096 [32] that leads to a thread-
safety violation. Accesses to the instance fields of the class are in bold

is agnostic to the type of concurrency fault. However, to reduce the search space of concurrent tests,
we are making the following three assumptions on the concurrent tests being generated.

I. Exactly two concurrent threads (two concurrent suffixes) As discussed above, this is in line with
state-of-the-art concurrent test generators.

II. Exactly one shared object under test Accessing a single shared object under test from multiple
threads is enough to expose most concurrency faults [10]. Intuitively concurrent suffixes must access
the same memory locations to trigger concurrency faults. Because a single object might have multiple
instance fields, considering exactly one shared object under test can expose multi-variable atomicity
violations as well [25]. However, in some cases two (or more) object instances, although distinct,
may access the same memory locations. Revealing thread-safety violations in these cases may require
concurrent tests with two or more shared objects [10]. For instance, when the instance fields of two
objects are referencing each other.

III. Only non-static methods We do not consider invocations of static methods, following the
intuition that most concurrency faults derive from incorrect accesses to dynamic instances. This is a
valid assumption that often holds in practice [10].

It is important to clarify that we can easily drop these three assumptions and modify the test
generation algorithms of DEPCON` accordingly.

Allowing more than two concurrent threads (concurrent suffixes). Instead of generating two suffixes
only, DEPCON` could create n suffixes by invoking GETSUFFIX function n times (see Algorithms 3).
Then, the Function ASSEMBLETEST can be easily parameterized in a way that instantiates and runs n
threads in parallel, each executing one of the n suffixes.

Considering more than one shared object under test. DEPCON` can consider n shared objects
under test, by invoking Function GETRANDOMCONSTRUCTOR n times (see Algorithm 3). Function
APPENDSTATECHANGER can append method calls that use each of these n objects.

Allowing static methods. We define the coverage targets of DEPCON` by considering the pairs
of public (non-static) methods of the class under test. We could consider static methods as well.
For static methods, the computation of the method summaries will not change as DEPCON` also
considers static fields (accessed by getstatic and putstatic instructions) as shared-memory
locations.

However, these three assumptions allow a fair comparison because they are shared among state-of-
the-art approaches (such as, COVCON [8]).

Example Figure 1 shows a portion of Class BufferedInpuStream of JDK 1.4. The class contains
a known concurrency fault: an atomicity violation (BUG ID: 4728096), which leads to a thread-safety
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sout.close(); sout.read();
Thread	1 Thread	2

suffix	1	:

prefix	:	StringBufferInputStream var0	=	new	StringBufferInputStream("v;");	
BufferedInputStream sout =	new	BufferedInputStream(var0);	

thread-safety	violation	(exception)
:	suffix	2

Figure 2. Concurrent test for class BufferedInputStream shown in Figure 1. The test manifests a thread-safety
violation (exception). The interleaving that manifests the exception is Thread 2 executes line 17, Thread 1

line 27, Thread 2 line 20

violation of type exception. The JDK developers omitted the synchronization of method close()
(presumably for performance reasons [32]). Such fault leads to a thread-safety violation when two
threads Thread 1 and Thread 2 invoke methods close() and read(), respectively. For some specific
thread interleavings, Thread 2 triggers a NullPointerException at line 20. An interleaving that
can trigger the exception is: Thread 1 executes the statement at line 27 of method close after Thread
2 executes the statement at line 17 and before Thread 2 executes the statement at line 20 of the
method read. The interested readers can refer to the bug report for more information [32].

Figure 2 shows an example of concurrent test for class BufferedInpuStream of Figure 1. The
prefix creates two object instances: var0 and sout. Variable var0 is needed to correctly execute
the constructor of BufferedInputStream, while variable sout (shared object under test) is an
object instance of the class under test (BufferedInputStream) shared between Thread 1 and
Thread 2. In fact, the method invocations of both Thread 1 and Thread 2 use sout as the object
receiver. Being sout shared between the two threads, accessing the instance fields of the class (in,
count, pos, and buf) triggers accesses to shared-memory locations.

The concurrent test in Figure 2 can manifest the faulty interleaving described above, triggering
a NullPointerException at line 20 in Figure 1 (thread-safety violation). Such an exception
is not thrown by any linearizations of the calls in the concurrent test. There are two possible
linearizations [29, 30] of the outermost method calls of the test: xprefix, sout.read(),
sout.close()y and xprefix, sout.close(), sout.read()y. The first linearization does not
throw any exception, while the second linearization throws an expected IOException at line 3,
which is different from the NullPointerException manifested during the concurrent execution.
Thus, the thread-safety oracle (correctly) reports a thread-safety violation.

Indeed, a thread-safe oracle based on linearizability reports a violation only if the class suffers
from a concurrency fault. This is because it considers the (sequential) linearizations of the concurrent
test as the expected behaviors [3, 29, 30]. Indeed, the manifestation of a runtime exception could be
an expected behavior during a linearized execution [3, 8, 29, 30]. For example, calling availble()
on a closed input stream triggers a runtime exception (IOException) at line 3 in Figure 1, which is
an expected behavior. The thread-safety oracle reports a violation only if a runtime exception does
not manifest in any linearization of the call.

2.6. Thread-safety Violation of Endless Hang Type

Targeted concurrency faults Thread-safety violations leading to endless hangs can manifest as
infinite loops and different forms of deadlocks, commonly classified as communication and resource
deadlocks [34].

Communication deadlocks [34] occur when two or more threads mutually wait to communicate
with other concurrently executing threads. Each waiting thread can proceed when receiving a
communication from the threads it is waiting for. More formally, a communication-deadlock occurs
when given a set of concurrently executing threads T “ xτ1, τ2, τ3 ¨ ¨ ¨ τny, each thread in T waits to
communicate with another thread in T and no thread ever initiates any further communication until it
receives the communication it is waiting for [34]. An example of a Java communication deadlock is
a thread that invokes a wait() on an object after the concurrent thread executed the corresponding
notify() on the same object.
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public class Hashtable<K, V> extends Dictionary<K, V> 
implements Map<K, V>, Cloneable, java.io.Serializable {

[…] // omitted methods

public synchronized int size() { return count; }

public synchronized boolean equals(final Object o) {
if (o == this) {

return true;
}
if (!(o instanceof Map)) {

return false;
}
final Map<K, V> t = (Map<K, V>) o;
if (t.size() != size()) { // size is synchronized

return false;
}

[…] // rest of the method is omitted

1
2
3
4
5
6
7
8
9

10
11
12

Figure 3. Buggy version of the JDK class Hashtable, Bug id 6582568 [33] that leads to a thread-safety
violation (resource deadlock).

sout1.equals(sout2); sout2.equals(sout1);
Thread	1 Thread	2

suffix	1	:

prefix	:	 Hashtable<String,	Object>	sout1	=	new	Hashtable<>();
Hashtable<String,	Object>	sout2	=	new	Hashtable<>();
sout1.put("1",	new	Object());
sout2.put("1",	new	Object());

thread-safety	violation	(deadlock)
:	suffix	2

Figure 4. Concurrent test for the class in Figure 3 that manifests a thread-safety violation (endless hang). The
interleaving that manifests the deadlock is Thread 1 executes line 8, Thread 2 line 2, Thread 1 line 9 (wait),

Thread 2 line 9 (wait)

Resource deadlocks [34] occur when two or more threads simultaneously wait for two or more
resources (such as, locks) and cannot proceed until they acquire all the needed resources. More
formally, a resource-deadlock occurs when given a set of concurrent threads T “ xτ1, τ2, τ3 ¨ ¨ ¨ τny,
each thread in T requests some resources held by some other threads in T , and needs all the requested
resources to proceed [34]. An example of a Java resource deadlocks is when two threads attempt to
acquire two or more locks in a different order.

In this paper, we consider resource deadlocks, and more specifically we target resource deadlocks
with exactly two threads that trigger cyclic deadlocks involving exactly two locks (ABBA deadlocks).
This is the most frequent type of resource deadlock. In fact, the bug characteristic study of Lu et al.
shows that almost all (97%) deadlock faults involve two threads circularly waiting for at most two
resources [28].

More specifically, we are making the following three assumptions on the concurrent tests being
generated: (i) exactly two concurrent threads (two concurrent suffixes), (ii) one or two shared objects
under test, (iii) only non-static methods. Differently from test generation for thread-safety violations
of exception type (Section 2.5), we consider tests with one or two shared objects under test. This
is because developers often implement synchronization mechanisms that use as locks the object
receiver of method invocations. In such a situation, having two shared objects under test is a necessary
condition to have two shared locks (we need two locks for ABBA deadlocks).

Example Figure 3 shows methods equals and size of the JDK Hashtable class of the
JDK 1.6. The class contains a known concurrency fault: a resource deadlock (BUG ID: 6582568)
involving a cyclic wait on two locks. The JDK developers added the synchronized keyword
to method equals, and synchronized Method size, to prevent atomicity violations and race
conditions. However, synchronizing both methods equals and size introduces a resource
deadlock that leads to a thread-safety violation. Such violation occurs when two threads concurrently
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prefix	:	StringBufferInputStream var0	=	new	StringBufferInputStream("v;");	
BufferedInputStream sout =	new	BufferedInputStream(var0);	

ct1 prefix	

 sout.available(); var1.available(10);
Thread	1 Thread	2

ct2 prefix	

sout.read(); sout.mark(0);
Thread	1 Thread	2

can	be	pruned
available ⇌P		available					
available ⇌C		available

can	be	pruned
read ⇌P		mark					
read ⇌C		mark

ct3 prefix	

 sout.close(); sout.mark(3);
Thread	1 Thread	2

ct4 prefix	

sout.close(); sout.read();
Thread	1 Thread	2

thread-safety	violation	(exception)
close 	⇌P		read					
close ⇌C		read

can	be	pruned
close ⇌P		mark					
close ⇌C		mark	

Figure 5. Concurrent tests for BufferedInputStream class in Figure 1, only ct4 can trigger a thread-
safety violation of exception type

execute sout1.equals(sout2) and sout2.equals(sout1), where sout1 and sout2 are
two instances of Hashtable shared across the two threads. An interleaving that triggers the deadlock
is the following. Thread 1 invokes sout1.equals(sout2), and when entering the method
equals it acquires the lock associated to sout1 because equals is a synchronized method. Before
Thread 1 reaches line 9, Thread 2 invokes sout2.equals(sout1) and acquires the lock associate
to sout2. Then, before Thread 2 executes line 9, Thread 1 attempts to execute t.size() at line
9, but it has to wait because the method size is synchronized, and thus invoking t.size()
needs to acquire the lock associated to the object t. The aliasing at line 8 implies that t references
o, which is the input parameter of the method equals. Object o is the hashtable sout2, since
Thread 1 executed sout1.equals(sout2). Therefore, Thread 1 waits at line 9, because Thread
2 currently holds the lock associated with Object sout2. While Thread 1 is waiting, Thread 2
reaches line 9. Thread 2 also waits because Thread 1 is holding the lock associated with Object
sout1. This is a faulty ABBA resource deadlock. The interested readers can refer to the bug report
for more information [33].

The concurrent test in Figure 4 can expose the interleaving described above, by triggering
an endless hang that is not triggered by any linearization of the calls in the concurrent test.
Neither of the two possible linearizations [29, 30] of outermost method calls of the test (xprefix,
sout1.equals(sout2), sout2.equals(sout1)y and xprefix, sout2.equals(sout1),
sout1.equals(sout2)y) trigger the deadlock. Thus, the thread-safety oracle considered in this
paper would (correctly) reports a thread-safety violation.

3. DEPCON`

This paper presents DEPCON`, a concurrent test generator for exposing thread-safety violations
in classes designed to be thread-safe. DEPCON` targets violations that lead to uncaught runtime
exceptions and ABBA resource deadlocks.

The challenge of the huge search space of concurrent tests As we discussed in our recent
empirical study [10], a major challenge of automatically generating tests that expose thread-safety
violations is the huge search space of possible concurrent tests [10]. There exists a myriad of possible
combinations of sequential prefix, concurrent suffixes and input parameter values that could constitute
a concurrent test. To give an idea of the search space size, let len be the call sequence length, and p
the maximum number of parameters values for each method call in a test. Given a class with |M |
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public methods, there are at most pp¨ |M |qlen method call sequences [35, 36]. Assuming concurrent
tests with three method call sequences (a sequential prefix and two concurrent suffixes), there are
pp¨ |M |q3¨len possible concurrent tests. Even if we consider the small BufferedInputStream
class in Figure 1, which has only ten public methods (|M |“ 10), there are a myriad of possible
concurrent tests. With relatively small values of len and p (len “ 10 and p “ 5), there are „1050

possible concurrent tests.
Because only few concurrent tests manifest thread-safety violations [8], it is challenging to find

them in such a huge search space [3, 10]. The cost of navigating a huge search space of possible
concurrent tests is a major challenge of concurrent test generation. This is because it is costly to
explore the interleaving space of many concurrent tests [37]. While current concurrent test generators
could generate millions of concurrent tests in a few minutes [10], exploring the interleaving space of
millions of concurrent tests is prohibitively expensive.

As an example, the random-based concurrent test generator CONTEGE [3] took 8.2 hours on
average to generate and explore the interleaving space of millions of tests before exposing a single
thread-safety violation [3]. 99.5% of this time was spent on exploring the interleaving space of the
generated tests [3].

Our key intuition To address the challenge, DEPCON` leverages static dependency analysis to
reduce the search space of concurrent tests without missing failure-inducing tests. DEPCON` is based
on the core intuition that the method calls in a concurrent test need to satisfy specific requirements to
expose thread-safety violations that manifest exceptions or deadlocks. DEPCON` benefits from an
efficient and precise approach that statically identifies such requirements before generating concurrent
tests.

Only methods that meet the following two requirements can lead to thread-safety violations of
exception type when concurrently executed:

• their executions can interleave (parallel dependentéP);

• their executions can access (with a write and read) at least one shared-memory location in
common (conflict dependentéC).

Figure 5 shows four concurrent tests for the class in Figure 1: ct1, ct2, ct3 and ct4. All tests share
the same prefix (on top of Figure 5) but have different concurrent suffixes. Only ct4 exposes the
thread-safety violation of exception type. There are many concurrent tests for the class in Figure 1
that do not trigger the thread-safety violation (for example, ct1, ct2 and ct3 in Figure 5). A concurrent
test generator could waste all the available time-budget generating such tests and exploring their
interleaving spaces, missing the few failure-inducing ones [8]. However, the concurrent tests ct1, ct2
and ct3 in Figure 5 do not meet our two requirements, and thus DEPCON` safely avoids generating
them:
(ct1): available éP available because the method is synchronized; available éC
available because the method does not perform write accesses to shared-memory locations.
(ct2): read éP mark because both methods are synchronized, and thus their instructions are
protected by the same lock (current-object); readéC mark because the method read writes and
the method mark reads the same field pos.
(ct3): closeéP mark because close is not synchronized; read éC mark because the methods
do not access the same shared-memory locations.

However, DEPCON` would generate the failure-inducing test ct4 as the methods in the concurrent
suffixes have both parallel and conflict dependencies: closeéP read because the instructions of
close are not protected by locks; closeéC read because close writes and read reads the same
shared memory location buf.

Only methods that meet the following requirement can lead to thread-safety violations of resource
deadlock type when concurrently executed:

• their executions can acquire the same pair of locks in the opposite order (double-lock
dependentéD)
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ct5 prefix	

sout1.equals(sout2); sout1.size()
Thread	1 Thread	2

ct6 prefix	

Thread	1 Thread	2

thread-safety	violation	(deadlock)
equals ⇌D		equals

can	be	pruned
equals ⇌D		size

prefix	:	 Hashtable<String,	Object>	sout1	=	new	Hashtable<>();
Hashtable<String,	Object>	sout2	=	new	Hashtable<>();
sout1.put("1",	new	Object());
sout2.put("1",	new	Object());

sout1.equals(sout2); sout2.equals(sout1);

Figure 6. Concurrent tests for the Hashtable class in Figure 3, only ct6 can trigger a thread-safety violation
of deadlock type

Figure 6 shows two test cases ct5 and ct6 for the class Hashtable in Figure 3. Only ct6 meets
the necessary requirement to manifest a resource deadlock. In fact, the pair of two methods equals
in Figure 3 are double lock dependent (equals éD equals). Method equals can acquire the
lock associated with the current-object (because equals is synchronized), and can acquire the lock
associated with the parameter o at line 9 in Figure 3 as well. Because the identity of these two
locks can be switched, equals is double-lock dependent with itself. Conversely, method size only
acquires the lock associated with the current-object. As such, size is not double lock dependent with
method equals, thus ct5 cannot expose a ABBA deadlock. As a result, DEPCON` safely avoids the
cost of generating ct5 and exploring its interleaving space.

In a nutshell, DEPCON` exposes thread-safety violations for a Class Under Test (CUT) as
follows: (i) it computes the method summaries of each public method of the CUT, such summaries
encapsulates the possible access and synchronization operations of the method, (ii) it computes the
parallel, conflict and double-lock dependencies among CUT methods by relying on the summaries,
(iii) it steers the generation of tests towards concurrent tests that exhibit the computed dependencies,
and thus could reveal thread-safety violations, (iv) it explores the interleaving space of each generated
test relying on an available interleaving explorer.

4. METHOD DEPENDENCIES

DEPCON` statically computes three method summaries for each public method m declared in
a (thread-safe) Class Under Test (CUT): access (AS(m)), lock (LS(m)), and double-lock (DS(m))
summaries. DEPCON` relies on such summaries to perform the conflict, parallel and double-lock
dependency analysis, respectively.

This section defines the summaries and the dependencies, and presents two theorems that prove
that exhibiting such dependencies is a necessary (but not sufficient) condition for a test to expose
the target types of thread-safety violations. DEPCON` relies on such finding to generate effective
coverage-driven concurrent tests. It drives test generation towards concurrent tests that satisfy this
necessary condition.

We now present some preliminary information for computing the method summaries. A method
m is composed of an ordered sequence of instructions: insti denotes the ith instruction in m. Each
instruction has a type: type(insti) denotes the type of the instruction insti. We consider five types of
instructions to define the method summaries:

• R(x), a read access to the memory location x;

• W(x), a write access to the memory location x;

• ACQ(l), the acquisition of the lock l;

• REL(l), the release of the lock l;
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• INVOKE(callee), the invocation of method callee.

A method m can contain invocation of other methods (direct invocation), and these methods can
invoke other methods, and so on (indirect invocation). The set callees(m) denote the set of methods
that can be directly or indirectly invoked by m, that is, callees(m) contains all methods m1 for which
there exists a chain of method invocation from m to m1.

4.1. Conflict and Parallel Dependencies (Exception Violations)

DEPCON` computes the conflict and parallel dependencies among the public methods of the CUT
by relying on the access and lock summaries of the methods. We now formally define the access
AS(m) and lock LS(m) summaries of a method m.

Definition 5. The access summary AS(m) of a method m is the set of shared memory accesses that
can be triggered by m and by all of its callees.

AS(m) def
“ tinsti P tmY calleespmqu : ptypepinstiq “ Rpxqq _ ptypepinstiq “W pxqq, where x

is a shared-memory location}.

For example, the access summary AS(mark) of method mark in Figure 1 is tW(marklimit), R(pos),
W(markpos)u. The access summary of a method m it represents an over-approximation of all the
possible accesses of shared-memory locations performed by all possible invocations of m under all
possible execution paths.

Definition 6. The lock summary LS(m) of a method m is the set of locks that protect every shared-
memory access that can be triggered by an invocation of m:

LS(m) def
“ tlocks l such that

- D insti P m : (type(insti)“ ACQ(l)q ^ pi ă kq, and

- E instj P m : (type(instjq “ REL(l)q ^ pj ă w)

where k and w are the indexes of the first and last shared-memory accesses in m, respectivelyu.

For example, the lock summary LS(mark) of method mark in Figure 1 is {this}, where this is the
current-object of the class.

LS(m) considers only locks that protect shared-memory accesses because we are not interested in
locks that protect accesses to thread-local memory locations. This is in line with classic static and
dynamic analyses of concurrent programs [38, 39, 40, 41]. However, Our notion of lock summary
slightly differs from the classic notion of lockset [42], largely adopted by dynamic and static
concurrency bug detectors [23, 24, 38, 39, 43, 44, 45]. The classic lockset is defined at the granularity
level of single instructions, while we define lock summary at the granularity level of sets of
instructions. The classic lockset can tell us if two instructions executed by multiple threads are
protected by the same lock, but cannot infer if a block of instructions (in our case, the shared-memory
accesses in a method) can interleave with other blocks [46].

The reader should notice that we define AS(m) with information about the callees of m (inter-
procedural), while we define LS(m) without looking at the callees of m (intra-procedural). This is
because any lock acquired with internal method calls of m does not protect every shared-memory
access in m, and thus it can be ignored. This reduces the cost of computing lock summaries. For
instance, let us consider the method call in.available() in Figure 1 at line 11, where in is
a shared-memory location. Being in a shared-memory location, in.available() could trigger
other shared-memory accesses. However, even if the invocation in.available() acquires some
locks, such locks will not protect the access of in at line 11. Thus, any lock acquired by the callees of
m can be excluded, because it does not protect in, and thus it does not protect every shared memory
access in m.
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Conflict and parallel dependencies are relations between methods. Such relations are symmetric
(m1 é m2 implies m2 é m1) but neither reflexive (not necessary each method relates with itself)
nor transitive (m1 é m2 and m2 é m3 does not imply that m1 é m3). For both conflict and
parallel dependencies we use the symbol ” to denote the equivalence relation between shared-
memory locations. It is defined as the equivalence of the memory location identifiers (with field
sensitivity, i.e., o.field). For instance, instruction W(buf) at line 27 in Figure 1 writes the same
memory location read by instruction R(buf) at line 20. Indeed, the two memory locations refer to the
same identifier within the same object scope.

Definition 7. Methods m1 and m2 are conflict dependent, m1 éC m2, if and only if their access
summaries contain instructions that read and write the same shared-memory location:
m1 é C m2 iff pDW pxq P ASpm1q ^ DRpyq P ASpm2qq _ pDRpxq P ASpm1q ^ DW pyq P

ASpm2qq, where x ” y.

Our notion of conflict dependency resembles the classic notion of race condition [47, 48], but
with an important difference. Race condition includes the case in which two thread writes the
same memory location [42,49], i.e., DW pxq P ASpm1q and DW pyq P ASpm2q, where x ” y. Instead,
our definition of conflict dependency excludes such a case. This reduces the number of conflict
dependencies, yielding a further reduction of the search space, without missing any faulty executions.
The rationale of this choice is that if both m1 and m2 write but never read a common memory
location, their executions cannot interfere [46, 50], and their behavior would be the same of that
of a sequential execution [51]. Being the same as a sequential execution, any concurrent execution
(interleaving) cannot violate the linearizability correctness criterion [30].

Note that the conflict dependent requirement includes multi-variable concurrency faults. In fact, all
problematic access patterns of data races [23], atomicity violations [24] and atomic-set serializability
violations [25] derive from two concurrent threads that access at least one memory location in
common [52], including multi-variable problematic access patterns.

Definition 8. Methods m1 and m2 are parallel dependent, m1 éP m2, if and only if their
corresponding lock summaries do not share common locks:
m1 éP m2 iff @l1 P LSpm1q,@l2 P LSpm2q, l1 ı l2.

Our notion of parallel dependency is weaker than the concept of mutual exclusive methods, where
none of the instructions of m1 can interleave with those in m2. As such, parallel dependency admits
interleaving between the two methods, but only if the interleaved memory accesses are thread-local.

Our notion of parallel dependency resembles the notion of May-Happen-in-Parallel (MHP) [53,54,
55, 56]. MHP analysis computes whether two statements in a multi-threaded program may execute
concurrently or not [56]. However MHP is defined at the granularity of statements [55, 56], while we
define the parallel analysis of DEPCON` at the granularity of methods.

Theorem 1. Given a concurrent test ct “ xprefix, suffix1, suffix2y, if ct violates thread-safety, then
the two suffixes contain two methods m1 P suffix1 and m2 P suffix2 with both parallel and conflict
dependencies. That is, Dm1 P suffix1 ^ Dm2 P suffix2 : m1 éP m2 ^m1 éC m2.

Proof by contradiction
Let us assume that a concurrent test ct violates thread-safety and no pair of methods from the
two concurrent suffixes has both parallel and conflict dependencies. That is @xm1 P suffix1,m2 P

suffix2y :m1 éP m2 _m1 éC m2. If @xm1,m2ym1 éP m2, than the shared-memory accesses of
the two methods do not interleave. Then, according to the definition of linearizability [29], all the
concurrent executions of ct are equivalent to the executions of the linearizations of the method calls
of ct. Thus, ct cannot violate thread-safety with an uncaught exception (contradiction). If @xm1,m2y

m1 éC m2 means that each pair of methods do not access common shared-memory locations. Thus,
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regardless whether their executions interleave or not, the behaviors of all concurrent executions of ct
are equivalent to the executions obtained by the linearizations of the method calls of ct [29]. As a
result, ct cannot violate thread-safety with an uncaught exception (contradiction). This proves that
the presence of two methods m1 and m2 in the suffixes such that m1 éP m2 ^m1 éC m2 is a
necessary condition for exposing thread-safety violations of exception type.

Theorem 1 implies that the existence of parallel and conflict dependencies among methods in the
suffixes of a concurrent test is a necessary condition for exposing thread-safety violations that leads
to runtime exceptions.

4.2. Double-Lock Dependencies (Deadlock Violations)

DEPCON` computes the double-lock dependencies among the public methods of the CUT relying
on the access and lock summaries of the methods. We now formally define the double-lock summary
DS(m) of a method m.

Definition 9. The double-lock summary DS(m) of a method m is the set of all pairs of nested lock
acquisitions (excluding re-entrant locks) that can be triggered by m and by all of its callees.

DS(m) def
“ txl1, l2y : Dinsti, instj P tmY calleespmqu such that

- type(instiq “ ACQpl1q ^ type(instjq “ ACQpl2q ^ l1 ı l2 ^ i ă j, and

- Einstk P tmY calleespmqu : type(instkq “ RELpl1q^ k ă j ^ k ą i

where all instructions in tmY callees(m)u are ordered following the program order ofm ‘unrolling”
each method invocation in m and in all of its callees}

Intuitively, the double-lock summary of a method m contains all the pairs of locks xl1, l2y such
that in some executions a thread can acquire lock l2 while still holding lock l1. The reader should
notice that we added the condition l1 ı l2 to exclude the trivial case of reentrant locks. Indeed,
in many programming languages, such as JAVA, locks are reentrant: a thread in JAVA can acquire
the same lock as often as it wants without creating a deadlock with itself. Computing double-lock
summaries requires inter-procedural analysis as locks can be acquired by all methods that m can
directly or indirectly invoke. For example, the double-lock summary of method equals in Figure 3
(DS(equals)) is {xthis, oy}. Because equals is synchronized the lock associated with the current-
object is acquired at the method entry and released at the method exit. Before the method exists, and
thus before the lock this is released, line 9 can acquire another lock by invoking t.size(). The
lock that t.size() acquires is o because the method size is synchronized and t is aliased to o.

Definition 10. Methods m1 and m2 are double-lock dependent, m1 éD m2, if and only if both of
their double-lock summaries contain a pair of compatible locks in opposite order:
m1 éD m2 iff Dxla, lby P DSpm1q ^ Dxlc, ldy P DSpm2q : la

.
“ ld ^ lb

.
“ lc.

The compatible relation ( .“) between locks specifies whether the locks can substitute each other.
For instance, recall that the double-lock summary of method equals in Figure 3, DS(equals),
is {xthis, oy}. The method equals is double-lock dependent (éD) with itself because this .

“ o
(and thus also o .

“ this) even if the identifiers of these two locks this and o are different (this ı o).
This is why we must define the compatible relation .

“ for locks in éD as either the equivalence
of their identifiers or locks that can substitute each other, if the locks are objects. Recall that
in JAVA locks are either objects (such as, synchronized(this)) or class identifiers (such as,
synchronized(A.class)). More specifically, given two locks that are either class identifier or
objects, we say that a lock la can be a substitute of a lock lb if and only if the class of lock la and the
class of the lock lb are either the same class or one is the superclass of the other. For example, in the
double-lock summary of method equals in Figure 3, this ” o and o ” this (la ” ld ^ lb ” lc). This
is because the class of this is Hashtable and the class of o is java.lang.Object, which is a super
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class of Hashtable. Therefore, our definition of compatible relation .
“ for locks inéD includes both

the simple case of ABBA resource deadlock (e.g., synchronized(A){synchronized(B){...}}
and synchronized(B){synchronized(A){...}}) and also more complex deadlocks such as the
one shown in Figure 3.

Theorem 2. Given a concurrent test ct “ xprefix, suffix1, suffix2y, if ct violates thread-safety (with
respect to Definition 4), then the two suffixes suffix1, suffix2 contain two methods m1 P suffix1 and
m2 P suffix2 with double-lock dependency. That is, Dm1 P suffix1 ^ Dm2 P suffix2 : m1 éD m2

Proof by contradiction
Let us assume that a concurrent test ct violates thread-safety with a resource ABBA deadlock and
no pair of methods from the two concurrent suffixes has double-lock dependencies. That is @xm1 P

suffix1,m2 P suffix2y : m1 éD m2. If @xm1,m2y m1 éD m2, then each pair of methods cannot
acquire at least two common locks simultaneously, which is a necessary condition to trigger a
resource deadlock involving two locks [19, 57]. As a result, ct cannot violate thread-safety with a
resource deadlock (contradiction). This proves that having two methods m1 and m2 in the suffixes
such that pm1 éD m2q is a necessary condition to expose thread-safety violations of ABBA resource
deadlock type.

Theorem 2 implies that the existence of double-lock dependencies among methods in the suffixes
of a concurrent test is a necessary condition for exposing thread-safety violations that leads to endless
hangs caused by ABBA resource deadlocks.

5. PREPROCESSING PHASE: COMPUTING THE METHOD SUMMARIES

Algorithm 1 and Algorithm 2 show how DEPCON` computes the method summaries of a method m.
Algorithm 1 computes the access and lock summaries, while Algorithm 2 computes the double-lock
summary of m. The following subsection describes the alias analysis used by both Algorithm 1 and
Algorithm 2 to recognize aliases of shared-memory locations and locks.

5.1. Alias Analysis

In program analysis, aliasing refers to the situations when there exist multiple references to the
same memory location [58]. In other words, an alias is a reference to the same memory location.
Both Algorithm 1 and 2 rely on an alias analysis to infer the identity of thread-shared variables and
locks.

Instead of computing alias information for all references in the method under analysis, DEPCON`

adopts an on-demand approach, which performs the alias analysis only when needed. More
specifically, our alias analysis works at Java bytecode level and identifies the outermost reference in
the reference chain with a backward analysis on the JVM stack [59].

The Java Virtual Machine (JVM) [59] is a stack-based abstract machine, in which JAVA bytecode
instructions pop their arguments off the stack and push their results on the stack [59]. During a thread
execution, the stack stores local variables, method arguments, and return values. Some bytecode
instructions (for instance aload) load a reference or value onto the stack, while other bytecode
instructions (for instance astore) store a reference or value. For example, astore #index stores
a reference into local variable #index, while aload #index loads a reference onto the stack from
a local variable #index.

DEPCON` triggers the alias analysis when it encounters aload and astore instructions. Because
we are computing aliases among method variables, the outermost reference in the reference chain
could be (i) a local variable, (ii) a method parameter (including the object receiver), or (iii) a static
object. DEPCON` needs alias information to infer whether aload and astore instructions are
aliasing method parameters or static objects. This is because, by construction, in a concurrent test
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only the objects passed as parameters to the method calls or static objects can be memory locations
that are shared across multiple threads (such as locks).

We now exemplify how the alias analysis works. Consider line 8 of Figure 3, which creates an
alias between variable t and o (where o is a method parameter).

final Map<K, V> t = (Map<K, V>) o;

The bytecode instructions of this source code line are:

ALOAD 1
CHECKCAST java/util/Map
ASTORE 2

The alias analysis infers that the two variables point to the same memory location, by observing that
ASTORE 2 is preceded by ALOAD 1.

In the literature exists two main types of aliasing. The may-alias analysis identifies aliases that
can occur during some execution of the program. The must-alias analysis identifies aliases that
occur in all executions of the program. To guarantee a low computational cost, we implemented a
path-insensitive may-alias analysis that does not consider each individual execution path. As such,
our goal is not to final all may aliases (for each execution path). DEPCON` computes one possible
may alias for each analyzed instruction. Even if the computed alias is only one, it is not necessarily a
must alias because the alias might occur for some execution path only.

Our alias analysis also considers field-sensitivity when retrieving the identity of variables. For
example, given the following class:

public class A {
Object field = new Object();

public void m1() {
Object o1 = this.field;
}
}

The bytecode of method m1 is:

public m1()V
L0
LINENUMBER 5 L0
ALOAD 0
GETFIELD A.field : Ljava/lang/Object;
ASTORE 1
L1
LINENUMBER 6 L1
RETURN
L2
LOCALVARIABLE this LA; L0 L2 0
LOCALVARIABLE o1 Ljava/lang/Object; L1 L2 1
MAXSTACK = 1
MAXLOCALS = 2

The backward alias analysis starting from the instruction ASTORE 1 tells us that the
LOCALVARIABLE o1 Ljava/lang/Object aliases this.field, as ASTORE 1 is preceded by
the instructions GETFIELD A.field : Ljava/lang/Object; and ALOAD 0. Note that, in
every non-static method the memory location with index 0 represents the object receiver this
(see LOCALVARIABLE this LA; L0 L2 0).

Our analysis considers an array as a single memory location. It does not consider each individual
cell of the array as a memory location. This is because a static analysis cannot know the values of the
indices, as their values depend on the calling context of the method under analysis (i.e., the particular
inputs used by the concurrent test). This might lead to unsound results.
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Algorithm 1: COMPUTEACCESSANDLOCKSUMMARIES
input :a public method of CUT (m)
output :access and lock summaries of m (xAS(m), LS(m)y)

1 xAS(m),LS(m)y Ð x∅,∅y // init access summary of m
2 tmp-lock-releasesÐ ∅ // temporary lock releases
3 for each insti P m do
4 switch type(insti) do
5 case Shared-memory accesses: R(x) or W(x) do
6 ref Ð GETOUTERMOSTREF(insti)
7 if ISSHAREDLOCATION(ref) then
8 add R(ref.f) or W(ref.f) to AS(m)
9 remove tmp-lock-releases from LS(m)

10 tmp-lock-releasesÐ ∅

11 case Lock acquire: ACQ(l) do
12 if AS(m) “ ∅ then
13 lÐ GETLOCK(insti)
14 add l to LS(m)

15 case Lock release: REL(l) do
16 lÐ GETLOCK(insti)
17 if AS(m) “ ∅ then
18 remove l from LS(m)
19 else
20 add l to tmp-lock-releases

21 case Method invocation: INVOKE(callee) do
22 calleeÐ GETINVOKEDMETHOD(insti)
23 if callee is a method declared in the CUT then
24 AS(callee)Ð COMPUTEACCESSANDLOCKSUMMARIES(callee)
25 add AS(callee) to AS(m)
26 else
27 if ISPURE(callee) is false then
28 for each parameter p of callee do
29 if ISSHAREDLOCATION(p) then
30 add W(p) to AS(m)

31 return xAS(m), LS(m)y

32 function ISPURE(m) // returns true if the method m is pure, false otherwise.
33 for each insti in m do
34 switch type(insti) do
35 case Write access: W(x) do
36 x Ð GETOUTERMOSTREF(insti)
37 if x is a parameter of m then
38 return false

39 case Method invocation: INVOKE(callee) do
40 calleeÐ GETINVOKEDMETHOD(insti)
41 return ISPURE(callee)

42 return true

5.2. Computing the Access and Lock Summaries

Algorithm 1 computes the access and lock summaries of a method m. The algorithm implements a
fine-grained analysis that incrementally populates the access and lock summaries of each method m
declared in the CUT. The algorithm invokes the recursive function ISPURE, every time it detects an
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invocation to a method that is not declared in the CUT but is directly or indirectly invoked from CUT
methods. Function ISPURE analyses the callee methods to infer if they modify the value of method
parameters that represent shared-memory locations. ISPURE analysis is coarse-grained to guarantee
a low computational cost in the common case of many invocations to non-CUT methods.

Algorithm 1 starts by initializing the access summary AS(m), the lock summary LS(m) and tmp-
lock-releases to empty sets (lines 1 and 2). Algorithm 1 uses a supporting variable tmp-lock-releases
to compute LS(m) (line 2). Then, Algorithm 1 scans the ordered sequence of bytecode instructions
insti of m (line 3), and checks the type of each instruction insti to determine if it belongs to one of
the following four instruction types.

Type 1) Shared-memory accesses: W(x) or R(x) (line 5). To expose thread-safety violations
of exception type, DEPCON` generates concurrent tests that share among threads only one shared
object under test of type CUT. By construction, DEPCON` uses the current-object (this in JAVA) as
the SOUT. Therefore, following previous work on concurrency testing [3,8,9,11,12,27,60], only the
fields of the current-object or fields of static classes can be shared-memory locations. In this context,
we do not need an expensive thread-escape analysis [61, 62] to identify shared-memory locations.
This reduces the complexity of the analysis. As such, in the JAVA bytecode [59] Type 1 instructions
are read or write accesses to static or non-static fields: getfield, getstatic as well as putfield
and putstatic instructions. However, JAVA Type 1 instructions could also be aload #index and
astore #index instructions if the memory location #index is an alias to a non-primitive field.
DEPCON` recognizes such cases by performing alias analysis when it encounters aload #index
and astore #index instructions, identifying the aliased memory location loaded and stored by the
getfield and putfield instructions, respectively.

Given the getfield and putfield instructions, DEPCON` needs to infer whether these
instructions are accessing the current-object. Indeed, a method can create and access local objects
that do not reference the fields of the current-object. Because fields of an object can also be objects
of their own, Function GETOUTERMOSTREF traverses the chain of object references to identify the
outermost object reference ref.

Function ISSHAREDLOC(ref ) (line 7) checks if ref is the current-object. This is trivially true when
ref points to the first register [59], which is popped in the JVM stack with the bytecode instruction
aload 0. Alternatively, ISSHAREDLOC(ref ) performs an additional backward alias analysis on the
JVM stack to check whether the alias of ref is the current-object. If ISSHAREDLOC(ref ) returns true,
the algorithm adds R(ref.f) (for getfield) or W(ref.f) (for putfield) to AS(m) (line 8), where f is
field of ref that is accessed. Then, the algorithm removes from LS(m) all the locks that were released
after the lastly added access in AS(m) (line 9). This is because LS(m) must contain only the locks
released after the last shared-memory access in m (Definition 6).

To identify lock acquisitions and releases (Type 2 ACQ(l) and Type 3 REL(l)) instructions,
DEPCON` considers two types of popular JAVA synchronization mechanisms: synchronized blocks
and synchronized methods. For synchronized blocks, DEPCON` maps the ACQ and REL instructions
to bytecode instructions monitorenter and monitoexit, respectively. In case of synchronized
methods, DEPCON` identifies the presence of ACQ and REL instructions by checking if the
ACC SYNCHRONIZED flag is true. In fact, the JVM acquires and releases locks also when the
keyword synchronized appears in the method declaration. In this case, the compiler does not
generate monitorenter and monitoexit bytecode instructions, but flags the method declaration
to ”automatically” acquire and release the lock on method entry and exit.

There is an important consideration regarding monitor instructions. Because we are assuming
synchronized blocks and methods, by construction each monitorenter instruction is paired to a
corresponding monitoexit instruction in the same execution path. As such, our path-insensitive
alias analysis is adequate in this context. However, in Java, return statements and exceptions
prematurely terminate a method execution. In such cases, even with synchronized block and methods,
a monitorenter instruction is paired with multiple monitorexit instructions that are executed
immediately before the return statement or exceptions Because the method summaries want to capture
an over-approximation of all possible behaviors of the method, we ignore those monitorexit
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instructions at premature terminations. We only consider monitorexit instructions that are
executed inside the method body or at the end of the method.

Type 2) Lock acquisition: ACQ(l) (line 11). Recall that LS(m) contains only the locks that are
acquired before the first shared-memory access in m and never released before the last shared-memory
access in m (Definition 6). As such, the algorithm checks if AS(m) is empty to infer if the lock acquire
instruction is executed before the first shared-memory access in m. We encode locks by their fully
qualified names since shared-memory locations (instance or static fields) of the same class have
unique identifiers. Function GETLOCK(insti) gets the lock object by performing backward alias
analysis on the JVM stack, as discussed in Section 5.1.

Type 3) Lock release: REL(l) (line 15). The algorithm executes Function GETLOCK(insti) to
get the lock l released by insti (line 16). If AS(m) is empty, the algorithm removes l from LS(m)
(line 18), otherwise it adds l to the tmp-lock-releases supporting variable. The algorithm will remove
the locks in tmp-lock-releases from LS(m) only if it meets another shared-memory access while
scanning subsequent instructions in m (line 9).

Type 4) Method invocation: INVOKE(callee) (line 21). JAVA bytecode method invocations
correspond to invokedynamic, invokeinterface, invokespecial, invokestatic and
invokevirtual instructions [59]. When the algorithm finds one of such instructions, it gets
the fully qualified name of the called method (callee line 22), and checks if it is declared in the CUT.

If callee is declared in the CUT, the algorithm recursively calls COMPUTEMS(callee) to get the
access summary of callee (AS(callee)), and adds it to AS(m). Notably, we do not add the lock summary
of callee LS(callee) to LS(m), as lock summaries are defined intra-procedurally (see Definition 6).

If callee is not declared in the CUT, the algorithm calls Function ISPURE to check if callee is a
pure method [63, 64], that is, if it does not directly or indirectly write on object fields. If callee is not
a pure method, the algorithm checks if any parameter p of the method invocation is aliased to either
the current-object or to any one of the current-object fields (ISSHAREDLOCATION(p) line 29). If p is
an alias, the algorithm adds a write access (W(p)) to AS(m) (line 30). The algorithm does not add a
read access, because it must have already revealed an instruction that pushes p in the JVM stack.

Lines 32 to 42 of Algorithm 1 implement DEPCON`’s purity analysis. Function ISPURE scans
each instruction of a method m as follows. For all instructions that write a memory location, function
ISPURE gets the outermost reference (ref ) in the chain of object references (GETOUTERMOSTREF
line 36), and signals the method as impure (ISPURE returns false) if ref aliases any method parameter,
including the object receiver. The function recursively calls ISPURE on the called method when it
encounters an instruction of type INVOKE. Our purity analysis does not attempt to infer the exact
objects that can be modified by the analyzed method. Such a conservative approach has two benefits.
First, it guarantees a low computational cost. Second, it guarantees to not miss any impure methods.
Missing impure methods might lead to missing real conflict dependencies, inducing DEPCON` to
prune failure-inducing concurrent tests.

5.3. Computing the Double-Lock Summary

Algorithm 2 shows how DEPCON` computes the double-lock summary of a method m (DS(m)).
The Algorithm starts by initializing DS(m) to the empty set (line 43), and by calling Function
GETUNROLLEDINSTRUCTIONS (line 44), which returns unrolled(m), the ordered sequence of lock
acquisitions and releases that can be triggered by m and all of its callees.

Function GETUNROLLEDINSTRUCTIONS (lines 61 to 71) scans each instruction of a method m
and adds all ACQ(l) and REL(l) instructions to unrolled(m), following the order of occurrence in m.
As discussed in Section 5.2, DEPCON` maps ACQ(l) and REL(l) instructions to the entry and exit
points of JAVA synchronized blocks and synchronized methods, respectively. For each ACQ(l) and
REL(l) instructions, Function GETLOCK collects the identifier l of the acquired or released lock.
In case of aliases, the function performs backward alias analysis on the JVM stack to identify the
memory location of l.
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Algorithm 2: COMPUTEDOUBLELOCKSUMMARY
input :method (m)
output :double-lock summary of m (DS(m))

43 DS(M)Ð ∅
44 unrolled(m)Ð GETUNROLLEDINSTRUCTIONS(m)
45 for insti in unrolled(m) do
46 lock-ordered-set Ð ∅
47 switch type(insti) do
48 case Lock acquire: ACQ(l) do
49 lÐ GETLOCK(insti)
50 if l R lock-ordered-set then
51 append l to lock-ordered-set
52 sizeÐ size of lock-ordered-set
53 if size ě 2 then
54 for each i from 0 to (size - 1) do
55 for each j from (i+1) to (size - 1) do
56 append xlock-ordered-set[i], lock-ordered-set[j]y to DS(M)

57 case Lock release: REL(l) do
58 lÐGETLOCK(insti)
59 remove l from lock-ordered-set

60 return DS(m)

61 function GETUNROLLEDINSTRUCTIONS(m)
62 unrolled(m)Ð ∅
63 for each insti in callee do
64 switch type(insti) do
65 case Lock acquire or release: ACQ(l) or REL(l) do
66 lÐ GETLOCK(insti)
67 add ACQ(l) or REL(l) to unrolled(m)
68 case Method invocation: INVOKE(callee) do
69 calleeÐ GETINVOKEDMETHOD(insti)
70 add GETUNROLLEDINSTRUCTIONS(calle) to unrolled(m)

71 return unrolled(m)

If the function processes an instruction of type INVOKE(callee), it recursively calls Function
GETUNROLLEDINSTRUCTIONS with callee as argument, and adds the result of such recursive
invocation to unrolled(m).

Notably, before invoking GETUNROLLEDINSTRUCTIONS(callee) at line 70 of Algorithm 2,
DEPCON` performs alias analysis on the method parameters passed to callee.

In a nutshell, the function computes unrolled(m) recursively by “unrolling” each method invocation
in m and in all of its callees. As such, unrolled(m) is a path-insensitive ordered sequence of lock
acquisitions and releases instructions following the program order of each invoked method.

The sequences are path-insensitive because they do not distinguish among different paths that
lead to the same program point. Conversely, a path-sensitive analysis would explore paths forked by
branch statements independently [58, 65] (it would explore each execution path individually).

Note that unrolled(m) is an over-approximation of the possible lock acquires and releases because
we consider a path-insensitive abstraction. Thus, we assume that all instructions in unrolled(m) are
being executed. This can lead to infeasible double-locks because the control flow ofm can make some
ACQ and REL instructions mutually exclusive. It is important to clarify that infeasible double-locks
would increase the number of spurious double-lock dependent method pairs, but it would not prevent
the detection of resource deadlocks. We decide to opt for a path-insensitive abstraction to maintain
a low computational cost. In fact, a path-sensitive analysis cannot guarantee a low computational
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cost with the presence of many branches. Even though a path-sensitive analysis would lead to less
infeasible double-locks, it requires to enumerate and analyze all possible execution paths, which is
too expensive.

After computing unrolled(m), Algorithm 2 scans each instruction insti in unrolled(m) (Line 45).
Such scanning simulates the program execution, assuming that all the instructions in unrolled(m) are
executed in the order prescribed by m. At any point while scanning unrolled(m), the lock-ordered-set
contains the set of locks held by the simulated execution. The lock-ordered-set resembles the classic
lockset [42] with the only difference that lock-ordered-set maintains the insertion order of the locks.
When the size of lock-ordered-set is greater than two, we have found a sequence of two consecutive
locks acquisitions. This might lead to a resource deadlock if the analyzed method is concurrently
executed with another method that can acquire the same locks in the opposite order.

In detail, Algorithm 2 works as follows. If the analyzed instruction is a lock acquisition (ACQ), the
algorithm get the lock l of the instruction. Note that, DEPCON` already computed the lock of all
the instructions when populating unrolled(m), so GETLOCK at line 49 simply recovers the already
computed unique identifier of the lock l. Line 50 checks if l is already in lock-ordered-set, if yes
the algorithm skips it. Such a situation occurs when a thread acquires the same lock twice (called
reentrant lock in JAVA). In fact, in JAVA a thread can acquire the same locks multiple times (without
creating a deadlock with itself). If l is not currently in lock-ordered-set, the algorithm appends it at the
end of lock-ordered-set. Then, the algorithm gets the size of lock-ordered-set to check if is greater or
equal than two. If yes, we have found an execution point in which a thread could hold more than one
lock simultaneously, and thus we have found at least a pair of double locks. Lines 54 and 55 compute
all possible pairs of locks that maintain the order of insertion prescribed by lock-ordered-set. Line 56
adds the computed pairs in DS(m). For example, let consider that lock-ordered-set = xl1, l2, l3y.
Line 56 adds three pairs of double locks: xl1, l2y, xl1, l3y, and xl2, l3y in DS(m). Line 57 removes the
lock from lock-ordered-set in case of REL instructions.

We exemplify the computation of the double-lock summary on the fragment of the method
equals shown in Figure 3 at page 8, method m in this example. The algorithm builds unrolled(m),
the ordered list of ACQ and REL instructions that can be executed by m and by all of its callees, and
uses unrolled(m) to build the double-lock summary. The first relevant instruction in m is a ACQ(l)
instruction triggered by the keyword synchronized in the method declaration. Function GETLOCK
at line 13 infers that the acquired lock is the current-object, and appends ACQ(this) to unrolled(m).
The next relevant instructions are two INVOKE instructions at line 9 of Figure 3: t.size() and
size(). The algorithm observes that both methods are the synchronized methods, and identifies
t as aliased to o, thus appends ACQ(o) at the end of unrolled(m), followed by ACQ(this), where
this is the current object. After scanning all instructions in m, the algorithm starts building DS(m)
(line 43 of Algorithm 2). Given unrolled(m) = {ACQ(this), ACQ(o), ACQ(this), ¨ ¨ ¨ }, after the
algorithm appends ACQ(o) to lock-ordered-set line 51 in Algorithm 2), lock-ordered-set has size
two. Thus, Algorithm 2 adds the pair xthis,oy to DS(m). When the algorithm identifies the second
ACQ(this), it does not add this to lock-ordered-set, because it is a reentrant lock.

Details implicit in Algorithm 1 and 2 For the sake of readability, we do not explicitly report few
details in Algorithm 1 and 2:

• The algorithms cache the computed method summaries, purity results and unrolled sequences
to reduce computational time. When the algorithms encounter multiple invocations of the same
method, they returned the cached result.

• The algorithms avoid endless recursions of functions COMPUTEMS, ISPURE and
GETUNROLLEDINSTRUCTIONS caused by methods that directly or indirectly invoke
themselves (such as, with transitive or recursive calls). They achieve this by maintaining a
call stack of the analyzed methods, and stopping recursion when meeting a method invocation
already in the call stack.
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Path insensitivity The reader should notice that both Algorithm 1 and 2 ignore branch and loop
instructions. In fact, the static analysis of DEPCON` is path-insensitive, as it represents a method as
an ordered sequence of instructions regardless of branch and loop instructions. We made this choice
to guarantee a low computational cost in the presence of many branches and inter-procedural calls.
Indeed, computing the method summaries is pure overhead for the test generation phase.

Ignoring branch and loop instructions is reasonable in our case, for two reasons:
First, we are interested in an over-approximation of all possible behaviors. We are not interested to

infer the exact behaviors of methods. Indeed, DEPCON` assumes that mutually exclusive branches
can be taken at the same time, which of course does not represent a possible behavior of the method.

Second, because we are assuming synchronized blocks and methods, by construction each
monitorenter instruction is always paired to a corresponding monitoexit instruction in the
same execution path.

6. GENERATING CONCURRENT TESTS

Given a class under test (CUT) designed to be thread-safe, DEPCON` alternatively generates
concurrent tests and explores their interleaving spaces with the goal of exposing thread-safety
violations. This section describes how DEPCON` generates concurrent tests and how it leverages the
computed method dependencies to reduce the search space.

Coverage targets DEPCON` follows the coverage-driven approach of COVCON [8], a state-
of-the-art coverage-driven concurrent test generator. COVCON exploits the concept of concurrent
method pairs proposed by Deng et al. [66], defined as the set of pairs of methods that can executed
concurrently [66]. A thread-safe class should guarantee a correct behavior no matter which methods
are executed concurrently. As such, COVCON considers as coverage targets the set M of all possible
pairs of public (non-static) methods of the class under test xmi PM,mj PMy [8], where M is the
set of public methods declared in the CUT. Following Choudhary et al., we consider xm1, m2y

and xm2, m1y to be the same method pair because the order is irrelevant for concurrency bug
detection [8]. As such, M is composed of all possible pairs of methods unique with respect to
symmetry. More formally, M def

“ tMˆM : @xmi,mjy PM, xmj ,miy RMu. As such, if |M | is the
number of public methods in the CUT, there are |M | ¨p|M | `1q{2 method pairs. To reduce the search
space of concurrent test, DEPCON` prunes from M all pairs that do not exhibit conflict, parallel
and double-lock dependencies. The reader should notice that we are not interested in computing
the method dependencies (and thus the method summaries) among private or protected methods
as they do not constitute the public interface of the CUT. This implies that concurrent tests (client
code) cannot directly invoke them. However, DEPCON` does consider the shared-memory accesses
and locks acquired and released by private or protected methods when such methods are invoked by
public methods.

Algorithm 3 and Algorithm 4 show the DEPCON` test generation approach, by highlighting how
the algorithms leverage parallel, conflict, and double-lock dependencies to generate concurrent tests.
Algorithms 3 show how DEPCON` generates concurrent tests to expose thread-safety violations
of exception type, while Algorithm 4 of deadlock type. DEPCON` has two distinct concurrent
test generation algorithms because dealing with these two types of thread-safety violations require
different approaches.

6.1. Generating Concurrent Tests for Exposing Thread-Safety Violations of Exception Type

Algorithm 3 takes in input (i) the class under test CUT, (ii) the time-budget B, (iii) the number of
times to re-execute each test N-iter, (iv) the maximum length of the prefixes Max-len, (v) all coverage
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Algorithm 3: DEPCON-EXCEPTIONMODE
input :class under test (CUT)

time-budget (B)
number of times to re-execute each test (N-iter)
maximum length of the prefixes (Max-len)
all coverage targets (M)
access and lock summaries of each public method m in the CUT (AS(m) and LS(m))

output :a concurrent test ct that manifests a thread-safety violation of exception type (if any)
72 Mpc Ð ∅ // init reduced coverage targets
73 for each xm1,m2y PM do
74 if m1 éP m2 ^m1 éC m2 then
75 add xm1,m2y to Mpc

76 while time-budget B is not expired do
77 xm1,m2y Ð GETNEXTMETHODPAIR(Mpc)
78 for each i from 1 to 2 do
79 xsout, prefixy Ð GETRANDOMCONSTRUCTOR(CUT)
80 if i % 2 = 0 then
81 prefixÐ APPENDSTATECHANGER(sout, prefix, Max-len)
82 suffix1 Ð GETSUFFIX(m1, sout)
83 suffix2 Ð GETSUFFIX(m2, sout)
84 ctÐ ASSEMBLETEST(prefix, suffix1, suffix2)
85 for each iter from 1 to N-iter do
86 exceptionÐ EXECUTE(ct)
87 if exception ‰ ∅^ exception R ALLPOSSIBLELINEARIZATIONS(ct) then
88 return ct /* thread-safety violation (exception type) */

89 return ∅

targets M of the CUT, (vi) the access AS(m) and lock LS(m) summaries of each public method
m in the CUT, computed by Algorithm 1. Algorithm 3 terminates when it detects a thread-safety
violation of exception type or the time-budget expires. If DEPCON` detects a thread-safety violation,
it returns the concurrent test ct that manifests it. Such a test is an important starting point to debug
the concurrency issue.

While COVCON considers all possible pairs M as coverage targets, Algorithm 3 considers
only those pairs Mpc ĎM that have parallel and conflict dependencies. Starting from an empty
Mpc, Algorithm 3 adds in Mpc all the pairs xm1,m2y PM such that m1 éP m2 and m1 éC m2

(lines 73-75 in Algorithm 3). DEPCON` computes the parallel and conflict dependencies relying on
the computed method summaries according to Definition 8 and Definition 7, respectively.

Until the time-budget expires, DEPCON` generates concurrent tests and it explores their
interleaving spaces to check if one of the explored interleavings leads to a thread-safety violation.
Function GETNEXTMETHODPAIR (line 77) selects the next pair according to COVCON approach that
prioritizes pairs based on the frequency of their concurrent executions, to focus the test generation on
infrequently or not at all covered pairs [8].

Given a method pair xm1,m2y PMpc, Algorithm 3 generates two concurrent tests with
two different prefixes. The first prefix is composed of a randomly chosen constructor
(GETRANDOMCONSTRUCTOR, line 79). The second prefix contains additional method calls after the
constructor (GETSTATECHANGER, line 81). The rationale is that some concurrency faults can only
be triggered on a freshly instantiated instance, whereas other faults require bringing the instance into
a fault-exposing state by invoking a sequence of method calls [3, 8, 9].

Function GETRANDOMCONSTRUCTOR returns the shared object under test (sout) and
the method call sequence that instantiates it (prefix). The function randomly selects one
of the possible CUT constructors, and randomly generates primitive or non-primitive
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parameters, if needed. For instance, the concurrent test of Figure 2 uses construc-
tor BufferedInputStream(StringBufferedInputStream). Function GETRANDOMCON-
STRUCTOR randomly generates var0 of type StringBufferedInputStream, the object that the
constructors use as an input.

Function APPENDSTATECHANGER appends at the end of prefix a sequence of method calls that
use sout as a method parameter. The number of such method calls is chosen randomly between 1 and
Max-len. With these additional method calls, DEPCON` explores the possible states of the object
sout, as the (fault triggering) behavior of the suffixes depends on the state of sout after the execution
of the prefix. Function APPENDSTATECHANGER relies on the computed method summaries to avoid
redundant prefixes. It forces at least an additional method call in the prefix to be in conflict (éC) with
either m1 or m2. The rationale is that prefixes that do not modify the values of memory locations
read by m1 or m2 are equivalent to prefixes that only use the constructor. Intuitively, the calls in the
sequential prefix must modify at least a memory location read by the concurrent suffixes to affect
their behavior, for instance with a new execution path. By avoiding generating concurrent tests with
same suffixes but different albeit redundant prefixes, DEPCON` saves precious time-budget.

DEPCON` generates the method call suffix1 that invokes m1, by using as input parameter the
shared object under test instantiated by the prefix (GETSUFFIX(m1) at line 82) [8]. Similarly, it
generates suffix2 with m2 (GETSUFFIX(m2) at line 83).

DEPCON` generates a new concurrent test ct by assembling the obtained method call sequences
(line 84). DEPCON` explores the interleaving space of ct with stress-testing, which repetitively
executes ct N-iter times (line 86). Stress-testing relies on the non-determinism of the JVM scheduler
to explore the interleaving space of a concurrent test ct. The JVM scheduler is likely to induce a
different interleaving every time it executes ct [3, 8]. After every execution, if the test thrown an
uncaught exception, and the same exception does not manifest when executing each linerarizations [3]
of ct (line 87), DEPCON` terminates and reports a thread-safety violation. Otherwise, DEPCON`

iterates generating new concurrent tests until the time-budget expires. It is important to clarify that the
test generation of DEPCON` is decoupled from the interleaving exploration. As such, the interleaving
explorer of DEPCON` could be replaced by any interleaving explorer.

6.2. Generating Concurrent Tests to Expose Thread-Safety Violations of Deadlock Type.

The DEPCON approach, the earlier version of DEPCON` that we presented at ICST in 2019 [17], is
inadequate to expose resource deadlocks in thread-safe classes. The reason is twofold. First, conflict
and parallel dependencies do not capture the deadlock condition. Second, DEPCON generates tests
with exactly one instance of the CUT shared between the concurrent threads, which is inadequate to
reveal most ABBA resource deadlocks.

In this paper, we extend DEPCON with a “deadlock mode” shown in Algorithm 4. The Algorithm
takes in input (i) the class under test CUT, (ii) the time-budget B, (iii) the number of times to
re-execute each test N-iter, (iv) the maximum length of the prefixes Max-len, (v) all coverage targets
M of the CUT, (vi) the double-lock summary DL(m) of each public method m in the CUT, computed
by Algorithm 2. Algorithm 4 generates concurrent tests and explores their interleavings to check
if one of the explored interleavings leads to a deadlock. Algorithm 4 terminates when it detects
a thread-safety violation of deadlock type or the time-budget expires. To reduce the search space
of concurrent tests, the algorithm exploits the new double-lock dependency that we propose in
Section 4.2, and that constitutes an important novel contribution of this paper.

Algorithm 4 starts by building Md ĎM the method pairs that have double-lock dependencies.
That is, xm1,m2y PM such that m1 éD m2 (lines 91-93). DEPCON` computes the double-lock
dependencies relying on the double-lock summary returned by Algorithm 2 (see Section 4.2).
Intuitively, to increase the effectiveness of concurrent test generation, DEPCON` generates concurrent
tests considering only the pairs in Md as suffixes for the tests. Moreover, Algorithm 4 carefully
generates concurrent tests with prefixes and suffixes that properly exercise the deadlock condition
captured by the double-lock dependency. In the following we describe Algorithm 4 in detail.
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Algorithm 4: DEPCON-DEADLOCKMODE
input :class under test (CUT)

time-budget (B)
number of times to re-execute each test (N-iter)
the maximum length of the prefixes Max-len
double-lock summary of each public method m in the CUT (DL(m))

output :a concurrent test ct that manifests a thread-safety violation of deadlock type (if any)
90 Md Ð ∅ // init reduced coverage targets
91 for each xm1,m2y PM do
92 if m1 éD m2 then
93 add xm1,m2y to Md

94 while time-budget B is not expired do
95 xm1,m2y Ð GETNEXTMETHODPAIR(Md)
96 for each i from 1 to 2 do
97 xsout1, seq1y Ð GETRANDOMCONSTRUCTOR(CUT)
98 xsout2, seq2y Ð GETRANDOMCONSTRUCTOR(CUT)
99 prefix Ð seq1 Y seq2

100 if i % 2 = 0 then
101 prefix Ð APPENDSTATECHANGERDEADLOCK(sout1,sout2 prefix)
102 suffix1 Ð GETSUFFIXDEADLOCK(m1, sout1, sout2)
103 suffix2 Ð GETSUFFIXDEADLOCK(m2, sout1, sout2)
104 ct Ð ASSEMBLETEST(prefix, suffix1, suffix2)
105 for each iter from 1 to N-iter do
106 deadlockÐ EXECUTE(ct)
107 if deadlock ‰ ∅^ deadlock R ALLPOSSIBLELINEARIZATIONS(ct) then
108 return ct /* thread-safety violation (deadlock type) */

109 return ∅

Given a method pair xm1,m2y PMd (line 95), Algorithm 4 generates two concurrent tests. For
both concurrent tests, it creates the prefix by combining two method call sequences seq1 and seq2

(line 99). Both seq1 and seq2 instantiate a shared object under test of type CUT, by selecting a
random constructor with random input parameters (Function GETRANDOMCONSTRUCTOR). seq1

instantiates sout1, while seq2 instantiates sout2. For example, DEPCON` generates the concurrent
test in Figure 8 with a prefix containing two method calls that create two objects of type CUT:
Hashtable sout1 = new Hashtable() and Hashtable sout2 = new Hashtable() .

This is a major difference with the “exception mode” of DEPCON`. In line with most concurrent
test generators [10], the “exception mode” reduces the search space of possible concurrent tests by
generating tests with exactly one instance of the CUT (sout) shared among threads. This assumption
is reasonable for exposing thread-safety violations of exception type [17]. In fact, generating suffixes
that concurrently access a single object promotes shared-memory contentions among the concurrent
threads, while accessing different objects reduces such a contention (different objects point to different
memory locations). However, sharing different objects among concurrent threads is often necessary
to expose resource deadlocks. Indeed, shared object instances are often used as locks, and we need
at least two distinct locks to expose resource deadlocks [19]. For instance, the failure-inducing
concurrent test in Figure 4 needs two thread-shared objects of type CUT (sout1 and sout2) to
expose the resource deadlock. Figures 8 and 7 show two additional examples of DEPCON` generated
concurrent tests that manifest thread-safety violations of deadlock type. They also require that the
suffixes concurrently access two objects under test.

Similarly to the “exception mode”, Algorithm 4 generates two concurrent tests for a given method
pair. The first test uses the prefix as it is, without adding any additional method call after the two
constructor calls, for instance, the prefix of the concurrent test in Figure 7. The second test adds
additional method calls to the prefix to change the states of sout1 and sout2. For instance, the prefix
of the concurrent test in Figure 8. Function APPENDSTATECHANGERDEADLOCK appends to the
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sout1.append(sout2); sout2.append(sout1);
Thread	1 Thread	2

suffix	1	:

prefix	:				StringBuffer sout1	=	new	StringBuffer(0);
StringBuffer sout2	=	new	StringBuffer(0);

thread-safety	violation	(deadlock)
:	suffix	2

Figure 7. Example of concurrent test that manifests a deadlock in StringBuffer.

sout1.hashCode(); sout2.hashCode();
Thread	1 Thread	2

suffix	1	:

prefix	:			Hashtable sout1	=	new	Hashtable();
Hashtable sout2	=	new	Hashtable();
Object	var0	=	sout1.put(sout2,"C,W");
Object	var1	=	sout2.put(sout1,"");

thread-safety	violation	(deadlock)
:	suffix	2

Figure 8. Example of concurrent test that manifest a deadlock in HashTable

end of prefix a certain number of method calls that use either sout1 and sout2 (or both) as a method
parameter. The function chooses this number randomly within the 1, Max-len interval. Function
APPENDSTATECHANGERDEADLOCK is carefully designed to favor method call sequences that
increase the chance of creating the circumstances for deadlocks, as prescribed by the double-lock
dependency (éD). More specifically, the function is biased to use method calls that use both sout1
and sout2 as method parameters. For instance, it selects the method put(java.lang.Object,
java.lang.Object) for the prefix in Figure 8 with both sout1 and sout2 as parameters:
sout1.put(sout2,"a"). Both sout1 and sout2 are objects of type Hashtable, thus sout1 can
be the receiver of method put(java.lang.Object, java.lang.Object) and sout2 can
be an input parameters because java.lang.Object is a superclass of Hashtable. Function
APPENDSTATECHANGERDEADLOCK ensures that also the symmetric case is added to the prefix:
sout2.put(sout1,"a"). The rationale of this design choice is that these symmetric method
calls may set both the sout1 reference to the fields in sout2 and the sout2 reference to the fields in
sout1. If this happens, concurrently invoking two methods in the concurrent suffixes that access sout1
and sout2 may acquire the same locks in opposite order, thus triggering a deadlock. This is because
the methods that are used in the suffixes manifest double-lock dependencies.

For instance, consider the deadlock revealing concurrent test in Figure 8. suffix1 invokes the
method hashcode using sout1 as the object receiver. Such an invocation acquires both the
lock associated with sout1 and the lock associated with the key of the hashtable. The call
sout1.put(sout2,"C,W") in the prefix set sout2 as the key of the hashtable sout1. As such,
the invocation sout1.hashCode() of Suffix 1 leads to a nested acquisitions of the locks sout1
and sout2. If another threads concurrently invokes sout2.hashCode(), a deadlock can occur,
because the prefix also sets sout1 as the key of the hashtable sout2 (sout2.put(sout1,"")).
Function GETSUFFIXDEADLOCK is carefully designed to ensure that suffix1 uses sout1 and suffix2
uses sout1 as method parameters.

Line 104 of Algorithm 4 generates a new concurrent test ct by assembling the obtained method
call sequences. Similarly to the “exception mode” , DEPCON` explores the interleaving space of ct
relying on the non-determinism of the JVM scheduler.

To detect if one of the explored interleavings triggers a deadlock, DEPCON` executes in parallel a
runtime deadlock monitor. At constant intervals the monitor checks if any of the executing threads
is deadlocked by invoking the java.lang.ManagementFactory class, which represents the
management interface of the JVM. If java.lang.ManagementFactory detects than one or
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more threads are deadlocked, DEPCON` kills the deadlocked threads and reports a thread-safety
violation if the same deadlock does not manifest when executing each linerarizations of ct. Otherwise,
DEPCON` iterates generating new concurrent tests until the time-budget expires.

6.3. Limitations of DEPCON`

This section discusses the limitations of DEPCON` and the assumptions it makes on the target
programs.

Target concurrency faults As discussed in Section 2.5 and 2.6, DEPCON` targets those
concurrency faults in thread-safe classes that manifest uncaught exceptions or endless hangs.
Moreover, DEPCON` targets one common type of endless hang fault: ABBA resource deadlock.
This deadlock manifests when there are exactly two threads that trigger a cyclic deadlock involving
exactly two locks.

Synchronization mechanisms Our static analysis can only handle Java programs that use
synchronized methods and blocks as synchronization mechanisms. Examples of alternative Java
synchronization mechanisms are CompareAndSwap (often used by the JAVA classes in the package
java.util.concurrent.locks) and wait/notify synchronization. Differently from synchronized
methods and blocks, both of these alternative mechanisms do not generate monitor instructions and
allow that multiple lock acquisitions can be paired with multiple lock releases depending on control
flows.

Static analysis limitations The preprocessing phase of DEPCON` inherits the fundamental
limitations of static analysis for object-oriented programs. DEPCON` cannot guarantee sound and
precise results in the presence of Java reflection, dynamic binding and dynamic dispatch. For example,
in the presence of polymorphic methods, dynamic dispatch selects at runtime which implementation
of the polymorphic method to call. Because super class variables can reference sub class objects,
static analysis cannot know which concrete method will be executed. In fact, whether a variable is a
super class or sub class object might depend on the calling context of the client code (concurrent
test in our case), and thus it can only be known at runtime. DEPCON` conservatively considers the
method implementation of the super class, and this might lead to unsound and imprecise results.

Path-insensitive analysis The alias analysis of DEPCON` performs a path-insensitive backward
analysis on the JVM stack. The analysis might lead to unsound and imprecise results when it
encounters branch conditions. For example, if two branches contain an assignment to the same
variable, DEPCON` path-insensitivity will consider only the last assignment that it encounters. This
might lead to unsound and imprecise aliases. However, alias analysis remains undecidable for Java
programs [67] and DEPCON` cannot guarantee to compute precise alias information even with a
path sensitive alias analysis.

Test generation assumptions The exception mode of DEPCON` generates concurrent tests
that (i) have exactly two concurrent threads, (ii) do not directly invoke static methods in the
concurrent suffixes, and (iii) have exactly one thread-shared object under test. The deadlock mode of
DEPCON` maintains the first two assumptions, while it only generates concurrent tests with one
or two thread-shared objects under test. These assumptions help DEPCON` to reduce the search
space of possible concurrent tests, while detecting the most common types of concurrency faults. In
fact, the concurrency bug characteristic study of Lu et al. shows that most concurrency faults can be
detected under these three assumptions [28].

Copyright © 2021 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2021)

Prepared using stvrauth.cls DOI: 10.1002/stvr



28 TERRAGNI AND PEZZÈ

Table I. Subjects description

ID Code Base Version Package Class Name LOC # Methods # Public Fault
Methods Type

C1 Apache Math 2.4 org.apache.commons.lang.math IntRange 276 48 26 Atomicity
C2 1.4 org.apache.commons.dbcp.datasources PerUserPoolDataSource 719 84 66 Data race
C3

Apache DBCP
1.4 org.apache.commons.dbcp.datasources SharedPoolDataSource 546 68 52 Atomicity

C4 HSQLDB 2.3.3 org.hsqldb.lib DoubleIntIndex 966 55 34 Atomicity
C5 1.1 java.io BufferedInputStream 239 34 10 Atomicity
C6

JDK
1.4.2 java.util Vector 786 80 45 Atomicity

C7 1.0.13 org.jfree.data.time Day 267 44 26 Data race
C8 0.9.12 org.jfree.chart.axis NumberAxis 1,662 154 111 Atomicity
C9 1.0.1 org.jfree.chart.axis PeriodAxis 1,975 173 126 Data race
C10 0.98 org.jfree.data.time TimeSeries 359 49 41 Data race
C11 1.0.9 org.jfree.chart.plot XYPlot 3,080 259 218 Data race
C12

JFreeChart

0.9.8 org.jfree.data XYSeries 200 32 25 Data race
C13 1.0 org.apache.log4j FileAppender 369 37 21 Atomicity
C14

Log4J
1.0 org.apache.log4j WriterAppender 317 40 24 Atomicity

C15 XStream 1.4.1 com.thoughtworks.xstream XStream 926 87 66 Data race
C16 1.4.1 java.lang Stringbuffer 1,278 40 33 Deadlock
C17 1.4 java.util Hashtable 1,058 35 19 Deadlock
C18 1.4 java.util Hashtable 1,058 35 19 Deadlock
C19

JDK

1.4.2 java.util SynchronizedMap 79 18 15 Deadlock

7. EVALUATION

We empirically evaluated DEPCON` with a prototype implementation for Java classes. We
implemented Algorithm 1 and 2 by relying on the bytecode manipulation framework ASM [68] to
scan the bytecode instructions of Java methods. We implemented the test generation Algorithm 3
and 4 on top of the publicly available implementation of COVCON [8].

We evaluated the “exception mode” of DEPCON` with 15 thread-safe classes with known thread-
safety violations of exception type. We evaluated the “deadlock mode” of DEPCON` with four
thread-safe classes with known thread-safety violations of deadlock type. In both cases we compared
DEPCON` with COVCON, the state-of-the-art in concurrent test generator [8], which targets thread-
safety violations of both exception and deadlock types.

We address five research questions:

RQ1 Effectiveness (exception mode) Does DEPCON` effectively generate concurrent tests that
expose thread-safety violations of exception type?

RQ2 Comparison (exception mode) Is DEPCON` more effective than state-of-the-art concurrent
test generation in exposing thread-safety violations of exception type?

RQ3 Effectiveness (deadlock mode) Does DEPCON` effectively generate concurrent tests that
expose thread-safety violations of deadlock type?

RQ4 Comparison (deadlock mode) Is DEPCON` more effective than state-of-the-art concurrent
test generation in exposing thread-safety violations of deadlock type?

RQ5 Preprocessing Phase What is the efficiency, completeness and precision of DEPCON`

preprocessing phase?

7.1. Subjects

We selected 19 thread-safe classes with known thread-safety violations that are used in the
evaluation of previous work [3, 8, 10, 27, 46]. Table I shows the details of the faulty classes under test
(CUT). Column “ID” assigns an ID that we use to identify the class in the paper. Column “Code Base”
reports the subject program that contains the faulty class. Column “Version” gives the faulty version
of the code base. Columns “Package” and “Class Name” indicate the package and name of the CUT,
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respectively. Column “LOC” shows the lines of code of the CUT, which range from 79 to 3,080.
Column “# Methods” gives the number of public, protected or private methods of the CUT. Column
“# Public Methods” shows the number of public methods only. We count the number of methods
considering the methods declared in the CUT and the non-abstract public methods inherited from
the superclasses of the CUT (excluding java.lang.Object). Indeed, DEPCON` considers also
inherited public methods when generating concurrent tests. Column “Fault Type” indicates the type
of concurrency fault for each subject: Atomicity violation, Data race and Deadlock. The concurrency
faults in the classes C1 to C15 manifest thread safety violations of exception type, while classes C16
to C19 of ABBA resource deadlock type.

7.2. Evaluation Setup

We ran DEPCON` in exception mode for the classes with ID from C1 to C15, DEPCON` in
deadlock mode for the classes with ID from C16 to C19, and COVCON for all classes. Following
related work [8, 9, 10], we chose a time-budget of one hour per class (B “ 1 hr). Each run terminates
when the technique either successfully exposes the thread-safety violation or exhausts the time-
budget. Both DEPCON` and COVCON rely on the non-determinism of the default JVM scheduler
to explore the interleaving space. The original implementation of COVCON uses one iteration for
the interleaving explorer (N-iter “ 1 ), which we found not adequate to expose the failure-inducing
interleaving in many cases. The choice of the number of iterations is important: too few iterations may
miss a fault-revealing interleaving even if the concurrent test can exhibit one, while too many waste
testing resources. For both DEPCON` and COVCON we used one hundred iterations (N-iter “ 100),
which is a good trade-off between effectiveness and cost. We set the maximum length of the prefixes
at ten (Max-len “ 10). We cope with the randomness of the tools, by repeating each experiment five
times with different random seeds. To guarantee repeatability of the generated tests, we used the
random seeds from 1 to 5, as both COVCON and DEPCON` generate tests pseudo-deterministically
given a random seed. We executed our experiment on a server Ubuntu 16.04.2 with 64 octa-core
CPUs Intel® Xeon® E5-4650L @ 2.60GHz and „529 GB of RAM

Several of our subjects are shared with the ones used in the evaluation of COVCON [8]. However,
we expect similar (but not identical) results, because we used a different N-iter value, different random
seeds, and different hardware. Also, both COVCON and DEPCON` rely on the JVM scheduler to
explore the interleaving space, which behavior is intrinsically non-deterministic.

We measure the effectiveness of DEPCON` and COVCON with the following three metrics:

Success Rate (SR): 1 if the technique detects a thread-safety violation within the time-budget B, 0
otherwise.

Fault Detection Time (FDT): time taken by the technique to expose the thread-safety violation, B
if the time-budget expires.

# Generated Tests (#GT): number of generated concurrent tests when B expires or when the
technique exposes a thread-safety violation.

7.3. RQ1 Effectiveness (Exception Mode)

Columns “DEPCON` (RQ1)” of Table II show the results of RQ1. DEPCON` has 100% Success
Rate (SR) for seven subjects: C1, C3, C5, C7, C9, C10 and C12 (Column “DEPCON` (RQ1) –
Success Rate”). This means that DEPCON` exposed the thread-safety violations in all five runs
for these subjects. The average DEPCON` SR is 68%. DEPCON` SR is always greater than 0%,
meaning that DEPCON` successfully exposed the thread-safety violations in at least one run for all
the subjects. This result empirically confirms the validity of Theorem I: pruning the search space via
parallel and conflict dependencies does not prevent the generation of failure-inducing tests.
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Table II. Evaluation Results of Exception Mode

DEPCON` (RQ1) COVCON [8] Comparison (RQ2)
Mpc Success Avg. FDT Avg. M Success Avg. FDT Avg. Mpc SR FDT #GT

ID size Rate (hh:mm:ss) #GT size Rate (hh:mm:ss) #GT reduction improv. speedup reduction

C1 21 100% 00:01:21 188 351 40% 00:36:15 6,660 16.71ˆ +60% 26.72ˆ 35.35ˆ
C2 66 40% 00:43:57 2,810 2,211 40% 00:52:36 9,055 33.50ˆ - 1.20ˆ 3.22ˆ
C3 52 100% 00:11:51 1,221 1,378 20% 00:56:00 8,947 26.50ˆ +80% 4.73ˆ 7.33ˆ
C4 297 60% 00:34:13 2,617 595 100% 00:10:38 1,055 2.00ˆ -40% 0.31ˆ 0.40ˆ
C5 22 100% 00:00:07 18 55 100% 00:00:34 161 2.50ˆ - 5.21ˆ 8.77ˆ
C6 51 20% 00:51:11 1,174 1,035 20% 00:54:52 5,010 20.29ˆ - 1.07ˆ 4.27ˆ
C7 70 100% 00:01:24 255 351 100% 00:03:03 640 5.01ˆ - 2.17ˆ 2.51ˆ
C8 292 40% 00:39:50 5,860 6,216 0% 01:00:00 12,368 21.29ˆ +40% 1.51ˆ 2.11ˆ
C9 278 100% 00:03:15 438 8,001 100% 00:09:52 1,720 28.78ˆ - 3.04ˆ 3.93ˆ
C10 296 100% 00:02:19 370 861 100% 00:15:56 2,895 2.91ˆ - 6.88ˆ 7.82ˆ
C11 844 40% 00:43:54 4,113 23,871 20% 00:57:56 4,320 28.28ˆ +20% 1.32ˆ 1.05ˆ
C12 114 100% 00:00:33 116 325 100% 00:07:47 1,842 2.85ˆ - 14.05ˆ 15.88ˆ
C13 53 20% 00:48:18 2,622 231 0% 01:00:00 16,264 4.36ˆ +20% 1.24ˆ 6.20ˆ
C14 37 20% 00:48:06 2,609 300 0% 01:00:00 15,911 8.11ˆ +20% 1.25ˆ 6.10ˆ
C15 427 80% 00:11:44 222 2,211 80% 00:26:54 568 5.18ˆ - 2.29ˆ 2.56ˆ

Avg. 195 68% 00:22:48 1,642 3,199 55% 00:34:10 5,828 13.89ˆ +13% 4.87ˆ 7.1ˆ

The Average Failure Detection Time (FDT) of DEPCON` ranges between 7 seconds for C5
to 51 minutes and 11 seconds for C6, with an average of 22 minutes and 48 seconds (Column
“DEPCON` (RQ1) – Avg. FDT”). Note that, FDT includes the execution time of all phases of
DEPCON`: the computation of the method summaries and of the parallel and conflict dependencies,
the generation of concurrent tests, and the interleaving exploration.

DEPCON` generates an average number of concurrent tests that ranges from 18 tests for C5 to
5,860 tests for C8, with an average of 1,642 tests (Column “DEPCON` (RQ1) – Avg. #GT”). This
indicates that DEPCON` explores relatively few concurrent tests before exposing the thread-safety
violations.

7.4. RQ2 Comparison (Exception Mode)

Columns “COVCON [11]” of Table II show the results of COVCON, and columns
“Comparison (RQ2)” compare DEPCON` and COVCON, thus addressing RQ2.

COVCON has 100% Success Rate (SR) for six subjects: C4, C5, C7, C9, C10 and C12. COVCON
fails to expose the thread-safety violations in all runs for three subjects: C8, C13 and C14. The
COVCON average SR is 55%, which is lower than the one of DEPCON` (68%). Column “Comparion
(RQ2) – SR improv.” shows the improvement in success rate of DEPCON` over COVCON. DEPCON`

has a higher success rate than COVCON for 6 out of the 15 subjects. Only for C4, DEPCON` has
a lower success rate than COVCON. Our manual investigation of the generated tests suggests that
the faulty interleaving for Subject C4 has a low chance of manifestation. As such, the interleaving
explorer was not able to expose the faulty interleaving for many generated tests, even if those tests
could manifest the faulty interleaving. More sophisticated interleaving explorers might overcome
this issue [8].

The average Failure Detection Time (FDT) of COVCON ranges between 3 minutes and 33 seconds
for C7 and 1 hour for the three subjects in which COVCON fails to expose the thread-safety violation
before the time-budget expires. The average COVCON FDT across all subjects is 34 minutes and
10 seconds, which is higher than the one of DEPCON` (22 minutes and 48 seconds). Column
“Comparison (RQ2) – FDT speedup” in Table II indicates the speedup of “Avg. FDT” of DEPCON`

over COVCON. The speedup ranges from 0.31ˆ for Subject C4 to 26.72ˆ for C1 (4.87ˆ on average).
DEPCON` exposes the thread-safety violations faster than COVCON for all subjects but C4.

The average number of Generated Tests (#GT) of COVCON ranges from 161 concurrent tests for
Subject C5 and 16,264 for C13 (5,824 on average). Column “Comparison (RQ2) – #GT reduction”
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Table III. Evaluation Results of deadlock mode

DEPCON` (RQ3) COVCON [8] Comparison (RQ4)
Md Success Avg. FDT Avg. M Success Avg. FDT Avg. Md SR FDT #GT

ID size Rate (hh:mm:ss) #GT size Rate (hh:mm:ss) #GT reduction improv. speedup reduction

C16 1 100% 00:00:18 22 561 0% 01:00:00 5,792 561.00ˆ +100% 200.00ˆ 263.27ˆ
C17 3 100% 00:00:04 11 190 0% 01:00:00 2,370 63.33ˆ +100% 900.00ˆ 215.45ˆ
C18 3 100% 00:00:34 45 190 0% 01:00:00 4,625 63.33ˆ +100% 105.88ˆ 102.77ˆ
C19 15 100% 00:00:05 34 120 0% 01:00:00 37,827 8ˆ +100% 720.00ˆ 1,112.56ˆ

Avg. 5 100% 00:00:15 28 265 0% 01:00:00 12,653 173.91ˆ +100% 481.47ˆ 423.51ˆ

of Table II quantifies the average reduction of the DEPCON` test suites over the COVCON ones. The
smaller sizes of DEPCON` test suites over COVCON test suites explain the speedup of DEPCON`

over COVCON. Column “Comparison (RQ2) – #GT reduction indicates that DEPCON` generated
and explored the interleaving space of 7.1ˆ less tests than COVCON before exposing the thread-safety
violations. This result demonstrates the effectiveness of DEPCON` to reduce the search space and to
drive the test generation towards failure-inducing concurrent tests.

7.5. RQ3 Effectiveness (Deadlock Mode)

Columns “DEPCON` (RQ3)” of Table III show the results of RQ3. The Success Rate (SR) of
DEPCON` is 100% for all the deadlock subjects, meaning that DEPCON` exposes the deadlock
in all five runs for each subject. This result empirically confirms that Theorem 2 is empirically
sound: pruning the search space via double-lock dependencies does not prevent the generation of
failure-inducing tests. Figures 7, 4 and 8 show the concurrent tests that DEPCON` generates to
expose the thread-safety violation for C16, C17 and C18, respectively.

Column “DEPCON` (RQ3) – Avg. FDT” gives the average Failure Detection Time (FDT) of
DEPCON`, which ranges from 4 seconds for C17 to 34 seconds for C18 (15 seconds on average).

Column “DEPCON` (RQ3) – Avg. #GT” shows the average number of generated tests (#GT) of
DEPCON`, which ranges from 11 concurrent tests for Subject C17 to 45 for C18 (28 on average).
This indicates that DEPCON` explores just a few concurrent tests before generating a test that
exposes the deadlock.

The effectiveness of DEPCON` is explained by Column “DEPCON` (RQ3) – Md size”, which
indicates the number of method pairs with double-lock dependencies. Because there are only a few
of such method pairs, DEPCON` explores a small portion of the search space that contain only
those tests that invoke such method pairs in the concurrent suffixes. Due to Theorem 2, DEPCON`

guarantees that if a class can manifest a thread-safety violation of ABBA resource deadlock type, only
that small portion of the search space contains tests that can expose the deadlock. Moreover, all of
these four concurrency faults require symmetric calls in the suffixes and/or prefixes, and DEPCON`

is designed to favor such method calls.
Interestingly, the exception mode of DEPCON` (DEPCON [17]) does not detect the deadlock in

any of the subjects C16-C19. This is because the method pairs that lead to the deadlock do not have
both parallel and conflict dependencies. This confirms the complementarity of the exception and
deadlock modes of DEPCON`.

7.6. RQ4 Comparison (Deadlock Mode)

Columns “COVCON [11]” and “Comparison (RQ4)” of Table III show the results of COVCON
and a summary comparison of DEPCON` and COVCON, respectively.

The Success Rate (SR) of COVCON is 0% for all four deadlock subjects (Column “COVCON [11] –
Success Rate”), and thus the average Failure Detection Time (FDT) of COVCON is the time budget B
of one hour (Column “COVCON [11] – Avg. FDT”). The average number of Generated Tests (#GT)
of COVCON ranges from 2,370 concurrent tests for C17 to 37,827 for C19 (12,653 on average). Even
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Table IV. Evaluation results of the preprocessing phase

ID # public M Mpc YMd Mpc Md AVG
methods size size reduction size reduction size reduction time (ms)

C1 26 351 21 94% 21 94% 0 100% 1,601
C2 66 2,211 66 97% 66 97% 0 100% 1,898
C3 52 1,378 52 96% 52 96% 0 100% 1,800
C4 34 595 297 50% 297 50% 0 100% 2,119
C5 10 55 24 56% 22 60% 2 96% 1,553
C6 45 1,035 51 95% 51 95% 0 100% 2,040
C7 26 351 70 80% 70 80% 0 100% 2,187
C8 111 6,216 292 95% 292 95% 0 100% 1,892
C9 126 8,001 278 97% 278 97% 0 100% 1,978
C10 41 861 296 66% 296 66% 0 100% 2,022
C11 218 23,871 844 96% 844 96% 0 100% 2,819
C12 25 325 114 65% 114 65% 0 100% 1,932
C13 21 231 54 77% 53 77% 1 100% 1,563
C14 24 300 38 87% 37 88% 1 100% 1,582
C15 66 2,211 427 81% 427 81% 0 100% 4,711
C16 33 561 57 90% 56 90% 1 100% 1,618
C17 19 190 11 94% 8 96% 3 98% 1,599
C18 19 190 10 95% 7 96% 3 98% 1,611
C19 15 120 33 72% 18 85% 15 87% 2,101

AVG 51 2,582 160 83% 158 84% 1 99% 2,033

after generating such a high number of tests, COVCON did not expose the deadlocks. This suggests
that COVCON generated and explored the interleaving space of many irrelevant tests. Conversely,
DEPCON` reduces the search space of possible concurrent tests and to drive test generation towards
those tests that might trigger deadlocks.

Indeed, DEPCON` drastically reduces the number of coverage targets (method pairs) with respect
to COVCON, which does not perform any search space pruning. Column “Comparison (RQ4) – Md

reduction” gives the reduction of the coverage targets, which ranges from 8ˆ for C19 to 561ˆ for C16.
Column “Comparison (RQ4) – FDT speedup” gives the speedup of “Avg. FDT” of DEPCON` over
COVCON. The speedup ranges from 105.88ˆ for C18 to 900.00ˆ for C17. Column “Comparison
(RQ4) – #GT reduction indicates that, on average, DEPCON` generated and explored the interleaving
space of 423.51ˆ less tests than COVCON before exposing the deadlocks. This result demonstrates
the effectiveness of DEPCON` to reduce the search space and to drive the test generation towards
those concurrent tests that manifest ABBA resource deadlocks.

7.7. RQ5 Preprocessing Phase

Table IV shows the results of the preprocessing phase for each of the 19 subjects. Column “#
public methods” shows the number of public methods of the subjects. Column “M size” indicates the
number of all possible pairs of public methods (the coverage requirements of COVCON [8]). Column
“Mpc YMd” shows the number of method pairs that are either in Mpc or in Md (or both), and the
reduction with respect to M. The reduction ranges from 50% to 97% (83% on average). Column
“Mpc” gives the number of method pairs that have both conflict and parallel dependencies (pairs that
belong to Mpc), and the reduction with respect to M. The reduction ranges from 65% to 97% (84%
on average). Column “Md” reports the number of method pairs that have double-lock dependencies
(pairs that belong to Md), and the reduction with respect to M. The reduction ranges from 87% to
100% (99% on average).

The effectiveness and efficiency of DEPCON` depend on the preprocessing phase that shall be:
(i) complete, that is, it identifies all parallel and conflict dependencies; (ii) mostly precise, that is, it
identifies as few as possible spurious parallel and conflict dependencies; (iii) efficient, that is, it has a
low computational cost. Completeness of the preprocessing phase guarantees that the search space
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pruning of DEPCON` does not miss tests that manifest thread-safety violations. Precision of the
preprocessing phase ensures that DEPCON` explores a relatively small number of concurrent tests to
identify the failure-inducing ones, if they exist. Efficiency of the preprocessing phase is essential as
a high computational cost would out-weight the reduction in test effort. Indeed, the preprocessing
phase is an additional step to the test generation pipeline that should have a negligible cost.

Efficiency Column “AVG time (ms)” of Table IV shows the computation cost in milliseconds of the
preprocessing phase (Algorithm 1 and 2), which ranges from 1,533 ms for Subject C5 to 4,711 ms
for C15 (2,033 ms on average). We report the average time of five runs of DEPCON`. It includes the
time for computing all three method summaries: access, lock and double-lock, and it includes the
computation time of the three method dependencies. This result demonstrates the efficiency of our
proposed static computation of method summaries. To put it in perspective, the average computation
time of the preprocessing step across all subjects is around 2 seconds, while the average Failure
Detection Time (FDT) of DEPCON` exception mode is 22 minutes and 44 seconds, while the average
FDT of DEPCON` deadlock mode is 15 seconds.

Evaluating the precision and completeness of the preprocessing phase is difficult because the
ground truth of the method dependencies cannot be easily obtained. However, we can evaluate them
indirectly.

Completeness Because DEPCON` exposes the thread-safety violations in at least one run for
each of the 19 subjects, the preprocessing phase is complete. That is, the search space pruning of
DEPCON` did not prevent the detection of the thread-safety violations. Therefore, for the 19 subjects
considered, DEPCON` correctly computes the parallel, conflict and double-lock dependencies of the
failure-inducing method pairs.

Precision Table IV shows that DEPCON` drastically reduces the number of coverage targets.
Therefore, the precision of the preprocessing phase is good enough to make the computed parallel
and conflict dependencies useful. It is important to clarify that DEPCON` could hardly achieve a
perfect precision due to the intrinsic imprecision and over-approximation of static analysis. DEPCON`

consciously makes conservative choices when computing the method summaries in Algorithm 1
and 2 to avoid missing any parallel, conflict or double-lock dependencies.

The reader should notice that, according to Theorem 1 and 2, the presence of the method
dependencies is only a necessary condition (but not sufficient) to expose thread-safety violations.
For instance, although the subjects from C1 to C15 manifests thread-safety violations as uncaught
exceptions, subjects C5, C13 and C14 have method pairs with double-lock dependencies. However,
subjects C5, C13 and C14 do not manifest deadlocks. Similarly, also the subjects C16, C17, C18 and
C19 have method pairs with parallel and conflict dependencies without manifesting thread-safety
violations of exception type.

7.8. Threats To Validity

A major threat to external validity is whether our results generalize to other subjects. We mitigated
this threat by including subjects of seven popular code bases that were used in the evaluation of
related work. All the concurrency faults considered in our experiments are known thread-safety
issues in previous versions of the considered thread-safe classes.

A threat to internal validity is whether there were implementation errors in our prototype that
affected the results. We mitigated this threat by testing the most important parts of our implementation.
In addition, we manually validate all reported thread-safety violations of DEPCON` to make sure
that the result was correct: the reported concurrent test indeed exposes a thread-safety violation.
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8. RELATED WORK

In their recent survey of testing concurrent systems [7], Bianchi et al. distinguish two
complementary sets of techniques: interleaving explorers and test generators. Interleaving explores
navigate the interleaving space of a concurrent test to expose concurrency failures [6, 19, 24, 37,
38, 39, 69, 70]. The fault detection capability of these techniques depends on the capability of the
test to trigger faulty interleavings. In other words, interleaving exploration techniques cannot detect
concurrency faults if the input tests cannot induce failure-inducing interleavings. To address such
critical limitation, researchers proposed test generators for concurrent programs [3, 8, 9, 27, 71]
that automatically generate concurrent tests that can be used as inputs for interleaving explorers.
DEPCON` belongs to this latter group of techniques.

We discuss the related work of DEPCON`: test generators for concurrent programs (Section 8.1),
test generators for thread-safe classes (which are closely related to DEPCON`, Section 8.2),
approaches to reduce the search space during concurrent test generation (Section 8.3), and various
static analyses for concurrent object-oriented programs (Section 8.4).

8.1. Test Generators for Concurrent Programs

Dynamic (concolic) Symbolic Execution (DSE) executes a program to automatically generate
input values to improve code coverage and expose software faults. Researchers have proposed various
DSE techniques for concurrent programs [71, 72, 73, 74]. However, DSE alone cannot generate OO
tests [35, 75]. A OO test for a given method is no longer a set of input values but a sequence of
method calls [76]. This is because the behavior of a method invocation often depends on the states
of its non-primitive parameters, e.g., the object receiver [75]. To ensure valid program states, most
test generators for OO classes explore the space of possible object states by generating method call
sequences that exercise the program under test through its public interface [35, 75]. Such sequences
instantiate non-primitive parameters and bring them to certain (fault-revealing) states [35, 75].

8.2. Test generators for Thread-Safe classes

When dealing with thread-safe classes a concurrent test is a set of method call sequences that
exercise from multiple threads the public interface of a thread-safe class under test [3]. Concurrent test
generators for thread-safe classes can be divided in random-based, coverage-based and sequential-
test-based techniques [10]. We refer interested readers to our recent survey on the effectiveness and
challenges of concurrent test generators for thread-safe classes [10].

Random-based techniques [3, 12] generate concurrent tests by combining randomly generated
method call sequences with random input parameters. Random-based techniques can efficiently
generate concurrent tests because they do not require complex analysis. They can generate thousands
of concurrent tests in a few seconds. Random-based techniques has been shown to be less effective
in revealing hard-to-find concurrency faults, because randomly generated tests tend to repetitively
test similar program behaviors [8, 9, 10]. We need to randomly generate thousands or even millions
of concurrent tests to effectively detect hard-to-find faults, due to the low probability of randomly
generating a failure-inducing test [3]. For example, CONTEGE [3] requires more than a million
tests to expose a single concurrency fault [3]. This is an issue, because of the high computational
cost of exploring the interleaving space of all generated tests. In practice, we can explore only the
interleaving space of few tests within an affordable time budget [8, 9, 12].

Coverage-based techniques address the limitations of random-based techniques by driving the
generation of concurrent tests with interleaving coverage criteria [8, 9, 11]. These techniques identify
and prune concurrent tests that lead to redundant behaviors (thread interleavings) to steer test
generation towards new program behaviors, thus avoiding the high cost of exploring the interleaving
spaces of redundant tests. DEPCON` belongs to this category as it relies on concurrent method
pairs [8, 66] as coverage targets.
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Sequential-test-based techniques [27, 77, 78, 79] apply the same overall approach to different
kinds of concurrency faults: deadlocks [77], data races [27], atomicity violations [78], and assertion
violations [79]. They analyze concurrent programs starting from a suite of sequential (single-threaded)
tests, which can be either manually-written or generated by existing sequential test generators [35,75].
They analyze the execution traces obtained by executing the initial test suites sequentially, to identify
concurrency faults that may occur when combining multiple sequential tests into concurrent tests.
The effectiveness of sequential-test-based techniques depends on the initial set of sequential tests.
The hypothesis that sequential tests executed concurrently are always adequate to expose concurrency
faults is not always valid. Sequential tests do not refer to the concurrency structure: manually written
sequential tests are designed without considering concurrency issues, while automatically generated
sequential tests are produced referring to sequential-based coverage criteria, for example, branch
coverage [75].

None of these techniques perform dependency analysis among methods to reduce the search space
during test generation. As discussed in our recent empirical study [10], the huge number of possible
concurrent tests hinders the effectiveness of these techniques. Given a class under test, it often exists a
myriad of possible combinations of method invocations and input parameters. Generating all possible
tests and exploring their interleaving spaces within an affordable time-budget remain infeasible. This
motivated us to present DEPCON` and reduce the search space when generating concurrent tests.
We expect that the effectiveness of all previous generators of concurrent tests would improve if they
include the search space pruning of DEPCON` (see RQ2).

8.3. Reducing the Search Space During Concurrent Test Generation

Schimmel et al. proposed in a workshop paper AUTORT [80] that shares a similar goal with
DEPCON`. AUTORT proposes the use of parallel and conflict analysis to reduce the number of
concurrent tests to be generated. However, the scope and approach of AUTORT and DEPCON` differ
substantially. First, AUTORT delegates to the developers the responsibility to re-run the software
under test with method call sequences that cover all parallel program parts [80]. Instead, DEPCON`

automatically generates such method call sequences. In addition, DEPCON` relies on conflict
dependency analysis to generate meaningful prefixes. Second, differently from DEPCON`, AUTORT
does not do inter-procedural analysis while statically analyzing a method, and thus it would likely
miss conflict dependencies. DEPCON` provides more accurate results that do not miss dependencies
and lead to a better search space reduction. For example, via inter-procedural analysis DEPCON`

checks if transitive method invocations could perform write instructions on shared-memory locations.
Third, AUTORT identifies method pairs that do not run in parallel by dynamically executing them on
an instrumented version of the program. This solution could miss real parallel dependencies if the
methods interleave but AUTORT observes only those executions in which they do not. Conversely,
DEPCON` performs the parallel analysis statically, thus avoiding the cost of generating and running
tests and without suffering from the incompleteness of a dynamic approach. Fourth, AUTORT is
agnostic to deadlock, while in this paper we proposed a novel dependency analysis to identify the
pairs of methods that may lead to deadlock if concurrently executed.

Recently, we presented CONCRASH [46] to generate concurrent tests for reproducing concurrency
failures from crash stack traces. CONCRASH performs search space pruning strategies to steer
the test generation towards concurrency tests that reproduce the given crash stack trace. Two
pruning strategies of CONCRASH, PS-Interleave and PS-Interfere share similarities with
the parallel and conflict dependencies analysis of DEPCON`, respectively. However, to apply the
pruning strategies, CONCRASH requires dynamic information obtained by generating and executing
concurrent tests. Conversely, DEPCON` performs conflict and parallel dependency analyses prior to
test generation, and thus it avoids the cost of generating and executing those concurrent tests that the
two pruning strategies will prune away. Nevertheless, the effectiveness of CONCRASH is expected to
improve if the static analysis of DEPCON` is added in the pipeline of CONCRASH.
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8.4. Static Analyses for OO Concurrent Programs

DEPCON` builds on top of traditional static analyses for concurrent object-oriented programs, such
as object purity [63, 64], alias [81, 82], may-happen-in-parallel [53, 54, 55, 56], and conflict [51, 83]
analyses. Researchers proposed such analyses to resolve problems that are more general than the one
considered in this paper. DEPCON` adapts and combines them in a novel way to resolve the specific
problem of reducing the search space during concurrent test generation for thread-safe classes. For
instance, may-happen-in-parallel analysis is defined at the granularity of statements [55, 56], while
we define the parallel analysis of DEPCON` at the granularity of methods. As another example,
differently from the traditional purity analysis (also called side-effect analysis) [63, 64], DEPCON`

purity analysis focuses solely on the side-effects of those methods that could have shared-memory
locations as method parameters. Moreover, one needs to define static analysis with a specific trade-off
between analysis efficiency and precision of its result [84, 85]. We reasoned about such trade-offs in
the context of the problem we wanted to address, favoring efficiency over precision. Classic static
analysis techniques often favor precision over efficiency, this can hardly cope with the problem
addressed in this paper.

The challenge of how to effectively detect concurrency faults via test input generation applies
to only dynamic analysis techniques, but not static ones [20, 84, 86], which do not take test inputs
into account. However, static techniques encounter their own challenges in terms of scalability and
precision [66], which is partly why most work on concurrency testing has focused on dynamic
techniques [3, 66]. Static analysis techniques for concurrent programs are known to lead to many
spurious faults due to the imprecision and over-approximation of static analysis [3, 9]. DEPCON` is
a dynamic technique that leverages static analysis to make test generation more effective without
dropping the important guarantee of dynamic analysis: reporting only real thread-safety violations.

9. CONCLUSION

In this paper, we presented DEPCON`, a coverage-driven concurrent test generation technique
that relies on statically computed dependencies among methods to effectively expose thread-safety
violations in thread-safe classes. Our insight is that static and dynamic analyses, with their dual
strengths and weaknesses [85,87,88], can work well in synergy to generate concurrent tests. Dynamic
analysis guarantees to report true thread-safety violations [3], while static analysis mitigates the
inherent incompleteness of dynamic analysis by reducing the search space of concurrent tests.

Such search space reduction allows the test generation to focus on relevant areas of the search
space, avoiding wasting time and resources in exploring irrelevant tests. DEPCON` extends our
previous work DEPCON [17] that was limited to thread-safety violations of exception type, by
proposing a combination of novel techniques that can effectively and efficiently address also thread-
safety violations of ABBA resource deadlock type. In this paper, we show the complementarity of
DEPCON` and DEPCON in exposing thread-safety violations of both deadlock and non-deadlock
type. More specifically, the parallel and conflict dependencies of DEPCON do not capture the
deadlock condition, and thus pruning the search space with parallel and conflict dependencies likely
misses deadlock faults. The novel double-lock dependency of DEPCON` presented in this paper
complements the parallel and conflict dependencies by capturing the deadlock condition. The paper
presents the results of an experimental evaluation that show that double-lock dependencies are
effective in identifying the deadlock condition, as only few method pairs manifest such dependencies.
We also present a new way to generate concurrent tests that effectively exercise the interleavings
captured by the double-lock dependency.

There are several opportunities for future work that can further improve DEPCON` effectiveness
and applicability. We highlight the most promising ones.

DEPCON` targets ABBA resource deadlocks only. Targeting communication deadlocks (such as,
wait-notify faults) is an important future work. Indeed, as we discussed in our empirical study [10],
none of the previous test generators for thread-safe classes handles such deadlock faults.
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DEPCON` targets the JAVA synchronization mechanisms of synchronized methods and blocks,
which use monitor instructions. It does not handle other mechanisms, such as CompareAndSwap,
often used by the JAVA classes in the package java.util.concurrent.locks. To improve
the applicability of DEPCON`, we plan to modify DEPCON` to handle more synchronization
mechanisms.
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17. V. Terragni, M. Pezzè, and F. A. Bianchi, “Coverage-driven test generation for thread-safe classes via parallel
and conflict dependencies,” in Proceedings of the International Conference on Software Testing, Verification and
Validation, ser. ICST ’19. IEEE Computer Society, 2019, pp. 264–275.

18. Z. Lin, D. Marinov, H. Zhong, Y. Chen, and J. Zhao, “Jacontebe: A benchmark suite of real-world java concurrency
bugs (t),” in Proceedings of the International Conference on Automated Software Engineering, ser. ASE ’15. IEEE
Computer Society, 2015, pp. 178–189.

19. P. Joshi, M. Naik, K. Sen, and D. Gay, “An effective dynamic analysis for detecting generalized deadlocks,” in
Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software Engineering, ser. FSE ’10.
ACM, 2010, pp. 327–336.

Copyright © 2021 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2021)
Prepared using stvrauth.cls DOI: 10.1002/stvr



38 TERRAGNI AND PEZZÈ
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31. M. Pezzè and C. Zhang, “Automated test oracles: A survey,” in Advances in Computers. Elsevier, 2015, vol. 95, pp.
1–48.

32. “JDK Bug 4728096,” https://bugs.java.com/bugdatabase/view bug.do?bug id=4728096.
33. “JDK Bug 6582568 ,” https://bugs.openjdk.java.net/browse/JDK-6582568.
34. M. Singhal, “Deadlock detection in distributed systems,” Computer, vol. 22, no. 11, pp. 37–48, 1989.
35. C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed random test generation,” in Proceedings of

the International Conference on Software Engineering, ser. ICSE ’07. ACM, 2007, pp. 75–84.
36. G. Fraser and A. Arcuri, “Evosuite: On the challenges of test case generation in the real world,” in Proceedings of

the International Conference on Software Testing, Verification and Validation, ser. ICST ’13. IEEE Computer
Society, 2013, pp. 362–369.

37. V. Terragni, S.-C. Cheung, and C. Zhang, “Recontest: Effective regression testing of concurrent programs,” in
Proceedings of the International Conference on Software Engineering, ser. ICSE ’15. IEEE Computer Society,
2015, pp. 246–256.

38. Z. Lai, S. C. Cheung, and W. K. Chan, “Detecting atomic-set serializability violations in multithreaded programs
through active randomized testing,” in Proceedings of the International Conference on Software Engineering, ser.
ICSE ’10. ACM, 2010, pp. 235–244.

39. J. Huang and C. Zhang, “Persuasive prediction of concurrency access anomalies,” in Proceedings of the International
Symposium on Software Testing and Analysis, ser. ISSTA ’11. ACM, 2011, pp. 144–154.

40. S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold, “Testing concurrent programs to achieve high synchronization
coverage,” in Proceedings of the International Symposium on Software Testing and Analysis, ser. ISSTA ’12. ACM,
2012, pp. 210–220.

41. X. Zhang, Z. Yang, Q. Zheng, P. Liu, J. Chang, Y. Hao, and T. Liu, “Automated testing of definition-use data flow
for multithreaded programs,” in Proceedings of the International Conference on Software Testing, Verification and
Validation, ser. ICST ’17, 2017, pp. 172–183.

42. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson, “Eraser: A dynamic data race detector for
multithreaded programs,” ACM Transactions on Computer Systems, vol. 15, no. 4, pp. 391–411, 1997.

43. S. Hong and M. Kim, “A survey of race bug detection techniques for multithreaded programmes,” Software Testing,
Verification and Reliability, vol. 25, no. 3, pp. 191–217, 2015.

44. J. Huang, P. O. Meredith, and G. Rosu, “Maximal sound predictive race detection with control flow abstraction,”
in Proceedings of the Conference on Programming Language Design and Implementation, ser. PLDI ’14. ACM,
2014, pp. 337–348.

45. C. Flanagan, S. N. Freund, and J. Yi, “Velodrome: A sound and complete dynamic atomicity checker for multithreaded
programs,” in Proceedings of the Conference on Programming Language Design and Implementation, ser. PLDI ’08.
ACM, 2008, pp. 293–303.
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