
Special Issue on Software Engineering Education & Training

Fostering Professionalism in Software
Engineering: An Early-Exposure Approach
Valerio Terragni, University of Auckland, Auckland, New Zealand

Catherine Watson, University of Auckland, Auckland, New Zealand

Nicholas Rowe, University of Auckland, Auckland, New Zealand

Nasser Giacaman, University of Auckland, Auckland, New Zealand

Abstract—A professional software engineer needs excellent communication skills, a
thorough understanding of software licensing and ethics, and the ability to follow
standards in code style and version control. Albeit professionalism is a crucial
aspect of Software Engineering, students are usually exposed to it later in their
academic degree. We advocate for an early-exposure approach. We believe that it
is important to start preparing students for the “culture” of software professionalism
from early on. Our second-year Software Engineering course at the University of
Auckland has been a successful application of such an early-exposure approach. In
this course, we teach the fundamental aspects of software professionalism without
diving into development methodologies, which are taught later in the degree.
Positive student feedback confirms the value of this approach, which prepares
students for long-term success and gives them a competitive edge in their careers.

Index Terms: Software engineering education, Professionalism

Software powers every critical aspect of our so-
ciety, which makes Software Engineering a pro-
fession of crucial relevance. Educators have well-
acknowledged that besides teaching students how to
code, there is the equally-important learning objective
of “professionalism”—something that the industry and
society demands. In fact, less-technical skills such as
communication and group work have recently become
increasingly more important to industry [1]. Profession-
alism refers to the conduct, aims, or qualities that
characterize or mark a profession or a professional
person [2]. In the context of Software Engineering, it
encompasses a set of values, behaviors, and practices
that are essential for success in the industry. This
includes qualities such as communication skills, ethical
behavior, and a commitment to following industry stan-
dards and best practices. These activities go beyond
just writing functional code. Adhering to professional
standards and best practices helps prevent errors in
the code, improves maintainability and readability, and

XXXX-XXX © IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

promotes a culture of continuous improvement and
learning. In addition, being professional can help build
trust with clients and team members—leading to more
successful and productive working relationships.

Software Engineering curricula often have project-
based courses in which students work in teams to
develop a software product from scratch—preferably
involving real clients. These courses are crucial for
preparing students for the industry [1], [3], and tend
to be reserved for more advanced courses at the end
of the degree (e.g., capstone courses). At this stage,
students are better prepared to handle the technical and
practical aspects of an industrial and real-world project.
In such project-based courses, the "professionalism"
aspects of Software Engineering cannot be ignored as
they are fundamental for the successful completion of
the project. Focusing only on the coding aspects will
not prepare students for real industrial contexts and
will likely lead to poor quality software projects, which
might negatively impact the student experience.

Published by the IEEE Computer Society 1



THEME

THE BENEFITS OF AN
EARLY-EXPOSURE APPROACH
We argue that it is potentially “too late” to face profes-
sionalism in Software Engineering in the later stages of
a degree. First, project-based and industry-led courses
have to cover a lot of content, such as software
development processes (e.g., Scrum, DevOps) and
Software Requirements Engineering. Instructors likely
do not have room to adequately cover the professional
aspects of Software Engineering, which will inevitably
be neglected. Second, students can be overwhelmed
by the new experience of working in a team and may
not fully grasp the importance of professionalism in
Software Engineering. Third, professionalism has to
grow—and takes time to do so.

We advocate that Software Engineering students
should face professionalism early on in their careers.
We still believe that professionalism in Software Engi-
neering is better taught with a practical (project-based)
component. While moving “traditional” project-based
courses partnered with industry earlier in the degree
would be challenging (and potentially detrimental), we
argue that it would be beneficial to have a second-year
project-based course where students work in a team to
implement a project from scratch. The course covers
and enforces professionalism, but it is stripped from all
the advanced Software Engineering concepts that only
final-year students are typically able to embrace.

There are three important benefits of this early-
exposure approach.

First, the development of professionalism in Soft-
ware Engineering requires repeated exposure and
practice over time, and may not be fully realized in
just one capstone course. Having additional courses
covering professionalism will be useful to better-face
the final-year capstone projects.

Second, being consciously aware of professional-
ism early on will likely provide students with more
opportunities to embrace, implement, and practice
professionalism in later courses (and internships) that
involve software development or team collaboration.

Third, our early-exposure approach is designed in
a way that gives students the experience of working
in a team and dealing with clients without exposing
students to the theory behind effective software develop-
ment processes, collaboration, and communication with
clients and team members. This “experience” exposes
them to the real challenge of an industrial context [6],
making them more critical when the theory is exposed
to them later. They will be able to better contextualize,
understand, and appreciate what they are being taught.

EARLY-EXPOSURE IN PRACTICE
In realizing the early-exposure approach, we designed a
second-year software engineering course as a stepping-
stone to traditional final-year project courses. Prior to
this course, students only experienced two traditional
programming courses (introduction to programming,
and object-oriented programming)—without any expo-
sure to formal Software Engineering development pro-
cesses and working in teams. Figure 1 summarizes the
timeline of the course in terms of classroom activities,
project work, and assessment. Like other standard
courses at the university, the expected workload is
10-hours per week (four hours attending classes, plus
six hours of work outside class time).

Like a real-world project, there is no exam or test.
There is only one semester-long “project”, broken down
into three deliverables (Alpha, Beta, and Final) with
incremental requirements. The Alpha deliverable is an
individual assignment aimed to help students develop
the confidence to develop in the relevant technologies
before forming teams. For the Beta and Final releases,
students are randomly allocated to groups of three
students (the group formations are the same for both
Beta and Final). The Final release carries the most
weight, and serves as the final product delivery.

Classroom activities are divided into two categories:
frontal classes with occasional group exercises, and
design meetings where the teachers take on the role of
clients and students ask questions to explore potential
design solutions for the project.

At each deliverable, functionality is assessed by
the team’s brief demonstration to the clients. We
automatically assess code style and Git usage using
tools that we developed. The next subsections discuss
each of the three aspects (Project, Classroom, and
Assessment) in more details.

Project
Students are allocated into teams of three “professional
software engineers” working for a software company,
and are tasked to work together the entire semester.
The course instructor plays the role of a “client” belong-
ing to a hypothetical organization that has contracted
this software company to build a custom application.
For example, in 2022, the clients represented an art
school wishing to incorporate digital technologies in
their offering to attract remote enrolments in their
offerings. The application to implement was a drawing
game, similar to Quick, Draw!1. The team’s role includes

1https://quickdraw.withgoogle.com/

2

https://quickdraw.withgoogle.com/


THEME

Pr
oj
ec
t

Cl
as
sr
oo

m
			
			
	

As
se
ss
m
en

t

week	1 week	12

Alpha	release	(individual)
Beta	release	(team)

Final	release	(team)

Demo
+	peer	review

Code	Style

Git
Workflow

Project	
Intro

Working	in	
teams

Code	reuse,	
attribution,	
licenses

Design	
Meeting

Design	
Meeting

Git
Workflow

week	2 week	3 week	4 week	5 week	6 week	7 week	8 week	9 week	10 week	11

Demo

Code	Style

Design	
Meeting

Design	
Meeting

Demo

Code	Style

Git
Workflow

Design	
Meeting

FIGURE 1: The 12-week course includes a semester-long project split into three deliverables (Alpha, Beta, Final).
Design meetings transform the classroom into simulated client-engineer interactions, while assessments focus on
professionalism in presenting to clients, as well as following software development protocols.

regularly facing the clients (in “design meetings” during
the course-scheduled lecture times) to garner a better
understanding of the requirements, while self-managing
themselves in developing the application outside of
class time.

To add to the realism, the client’s organization is
given a name and profile describing their services and
business values. The client also has an alias name to
differentiate their “client–engineer” interaction from that
of the “teacher–student” relationship. The benefit of the
instructor playing this dual-role (of both teacher and
client), as opposed to having an independent client,
is that the instructor is able to better-gauge project
scope to minimize feature creep that might overwhelm
students—and also prioritize the pedagogical experi-
ence of professional development rather than software
functionality.

The client’s backstory includes a rationale for need-
ing to recruit the software company. This includes
the problems the organization is currently facing, why
they need the software application developed, and
the organization’s bigger-picture goals (e.g., the client
wants to increase engagement with their customers). By
developing an insightful understanding of their client’s
needs, students are encouraged to demonstrate their
own initiative and creativity towards their proposed
solution. This teaches students the importance of
adding value with their own ideas, as the client does
not necessarily always know what they want. In par-
ticular, the project description only gives some “core”
requirements regarding the main functionalities, without
giving much detail on how these functionalities should
be implemented. During the design meetings, students
will elicit the requirements from the clients.

Classroom
Frontal classes focus on the key aspects of profes-
sionalism. As Figure 1 illustrates, we start with covering
how to ask questions to clients (“Working in teams”),
followed by “Code reuse, attribution, and licenses”, and
finally “Git Worflow”.

We teach students the ethics of reusing other
people’s code (including third-party libraries and code
snippets from Q&A sites such as Stack Overflow), and
to understand software licenses. This helps students
become well-versed in best practices for code reuse
and can apply them effectively in their future careers.

While we did not directly teach software processes,
we teach Git best-practices and workflows. In particular,
we covered one of the most popular and simplest
branch-based Git workflow: “GitHub Workflow”, which
students are required to follow while implementing the
Beta and Final deliverables. Such workflow provides
students opportunities to review each other’s code,
which is an essential professional skill to learn.

Design meetings are the central component of
the course in training students’ attitude towards profes-
sionalism, and the expectation is they are treated as
meetings with real clients (rather than with their instruc-
tors). This is the only opportunity engineers have to
interact and seek clarifications from the client, as clients
are not available outside of these scheduled meetings
(but, of course, the instructors are still available as the
“teacher”). If an engineer is unable to attend, but has
questions for the client, they are required to delegate
these to their team members to ask on their behalf.
While this initially comes across as strict, students
quickly learn to appreciate the limited availability their
clients will have in the real world, and to therefore value

3



THEME

the opportunities they have to clarify requirements.
Establishing dialogic relationships between clients

and engineers, and subsequently between members of
the engineering team, presents students with a complex
challenge. Assessing how students have responded to
the complexity of this challenge is not straightforward:
an ability to engage in a collaboration requires more
than just an ability to contribute ideas and complete
tasks [4]. Students therefore need to value not just their
own contributions, but also their ability to consider alter-
nate perspectives, enable the articulation of potential
solutions from people with differing knowledge sets,
support a decision-making process valuing pluralism
and innovation, and foster the socialization of ideas and
sense of shared ownership amongst the collaborating
participants [5].

To guide the design meeting, students are taught
the types of questions they might ask clients.

Contextual questions involve developing a sense
of the client’s history and values as an organization.
This includes asking around what the client is doing be-
sides the actual project. The rationale is that engineers
seek to feed such insight into the project, or expand
into other projects they might end up doing with the
client. Analytical questions involve seeking rationales
and trying to get into the client’s head space. With this
knowledge and insightful understanding, engineers will
be able to demonstrate more initiative and add value
with their own ideas. Descriptive questions ask about
the product’s design itself, and what it is. It is trying to
get a rich and deeper description—not just a yes/no
answer. The engineers are trying to develop a more
vivid picture of what clients seek to achieve within this
design. Judgemental questions seek yes/no answers
in order to establish clear boundaries to overcome
ambiguity. As a final note, Searchable questions are
questions that students should (or could) know if they do
their own research about the client, or what may appear
very apparent based on everything already presented.
Students are informed that these sorts of questions are
discouraged as they will undermine their credibility as
professional engineers.

Students are reminded that their role as engineers
is to co-construct with their client, and use their
own initiative in helping the client with suggestions
and alternatives. When they ask questions, engineers
should be proactive and foresee rationale, be ready to
offer options, and be ready to present the pros and cons
of the possibilities they propose. The goal here is to
encourage students in taking initiative, and developing
the confidence to make their own decisions along the
way without expecting the client to prescribe even
the smallest of requirement details. Developing this

mindset also helps students recognize the importance
of establishing credibility as capable professionals.

Small-group role playing during class time has
provided an engaging and interactive mechanism for
students to practice asking questions—as well as
formulating justifications to answer ambiguities of their
own. The instructor allocates students into groups of
5–6 people. We have seen that forcing students to work
in teacher-defined groups encourages socialization,
and students immediately meet someone new—thereby
helping promote a sense of community in the class.

Students are asked to split the group into two sub-
teams of roughly 2–3 students. Each sub-team is tasked
to draft up at least 3–4 questions they would like to ask
the clients, as well as identifying the type of the question
(e.g., analytical, descriptive). One of the sub-teams
is then assigned the role of clients, while the other
sub-team is assigned the role of software developers.
The software developer sub-team asks the client sub-
team the questions they drafted up. The rationale
is to encourage students to develop confidence in
formulating and asking questions. The roles of the sub-
teams are then flipped around, so that both sides have
the opportunity to play the role of developers asking
questions, and clients answering questions.

The sub-teams reconvene into their original full
group to rank the top 2–3 questions (across both sub-
teams) that they feel should be moved forward to the
real client (played by the instructor). The instructor then
reconvenes the whole class together, and asks one
group at a time to ask one of their questions while the
rest of the class pays careful attention to the questions
asked by other groups—and the client’s responses.

The instructor’s goal (through the client role) is
to encourage students to brainstorm and propose
solutions, while foreseeing issues and potential alter-
natives. Most students are used to teachers providing
explicit and detailed instructions with clearly-defined
expectations—with little scope for them to exhibit their
own creativity and initiative based on their personal
interpretation of open-ended and vague requirements.
The instructor needs to appreciate that many students
are very “fragile” at this early stage of their studies,
typically nervous and fearful of being judged due to lack
of experience [7]. Instructors should remain mindful of
the key learning outcome (which is to develop students’
skills to engage with clients and proposing ideas, rather
than the functional aspects of the project), as using such
encouraging language will aid in developing students’
self-confidence [8].

By starting in smaller sub-teams, then moving on
to the full group, and finally in front of the wider
class, this provides scaffolding in developing confidence

4



THEME

to communicate. When students ask their prioritized
questions to the (instructor) client in the open classroom,
their confidence is reinforced with the reassurance that
their selected question is one that the group as a whole
formulated and agreed is worth asking.

The nature of this activity serves purposes beyond
practising question asking. In addition to the socializa-
tion opportunity, students are often able to “answer their
own questions” when in discussion with peers (either in
the sub-team, or group). This also helps brainstorming
alternatives to present to the client, along with the
question. Students learn the importance of prioritizing
their questions, and valuing their client’s time by making
the most of the limited time they have with the client.

Assessment
Assessment in the course focuses on two main as-
pects: functionality and professionalism. But the term
professionalism is multifaceted, and requires time to
grow. At this early stage, we only need to focus on
some aspects of professionalism to start the journey
of accustoming students to its importance. We assess
elements of professionalism in terms of (i) how students
conduct themselves with clients, and (ii) how they
develop software alongside others—including code style
and Git workflow. The key learning outcomes related to
this, as linked to the SE2014 [9] curriculum guidelines,
include:

• “Learn to communicate with clients in a non-
technical manner” (PRF.com: Communication
Skills, and PRF.psy.4: Interacting with Stakeholders
from SE2014),

• “Convey and develop key software application
features in a way that demonstrates deep under-
standing for the client’s mission and ambiguous
requirements” (PRF.psy.5: Dealing with Uncertainty
and Ambiguity from SE2014),

• “Apply industry best practices while contributing
to a team-based software project” (QUA.cc: Soft-
ware quality concepts and culture, and PRF.psy.1:
Dynamics of Working in Teams and Groups from
SE2014).

Demonstrations are the primary method used to
assess students. For each of the three deliverables,
students present their software product to the instruc-
tors (acting as clients). While the majority of the marks
reflect whether they have satisfactorily implemented
the “core” requirements, some of the marks relate to
“professionalism”, such as the quality of the demonstra-
tion in terms of engagement, formality, and politeness.
Students receive the rubric in advance so they are
aware that professionalism is a marked aspect.

In addition to feedback from the clients, each team
is required to attend the Beta presentation of another
team, where each student must provide independent
feedback to the demonstrating team. Guidelines are
provided on how to give constructive and actionable
feedback, and students are graded on the quality of
their feedback to peers. This feedback before the Final
release provides an opportunity for teams to further
improve their final product.

Code style and Git workflows are evaluated using
tools that automatically analyze source code and Git
logs to report any violations. To assess code style,
we use our code style grading tool—GradeStyle [10]—
which follows Google’s widely adopted code style
conventions and other popular code conventions. To
assess the correct usage of the GitHub Workflow and
Git etiquette, such as meaningful commit messages, we
rely on a tool developed by our honours-year students.

It is important to note that in this course, we aim
for complete shared code ownership. All marks for the
Beta and Final deliverables are collective marks. This
approach fosters a collaborative environment where
students can share ideas, knowledge, and skills. Shared
code ownership helps create a sense of ownership
and responsibility among team members, which often
leads to increased motivation. However, to recognize
cases in which students did not contribute equally, we
analyze Git logs, and we require students to complete
two confidential reviews about their teammates at the
end of Beta and Final submissions.

EVALUATION
To evaluate the impact of our approach, we present
feedback gathered from students, to understand their
perceptions of the value and usefulness of the course.
An anonymous university-administered survey was re-
leased to students at the end of the semester, following
a standard template for all courses across the university.
Of the 132 enrolled students invited, 72 students
(54.5%) completed the survey. The standard template is
composed of ten 5-point Likert-scale questions, followed
by three open-ended questions.

The final Likert-scale question on the survey is
used as the university’s key indicator of overall student
satisfaction (“Overall, I was satisfied with the quality
of the course” ). Here, the course scored 4.72 (out
of 5.0), while the engineering courses averaged 4.11,
and the university courses averaged 4.15. All other
metrics were scored similarly. The course scores ranged
between 4.48–4.72, while the university-wide scores
ranged between 3.89–4.32).

The students’ responses to the open-ended ques-

5



THEME

tions helps illustrate the student experience. When
asked “what aspects of the course were most helpful
for learning”, students particularly valued the real-world
simulation and having a full-semester project:

“I honestly loved the layout of this course. I
thought it was a great idea to have one project
spanning the whole semester as it gave us a
real insight into what it would be like in industry.
I really enjoyed the real life simulation of this
course. It was a great way to learn how to
interact and work with clients for our career.”

A common positive theme in the survey results was
the opportunity to collaborate in a team environment,
practice asking questions to clients, and the expectation
of students to act professionally during classroom-
based design meetings:

“Since we aren’t used to working in groups for
coding assignments, it was good that we had
‘buffer’ design meeting sessions that allowed us
to create and ask questions with other people.
I also like the structure of design meetings, the
simulation of a professional environment is real
enough and also engaging.”

When asked to reflect on what they found “the most
challenging about learning in this course”, students
commented on the challenge that comes with freedom
to be creative—but they still appreciated the value of
this freedom:

“Bit jarring to switch from an academic ‘must do
everything as the lecturer says’ mindset to a
developer ‘how to implement this in my way’
mindset, but it was a good challenge.”

“I found it challenging to implement some
aspects of the app, since this course gives you
lots of freedom and doesn’t give direct
instructions on how to do things. But that is the
whole point of this course. It is challenging but
rewarding.”

This feedback demonstrates students’ acknowledge-
ment of the challenges that come with being a pro-
fessional software engineer. The freedom of creativity
and committing to self-justified design decisions can
be nerve wracking for many students, especially when
grades are at stake. Students’ realization that clients
do not have all the answers prepares them for a
career where they must exhibit initiative and credibility
by co-constructing solutions with clients. Experiencing
and practising dialogic relationships, with clients and
teammates, alleviates concerns that there must be one
correct solution. Creativity, and freedom to explore, are
essential in order to solve complex problems [11].

Students will continue to practice these skills in sub-
sequent courses during their degree, as the curriculum
incorporates a lot of team-based project work. One
of the much-demanded professionalism gap is that of
developing students’ awareness of business context [1],
which is something not currently covered in our course.
Incorporating this will enhance the comprehensive
understanding of professionalism—complementing the
course’s current emphasis of communication, teamwork,
and stakeholder interaction.

CONCLUSION
Fostering students to become professional software
engineers presents a complex challenge for students.
They are typically not faced with these challenges
until later in their studies, where they have developed
a much stronger technical understanding of software
development—often in senior courses collaborating with
industry.

We propose the early-exposure approach, as a way
to foster this development earlier in their degree to
encourage students to appreciate the challenges and
expectations they will face as professional software
engineers. We implement our approach as a semester-
long project, with instructors simulating the role of
clients. Classroom activities provide opportunities for
students to explore design alternatives that demonstrate
initiative and credibility as engineers.

Our experience has demonstrated second-year
Software Engineering students’ readiness to embrace
the challenges of this pedagogical shift—despite only
having learned fundamental programming concepts. We
believe this shift will bring profound benefits to students’
careers. In particular, scaffolding students’ exposure to
a simulated professional environment early on enables
more opportunities for them to contemplate and practice
the professional mindset over a larger portion of their
studies, as they transition from students to professional
software engineers.

6



THEME

REFERENCES
1. V. Garousi, G. Giray, E. Tuzun, C. Catal, and M.

Felderer, ‘Closing the Gap Between Software Engineer-
ing Education and Industrial Needs’, IEEE Software,
vol. 37, no. 2, pp. 68–77, 2020.

2. D. P. Hammer, B. A. Berger, R. S. Beardsley, M. R.
Easton, and Others, ‘Student Professionalism’, Am J
Pharm Educ, vol. 67, no. 3, p. 96, 2003.

3. C. Ghezzi and D. Mandrioli, ‘The Challenges of Soft-
ware Engineering Education’, in Proceedings of the
27th International Conference on Software Engineering,
St. Louis, MO, USA, 2005, pp. 637–638.

4. P. Griffin and E. Care, Assessment and Teaching of
21st Century Skills: Methods and Approach. Springer,
2014.

5. N. Rowe, R. Martin, R. Buck, and A. Mabingo, ‘Teaching
Collaborative Dexterity in Higher Education: Threshold
Concepts for Educators’, Higher Education Research
& Development, vol. 40, no. 7, pp. 1515–1529, 2021.

6. O. Cico, L. Jaccheri, A. Nguyen-Duc, and H. Zhang,
‘Exploring the Intersection Between Software Industry
and Software Engineering Education - A Systematic
Mapping of Software Engineering Trends’, Journal of
Systems and Software, vol. 172, p. 110736, 2021.

7. M. Norman and T. Hyland, ‘The Role of Confidence
in Lifelong Learning’, Educational Studies, vol. 29, no.
2–3, pp. 261–272, 2003.

8. O. Akbari and J. Sahibzada, ‘Students’ Self-Confidence
and its Impacts on their Learning Process’, American
International Journal of Social Science Research, vol.
5, no. 1, pp. 1–15, 2020.

9. M. Ardis, ‘Software Engineering 2014: Curriculum
Guidelines for Undergraduate Degree Programs in
Software Engineering’. IEEE Computer Society and
ACM, 2015.

10. C. Iddon, N. Giacaman, and V. Terragni, ‘GradeStyle:
GitHub-Integrated and Automated Assessment of Java
Code Style’, in IEEE/ACM International Conference on
Software Engineering (SEET track), 2023.

11. W. Groeneveld, J. Vennekens, and K. Aerts, ‘Identify-
ing Non-Technical Skill Gaps in Software Engineering
Education: What Experts Expect But Students Don’t
Learn’, ACM Trans. Comput. Educ., vol. 22, no. 1, Oct.
2021.

Valerio Terragni is a Lecturer in Software Engineering
at the University of Auckland, Auckland, New Zealand.
His current research interests include software test-
ing, and program analysis. Valerio received the Ph.D.
degree in Computer Science from The Hong Kong
University of Science and Technology. Contact him at
v.terragni@auckland.ac.nz.

Catherine Watson is an Associate Professor at the Uni-
versity of Auckland, Auckland, New Zealand. Her current
research interests include speech production, speech
synthesis, and acoustic phonetics. Catherine received
the Ph.D. degree in Engineering from the University of
Canterbury. Contact her at c.watson@auckland.ac.nz.

Nicholas Rowe is a Professor at the University of
Auckland, Auckland, New Zealand. His current research
interests include dance, collaboration, and education in
diverse cultural contexts. Nicholas received the Ph.D.
degree in Dance Studies from the University of Kent.
Contact him at n.rowe@auckland.ac.nz.

Nasser Giacaman is a Senior Lecturer and Director
of Software Engineering at the University of Auckland,
Auckland, New Zealand. His current research interests
include educational technologies, computing education,
and immersive technologies. Nasser received the Ph.D.
degree in Engineering from the University of Auckland.
Contact him at n.giacaman@auckland.ac.nz.

7

mailto:v.terragni@auckland.ac.nz
mailto:c.watson@auckland.ac.nz
mailto:n.rowe@auckland.ac.nz
mailto:n.giacaman@auckland.ac.nz

	THE BENEFITS OF AN EARLY-EXPOSURE APPROACH
	EARLY-EXPOSURE IN PRACTICE
	Project
	Classroom
	Assessment

	EVALUATION
	CONCLUSION

	REFERENCES
	REFERENCES
	Biographies
	Valerio Terragni
	Catherine Watson
	Nicholas Rowe
	Nasser Giacaman


