
A System-Level Testing Framework for Automated
Assessment of Programming Assignments Allowing

Students Object-Oriented Design Freedom
Valerio Terragni

University of Auckland
Auckland, New Zealand
v.terragni@auckland.ac.nz

Nasser Giacaman
University of Auckland

Auckland, New Zealand
n.giacaman@auckland.ac.nz

Abstract—Automated assessment of programming assignments
is essential in software engineering education, especially for large
classes where manual grading is impractical. While static analysis
can evaluate code style and syntax correctness, it cannot assess
the functional correctness of students’ implementations. Dynamic
analysis through software testing can verify program behavior
and provide automated feedback to students. However, traditional
unit and integration tests often restrict students’ design freedom
by requiring predefined interfaces and method declarations.

In this paper, we present SYSCLI, a novel testing framework
for system-level testing of JAVA-based command-Line interface
applications. SYSCLI enables test suites that evaluate the
functional correctness of students’ implementations without
limiting their design choices. We also share our experience using
SYSCLI in a second-year programming course at the University
of Auckland, which focuses on object-oriented programming
and design patterns and enrolls over 300 students each offering.
Analysis of student assignments from 2023 and 2024 shows that
SYSCLI is effective in automating grading, allows software design
flexibility, and provides actionable feedback to students. Our
experience report offers valuable insights into assessing students’
implementation of object-oriented concepts and design patterns.

Index Terms—software testing for education, automated pro-
gram assessment, system-level testing, software engineering
education, JAVA programming, assignment-driven marking

I. INTRODUCTION

Automated program assessment [1]–[4] is essential in soft-
ware engineering education [5], especially given the large class
sizes in modern programming courses. Manually evaluating
assignments for hundreds of students is impractical due to
the significant effort required and the difficulties maintaining
consistency and fairness in grading—especially when multiple
graders are involved.

Existing approaches for automated grading program assign-
ments generally use either static or dynamic analysis [6]. Static
analysis focuses on aspects like code style [7] and syntax
correctness. While it is useful for assessing design and structural
properties, it cannot evaluate whether a program assignment’s
logic is semantically correct and behaves as intended [6].

In contrast, dynamic analysis, particularly software testing
allows for evaluating assignments’ behaviors by running code
with various inputs and comparing the outputs to expected

results. Testing helps verify the student assignment correctness
beyond what static analysis can achieve [6], [8]. In addition,
by knowing which tests pass or fail, students can receive
automated feedback on the issues and limitations of their
implementation [9].

However, developing test cases to grade student assignments
raises the question: “What type of test cases should an
instructor use?”

One solution is to implement unit or integration tests that
directly invoke the methods implemented by students, and
check the results against expected outcomes. Such tests require
knowing the implementation details of the code being tested.
If students were given the freedom in designing their classes
and methods, there would need to be dedicated test cases that
accommodate each student’s individual implementation—it is
impractical for the instructor to write dedicated test cases for
each student. Instead, a consistent test suite applicable across
all student submissions is necessary. In this scenario, instructors
must provide the implementation design (classes and methods).
Typically, students are either provided with starter code in the
form of interfaces or empty method stubs adhering to the design,
or provided with test cases that reveal the expected design, as
these are the classes and methods that the unit/integration test
cases expect. Providing the implementation design to students is
particularly detrimental in Object-Oriented Programming (OOP)
education. Students should be given the opportunity to design
their own classes and methods, fostering a deeper understanding
of software design. Specifically, when the course covers design
patterns, providing stub methods and classes would reveal how
to apply those patterns.

System-level testing [10] offers a better solution by allowing
tests to focus on the input and output of the program without
specifying implementation details. This can be achieved by
invoking the program’s main function with various inputs and
checking the expected outputs. This approach enables students
to retain the freedom to design their software in a way that
aligns with their understanding, while still ensuring that their
implementations are tested for correctness. However, writing
system tests for program assignments can be challenging.

vter674
This is the authors’ version of the paper that has been accepted for publication in the
18th IEEE International Conference on Software Testing, Verification and Validation (ICST 2025)

In particular, larger, long-term assignments have proven to be
more effective for software engineering education compared to
numerous smaller tasks [11]–[13]. They help students gain
a deeper understanding of system architecture and design
patterns [14]. Larger projects also provide a more realistic
experience of software development [11]–[13]. Command-
Line Interface (CLI) programs are particularly suitable for
larger assignments of introductory programming courses [15],
[16]. A CLI interface allows implementing multiple commands
and their interactions. Unlike non-interactive command-line
tools that handle a single input and output, CLI programs
simulate real-world software scenarios, requiring students to
develop more complex logic and manage program states, thus
improving their understanding of object-oriented software de-
sign. Compare to Graphical User Interface (GUI) applications,
interactive CLI programs enable students to focus on core
functionality without the additional burden of designing a UI.
Several independent studies agree that CLI-based assignments
for beginner students are pedagogically superior to other types
of applications [15]–[18].

Implementing system-level test cases for interactive CLI
applications using standard testing framework is challenging.
Indeed, with CLI applications we cannot simply invoke the
main function passing some inputs as arguments. This is
because the input of an interactive CLI program is not a list of
arguments, but rather involves a sequence of user interactions.
Despite the existence of libraries for implementing system-level
tests for CLI applications in PYTHON [19] and BASH [20],
there is no dedicated testing framework for Java-based CLI
applications. This gap motivated us to design a new testing
framework for JAVA CLI applications (called SYSCLI), which
we used to create system-level tests to automatically grade and
provide feedback on CLI-based assignments.

In this paper, we present an experience report on using
our framework over two years (2023 and 2024) in a second-
year programming course at the University of Auckland,
which enrolls over 300 students in each offering. The course
introduces students to OOP concepts and JAVA. It includes
two large assignments involving CLI applications, totaling
approximately 1,200 student solutions over the two years
we analyzed. Notably, we provide students with half of the
SYSCLI test cases that we will use for assessing them.
This enables an alternative, simplified form of Test-Driven
Development (TDD) [21], where students write code to pass
the test cases.

We evaluated SYSCLI with two main research objectives:
(i) to assess the effectiveness of the test cases in evaluating stu-
dent assignments, and (ii) to determine whether the framework
truly allows students the freedom to implement object-oriented
designs. Our results show that the SYSCLI test suite achieves
high code coverage (averaging over 90%) and mutation cover-
age (averaging over 80%) on student solutions. Additionally,
our system-level testing approach enabled a noticeable variance
in students’ object-oriented designs, reflected in differences in
the number of classes/interfaces, methods, and fields.

In summary, this paper makes the following contributions:

• A novel testing framework SYSCLI for interactive Java-
based CLI applications.

• An experience report on using the framework in a second-
year introductory programming course.

• An evaluation of the framework’s effectiveness in ensuring
program correctness while allowing students’ design
freedom.

• Insights into the use of system testing in educational set-
tings for automated assessment and feedback of students’
assignments.

• We publicly release SYSCLI [22] for use by other software
educators and developers, with the hope that it will also
encourage future work in this area.

The remainder of this paper is organized as follows: Sec-
tion II introduces SYSCLI using a running example. Section III
outlines the course context where we used SYSCLI for
assessing and provide feedback on students’ assignments.
Section IV presents the experimental evaluation conducted to
address the research objectives. Section V gives our reflections
on the framework’s usage. Section VI reviews related work, and
finally, Section VII concludes the paper, highlighting potential
directions for future work.

II. SYSCLI

This section presents our testing framework using a running
example.

A. Running Example

To illustrate how SYSCLI works, we present a case study
involving a CLI-based assignments we prepared, for which we
developed test cases using our framework. This assignment
tasks students with implementing a basic insurance management
system. Listing 1 shows the program includes a set of com-
mands. The assignment has ten commands, among which HELP
and EXIT are already implemented for students. The HELP
command displays the available commands, while the EXIT
command terminates the application. Students are required
to implement the logic for the remaining eight commands.
The initial version of the code already implements the overall
CLI mechanics; therefore, students only need to focus on
implementing the core logic associated with the additional
commands. In other words, the initial codebase comes equipped
with the CLI shell architecture, which sets up the interface for
users to interact. This infrastructure includes parsing commands,
ensuring the correct number of arguments are provided, and
managing the execution flow of commands.

It is important to highlight that this assignment is intended
for second-year engineering students who are just beginning
to learn object-oriented programming and Java. Although the
assignment mentions a database, students are only required to
simulate this functionality by storing information in memory
(for example, in a List). This approach means that there is no

PRINT_DB [no args] Print the entire insurance database
CREATE_PROFILE [2 arguments] Create a new client profile <USERNAME> <AGE>
LOAD_PROFILE [1 arguments] Load the specified profile <USERNAME>
UNLOAD_PROFILE [no args] Unload the currently-loaded profile
DELETE_PROFILE [1 arguments] Delete the specified profile <USERNAME> from the database
POLICY_HOME [no args] Create a new home policy for the currently-loaded profile
POLICY_CAR [no args] Create a new car policy for the currently-loaded profile
POLICY_LIFE [no args] Create a new life policy for the currently-loaded profile
HELP [no args] Print usage
EXIT [no args] Exit the application

insurance system>

Listing 1: Commands for an assignment used as a running example. This is the output of the HELP command, listing the
commands that provide functionality for managing an insurance database. It includes creating, loading, unloading, and deleting
client profiles, as well as generating different insurance policies. The final line reflects the system prompt for students to interact.

persistence across application runs; each time the application is
launched, it starts from a blank state. This design is crucial for
our system-level testing framework, as each test case represents
an independent interaction with the CLI application (i.e., a
sequence of commands and their arguments) that should always
begin from a clean state. This requirement is vital to avoid
test flakiness [23] due to order dependency, allowing each test
case to execute in isolation from the others.

Some commands within the assignment require arguments,
while others do not. For instance, the PRINT_DB command op-
erates without any arguments, whereas the CREATE_PROFILE
command requires two specific arguments: the username and
the age of the new client. Additionally, some commands, like
POLICY_HOME, POLICY_CAR, and POLICY_LIFE, will
prompt the user with questions to gather further information
needed for creating the insurance policies.

An example user interaction with the CLI in interactive mode
on a completed assignment solution is shown in Listing 2.

insurance system> CREATE_PROFILE John 23
New profile created for John with age 23.

insurance system> PRINT_DB
Database has 1 profile:
1: John, 23, 0 policies for a total of $0

insurance system>

Listing 2: Example of interaction with the solution of our
CLI-based assignment

In this interactive scenario, when CREATE_PROFILE is
executed with the arguments John and 23, the program
should output a confirmation message. If the user subsequently
executes the PRINT_DB command, the program indicates that
there is now one profile and displays the relevant details.

Listing 3 shows an example of one of the many test cases
that we used to grade students for this assignment. This test
case verifies the interaction described above using SYSCLI.

The static class Task1 contains all the test cases for
grading the first task of the assignment. This class extends
SysCliTest (line 1, Listing 3), which implements our
framework. By doing so, Task1 inherits all the functionalities

1 public static class Task1 extends SysCliTest {
2

3 public Task1() {
4 super(Main.class);
5 }
6

7 @Test
8 public void T101_add_one_client_with_info() {
9 runCommands("CREATE_PROFILE John 23", ←↩

"PRINT_DB");
10 assertContains("New profile created for John ←↩

with age 23.");
11 assertContains("Database has 1 profile:");
12 assertContains("1: John, 23");
13 assertDoesNotContain("Database has 0 profiles");
14 }
15 }

Listing 3: Example of a test case implemented with SYSCLI.
The test verifies that a profile is created correctly.

we have developed. In particular, the Task1 class gains access
to the methods and properties defined in the SysCliTest
class, providing common functionality for CLI testing, such
as managing input/output streams, executing commands, and
asserting the application’s output.

The constructor of the Task1 class calls the constructor
of its superclass, SysCliTest, passing Main.class as an
argument (line 4, Listing 3). Main.class serves as the entry
point of the CLI-based application.

The @Test annotation indicates that the T101_add_one
_client_with_info method is a JUNIT test method
(line 7, Listing 3). This enables SYSCLI test cases to be
executed by the JUNIT testing framework.

The method invocation runCommands (line 9, Listing 3)
prompts the CLI-based application with two commands in
sequence: CREATE_PROFILE John 23, which creates a
new profile for a client named John who is 23 years old, and
PRINT_DB, which displays the content of the database. Note
that each argument of runCommands is a single command;
CREATE_PROFILE John 23 has three literals because the
command requires two arguments. You can think of each
argument of runCommands as representing a command (and
its arguments, if any) that the user inputs before hitting Enter.

TABLE I: Public Interface of the SysCliTest Class

Method Description

CliTest(Class<?> mainClass) Constructor that initializes the class with the main class of the CLI-application.
void setUp() Sets up the testing environment by redirecting output streams.
void tearDown() Restores the System output streams and prints captured output after tests.
void runCommands(String... commands) Executes a series of commands intercepting the System.in stream.
void assertContains(String s) Asserts that the specified string is present in the output stream.
void assertDoesNotContain(String s) Asserts that the specified string is not present in the output stream.

CLI-based Assignment
Command Line Interface (CLI)

SysCLI

t1 t2 t3 t4 t5 ..

command output command output

pass fail

testing modeapplication mode

Fig. 1: Logical architecture of SYSCLI. The left side is the
interactive application mode with the user, while the right side
is testing mode with SYSCLI.

The test case contains four assertions:

1) assertContains("New profile created
for John with age 23."); This assertion checks
whether the output of the CLI contains a message
confirming the creation of John’s profile.

2) assertContains("Database has 1
profile:"); This assertion checks that the output
indicates there is indeed one profile in the database.

3) assertContains(" 1: John, 23"); This asser-
tion verifies that the output lists John as the first profile,
confirming that the profile was created (and stored)
correctly. Note that the framework allows checking only
a portion of the expected output to provide some flex-
ibility; indeed, the full output was 1: John, 23, 0
policies for a total of $0, but this test case
is checking for the simplest functionality.

4) assertDoesNotContain("Database has 0
profiles"); This assertion ensures that the output
does not indicate that there are zero profiles in the
database. For example, if the order of the two commands
is inverted, PRINT_DB will print Database has 0
profiles. This design prevents students from writing
all possible outputs for each command to pass the tests.

B. Framework Implementation

Table I shows the Application Public Interface (API) of our
framework, while Figure 1 overviews its logical architecture.
The left side of the figure illustrates the typical usage of the CLI-
based assignment, where the program waits for user commands
entered via the console, and the user reads the output printed
in the console. The right side shows the testing mode with our
framework. In this mode, SYSCLI automatically supplies the
commands specified by the test case when the program expects
user input. It then captures the output and applies assertion
oracles to determine whether the test passes or fails.

We implemented SYSCLI on top of JUNIT 41.
Specifically, the methods assertContains and
assertDoesNotContain rely on Assert.fail()
of JUNIT to trigger a test failure when the assertion oracles
are not satisfied. This design ensures that the tests integrate
seamlessly with build automation systems such as GRADLE
and MAVEN, as well as JAVA Integrated Development
Environments (IDEs). This is because SYSCLI’s tests can be
executed as JUNIT tests.

The setUp and tearDown methods are annotated with
the JUNIT @Before and @After annotations, respectively.
This means that setUp automatically executes before each
test, while tearDown afterward. The setUp method redi-
rects the output and error streams from System.out and
System.err to internal PrintStream variables. This
allows SYSCLI to capture the output of the application during
execution. The tearDown method restores the System.out
and System.err streams. It also prints the captured output to
the console, providing students with more detailed information
about the test execution in case of test failures.

The runCommands method accepts an arbitrary long list
of Strings (i.e., the commands and arguments). It uses JAVA
reflection to invoke the main method of the CLI application
that is passed as a parameter in the class constructor (e.g.,
see Listing 3, line 4). It also uses reflection to automatically
override the java.util.Scanner instance that the applica-
tion uses to read input from the console. This allows SYSCLI
to emulate users typing the commands when the application
prompts for user input. The commands are those specified in
the runCommands method parameters.

1Our framework can be easily adapted for JUNIT 5; we chose JUNIT 4 due
to its broader compatibility with existing projects.

For example, consider the scenario in Listing 3. Because
runCommands invokes the main method with an internal
Scanner, when the CLI application requests input from
System.in, the internal Scanner supplies the specified
inputs. In this example, when the CLI application prompts for
user input, it immediately receives CREATE_PROFILE John
23 from the internal Scanner. The next time the application
waits for input, it receives PRINT_DB.

The assertContains and assertDoesNotContain
methods ensure the test fails if the captured output
does not contain the specified string, or, in the case of
assertDoesNotContain, if the output unexpectedly in-
cludes the specified string. When an assertion fails, it prints a
message to the console detailing the arguments of the assertion
and explaining the reason for the failure (i.e., whether the
specified output was present or absent). Additionally, a test
will fail if the program crashes, enters an infinite loop, or falls
into infinite recursion. To handle the last two cases, SYSCLI
uses JUNIT @Rule public Timeout timeout, which
automatically makes a test fail if it exceeds a specified duration
(set to 10 seconds by default).

In a nutshell, what makes our framework effective is its
seamless interaction with the CLI application. The application
cannot distinguish between inputs provided by a user and those
supplied by a test; it behaves as if a user is interacting with it.
This process is fully automated and handled by our framework
in the background.

III. EXPERIENCE CONTEXT

This section provides an overview of the course, its as-
signments, the process of creating test cases, as well as the
assessment and feedback methods used for evaluating the
assignments.

A. Course Context

We applied SYSCLI to the SOFTENG281 Object-Oriented
Programming2 course at the Faculty of Engineering, University
of Auckland, New Zealand. SOFTENG281 is a second-year
course focusing on object-oriented programming [24] and is
mandatory for all students specializing in Software Engineering,
Computer Systems Engineering, and Electrical and Electronics
Engineering. These are three specializations offered within the
four-year Bachelor of Engineering (Honours) degree.

Before specializing in the second year, students complete
the same foundational courses in the first year of their
degree, regardless of their intended specialization. ENGGEN131
Introduction to Engineering Computation and Software Devel-
opment3 is one such course, which teaches the fundamentals
of programming using MATLAB and C, and serves as the
prerequisite for SOFTENG281.

With a yearly enrollment of over 300 students, SOFTENG281
uses JAVA to introduce object-oriented programming concepts,
as JAVA is used extensively in other courses within the Software

2https://courseoutline.auckland.ac.nz/dco/course/SOFTENG/281
3https://courseoutline.auckland.ac.nz/dco/course/ENGGEN/131

Engineering degree, ensuring continuity in the students’ learn-
ing experience. The course structure includes two six-week
segments. The first segment introduces fundamental JAVA pro-
gramming and basic OOP principles, such as methods, objects,
encapsulation, inheritance, polymorphism, and abstract classes,
along with control structures. In the second segment, students
learn more advanced topics such as JAVA interfaces, design
patterns, exception handling, and fundamental data structures.
This segment also introduces graph traversal algorithms, such
as depth-first and breadth-first searching.

We use a semi-flipped classroom approach, where hands-on
coding sessions are prioritized during lectures, while students
are expected to study the theoretical content beforehand [25],
[26]. We consider this to be semi-flipped, because brief reviews
of theoretical content are still conducted during class, but the
focus is on practical coding exercises.

B. Course Assignments

SOFTENG281 is designed as an assignment-focused course,
aligning with research that highlights the effectiveness of large
coding assignments in practical programming education [27].
Informed by prior research [28], we organized the course
around two major programming assignments, which account for
about 60% of the final grade for the course, while the remaining
40% is assessed through invigilated tests, where students
solve smaller coding tasks within a controlled environment.
Assignment 1 (A1) covers the content of the first part of the
course, while Assignment 2 (A2) covers the content of the
second part.

For the distribution and submission of both assignments,
we use GITHUB CLASSROOM [29]. Each assignment comes
with starter code that follows a consistent template across all
assignments. The setup is a MAVEN project, which includes the
basic CLI structure while deliberately excluding the internal
logic. This setup allowing students to easily build, run, and
test the application using simple MAVEN commands.

C. Creating Assignment Test Cases

In developing a new assignment (and its associated test
cases), we first craft the complete solution. We then execute
the solution program in a terminal, identifying canonical
and representative user interaction scenarios. By capturing
these interactions, we create test cases that reflect typical
user behavior. We translate the console interaction into
the corresponding runCommands methods, accompanied by
assertContains and assertDoesNotContain asser-
tions. In particular, each test case emulates a single user
interaction scenario.

After creating the complete set of test cases, we divide them
into two categories: visible and hidden test cases. Half of the
test cases are provided to students (visible), while the complete
set (visible plus hidden) is used for grading the assignment.
The visible test cases focus on the core functionalities of the
application, providing students with a clearer understanding of
the main requirements. The hidden test cases typically target

https://courseoutline.auckland.ac.nz/dco/course/SOFTENG/281
https://courseoutline.auckland.ac.nz/dco/course/ENGGEN/131

TABLE II: Summary of passing test cases in Assignments for 2023 and 2024.

Passing Test Cases
Year # Students Assignment # SYSCLI Tests Students passing all tests Mean SD Min Q1 Median Q3 Max

2023 309 A1 42 153 (50.0%) 91.2% 6.81 16.7% 90.5% 100.0% 100.0% 100.0%
A2 84 216 (70.0%) 96.1% 12.52 3.6% 100.0% 100.0% 100.0% 100.0%

2024 302 A1 75 117 (38.7%) 87.9% 12.23 4.0% 86.7% 94.7% 96.0% 100.0%
A2 66 164 (54.3%) 95.5% 7.68 9.1% 98.5% 100.0% 100.0% 100.0%

edge cases, while also helping to ensure that students do not
hard-code their solutions to pass only the visible tests.

When releasing each assignment, we include a detailed
handout that outlines the program specifications. In addition
to the handout, the SYSCLI test cases provided to students
serve as further concrete examples of expected interactions
with the application. Research has shown that examples
are highly effective in conveying requirements, and in this
context, SYSCLI test cases act as a form of executable
specification [30].

Given the complexity of these assignments, which often
require several weeks of effort, we divide each assignment
into tasks, each representing a specific functionality of the
application. We typically have three to six tasks4, and often
use these as checkpoints to ensure students are making progress.
The test cases are organized according to these tasks, allowing
students to focus on one aspect at a time (there is typically 10–
20 test cases per task). This approach enables a simplified form
of Test-Driven Development (TDD), where all tests initially fail,
and students are required to implement code incrementally to
make each test pass [31], [32]. Unlike standard TDD, students
are not required to write the initial failing tests to guide their
implementation. However, the presence of failing tests still
helps them to effectively guide their development process.

The test suite is structured to support this incremental
development process, as shown in Listing 4.

1 @SuiteClasses({
2 MainTest.Task1.class,
3 MainTest.Task2.class, // Uncomment for Task 2
4 // MainTest.Task3.class, // Uncomment for Task 3
5 })

Listing 4: Example of a SYSCLI Test Suite divided by tasks

Students will uncomment specific test classes as they progress
through the tasks, allowing them to verify their solutions step
by step (only the uncommented Test classes will be executed
by JUNIT). This design not only helps students stay organized
as they work through the assignment, but also provides them
with a structured way to test their progress.

D. Course Assessment and Feedback

After the deadline has passed, we grade the assignments
using an automated PYTHON script. This script clones
the repositories from GITHUB CLASSROOM, replaces the

42023-A1 has 3, 2023-A2 has 6, 2024-A1 has 3, and 2024-A2 has 5 tasks

src/test/java folder with a directory containing all the
tests (both visible and hidden), executes mvn test, and
reports which test cases have passed or failed. The grade
for the assignment is proportional to the number of passing
test cases. We also automatically evaluate JAVA code style
using our GRADESTYLE tool [7]. Additionally, we assess
whether students have implemented the required design patterns
using an automated static analysis script that we developed to
detect these patterns. Students receive an automated email with
a detailed test report, indicating which test cases passed or
failed. After grading, we release the complete set of test cases,
allowing students to identify their failing tests and run/debug
their applications to understand and correct their mistakes.

IV. EVALUATION

This section presents a series of experiments that we
conducted to evaluate two key aspects of our framework: (1) the
effectiveness of the test cases in assessing student assignments,
and (2) whether the framework truly allows students object-
oriented design freedom.

A. Testing Results

Table II summarizes the results for the passing test cases
in the assignments for 2023 and 2024, the years in which we
adopted SYSCLI. Additionally, the table shows the number of
students, the assignment identifier (A1 or A2), the total number
of test cases (visible + hidden), the number of students passing
all the tests, and statistical measures of the number of passing
test cases. The results across both years and assignments
indicate that the majority of students passed a substantial
number of test cases. In fact, the average percentage of passing
test cases across assignments and years ranges from 91.2% to
96.1%. This suggests that the assignment design was effective
in enabling students to produce correct code that could often
also pass the hidden test cases.

B. Evaluating Test Effectiveness

To evaluate the effectiveness of SYSCLI test cases across
the different student assignments, we rely on three standard
test adequacy metrics:

• Line Coverage: This metric measures the percentage of
lines of code executed by the test suite. It helps to assess
how thoroughly the assignment is exercised during testing.

• Mutation Coverage: This metric measures the percentage
of artificially seeded faults (mutants) that are detected
and killed by the test suite. It not only evaluates how
well the test cases cover the code but also measures the

Fig. 2: Distribution of Line Coverage (left), Mutation Coverage (center), and Test Strength (right) for the assignment solutions
that pass all the SYSCLI test cases.

effectiveness of the assertions in catching seeded faults.
The study of Clegg et al. shows that common mutants are
suitable substitutes for students faults [33]. In particular,
the study indicates that mutants capture the observed faulty
behavior of students’ solutions.

• Test Strength: This metric evaluates the proportion of
mutants killed out of the total mutants that were actually
covered by the test suite. It excludes mutants that survived
due to lack of test coverage. This provides a clearer
measure of how effective the assertions are in detecting
faults, independent of coverage gaps.

We computed these metrics for only those student solutions
that passed all the visible and hidden test cases. We made this
choice for two reasons: First, it ensures consistency, as passing
all test cases provides strong confidence that the solutions are
correct and complete; comparing complete with incomplete
assignments would be meaningless. Second, mutation testing
requires a fully passing (green) test suite to yield valid results.
As indicated in Table II, at least half of the students passed
all the test cases in three out of four assignments.

We used the MAVEN plugin of PIT (v. 1.17.0)5 to calculate
the metrics. We excluded the classes that we provided to stu-
dents for implementing the CLI interface (e.g., Main.class),
as students were not allowed to modify these classes. We
configured PIT with its default settings, which apply the
“DEFAULTS” group of mutators6. The mutators used by PIT
target low-level implementation faults, such as modifying
conditional boundaries or negating integer values.

Figure 2 shows the box plot of the distribution of Line
Coverage (left), Mutation Coverage (center), and Test Strength
(right) for the assignment solutions that pass all the SYSCLI
test cases.

Line Coverage is generally high, with the average across
the four assignments ranging from 92% (2024-A1) to 95.8%

5https://pitest.org/quickstart/maven/
6https://pitest.org/quickstart/mutators/

(2023-A2). This suggests that the test cases are adequate to test
the assignments and that students did not over-engineer their
solutions by adding extra features or behaviors not covered
by the tests. Research has shown that TDD encourages lean
implementations by reducing the likelihood of unnecessary
code [32]. While there are some outliers, as shown in the box
plot, they are relatively few.

Mutation Coverage is also generally high, with the average
across the four assignments ranging from 82.1% (2024-A2)
to 90.2% (2023-A2). It is important to note that the mutation
score is calculated by applying the same test suite across
different student implementations. Consequently, the number of
mutants generated by PIT may vary across assignments due to
differences in code structure and complexity, which can impact
the mutation score. Nonetheless, a high mutation coverage
indicates that the test cases are not only covering the code
but are also effective at detecting seeded faults, demonstrating
strong fault detection capabilities [34], [35].

Test Strength is high, with the average across the four
assignments ranging from 85.3% (2024-A2) to 94.8% (2023-
A1). As expected, because test strength measures the proportion
of killed mutants relative only to the mutants that were covered
by the tests, the results are generally higher than those for
overall mutation coverage. This indicates that once the tests
cover a specific piece of code, they are highly effective at
detecting faults. The high test strength also suggests that
the system-level assertions in the test cases are successful
in uncovering low-level implementation errors.

As discussed in Section III, it is important to clarify that we
implemented the test cases using a pure black-box approach,
which is agnostic to specific implementation details (since we
cannot predict all potential student implementations). This dif-
fers from a white-box approach aimed at maximizing coverage
in the reference solution implemented by us. Despite this, our
results show that it is possible to develop system-level tests in a
black-box manner that are effective in assessing the correctness
of various student solutions, regardless of implementation
details (which vary across students’ solutions) [36], [37].

https://pitest.org/quickstart/maven/
https://pitest.org/quickstart/mutators/

Fig. 3: Distribution of the number of classes and interfaces (left), number of methods (center), and number of class fields (right)
for the assignment solutions that pass all the SYSCLI test cases.

C. Evaluating OO Design Freedom

In our second experiment, we analyzed the object-oriented
characteristics of student solutions to evaluate the diversity
of their OO design choices. While directly assessing OO
design decisions is challenging, we used proxies such as
the number of classes or interfaces created, the number of
methods defined, and the number of fields declared. These
metrics offer a broad understanding of the design structure
without going into detailed implementation specifics. We
intentionally avoided metrics like Lines of Code (LOC) and
Cyclomatic Complexity (CC), as they focus more on the
low-level implementation characteristics and do not offer
meaningful insights into the design itself.

To compute the metrics we relied on the open-source
JAVA code metrics calculator CK, implemented by Maurı́cio
Aniche [38]. Consistent to the computation of test adequacy,
we chose to analyze only the student solutions that pass all
test cases. This ensures a meaningful comparison, as we can
be confident that these solutions are complete.

Figure 3 illustrates the distribution of the number of classes
and interfaces (left), methods (center), and class fields (right).

The distribution of the number of classes and interfaces
reflects the diversity of student solutions. The graph shows
that A1 in both 2023 and 2024 has less variance in the
number of classes and interfaces compared to A2. This is
because A2 requires students to implement specific OO design
patterns, which often result in a greater number of classes and
encourage more modular and encapsulated designs. The higher
variability observed in 2023-A2, as reflected by the Standard
Deviation (SD) 2.60, suggests more diverse design choices
among students.

The number of methods varies considerably across student
solutions, indicating noticeable differences in design complexity.
The SD ranges from 8.71 for 2023-A1 to 12.78 for 2023-A2.

The number of fields across solutions reflects differing
approaches to class definitions. The SD ranges from 3.97 for
2024-A1 to 8.38 for 2023-A2, indicating varying levels of
data encapsulation. The higher standard deviation in 2023-
A2 suggests that some students opted for more attributes to
represent additional class states, possibly influenced by the
design patterns required in this assignment.

Overall, there is a noticeable variance in the distributions,
which reflects the design freedom allowed by SYSCLI system-
level tests. This level of variability would not be possible
with traditional unit/integration tests, as they invoke specific
code, thereby constraining the design and limiting the range
of possible implementations.

V. REFLECTION AND LESSONS LEARNED

This section reflects on our experience using SYSCLI,
highlighting the main challenges we faced and what went well.
It also presents a series of lessons learned, offering valuable
advice for educators interested in using SYSCLI to assess and
provide feedback on student assignments.

A. What Went Well

Ease of writing tests: Writing test cases with our framework
is intuitive, as it simply involves specifying inputs and expected
outputs of user interactions with the CLI. We found that
an effective approach is to copy our console interactions
with the assignment solutions (input and output), and then
translate these into the runCommands methods accompanied
by assertContains and assertDoesNotContain as-
sertions to validate the outputs. Interestingly, we discovered that
some students, without prior knowledge of software testing,
were able to create their own system-level test cases using
SYSCLI, inferring what the hidden test cases might cover. The
simplicity of SYSCLI encouraged students to share their test
cases with each other, helping them gain confidence in their
implementations and better prepare for the hidden test cases.

System-level testing vs. LLMs: While LLMs demonstrate
proficiency in tackling simple tasks typical of introductory
courses, they face some difficulty with more complex tasks
that demand higher levels of problem solving [39]. We have
observed that SYSCLI test cases present a challenge for
LLMs when generating solutions for our assignments. LLMs
tend to struggle with solving larger assignments that require
coordination across multiple classes and components. Although
we have not yet rigorously evaluated LLMs on solving our
assignments, we have noticed that CHATGPT performs poorly
at completing our assignments when provided with SYSCLI’s
test cases. We conjecture that unit and integration tests often
reveal detailed implementation hints, which could make it easier
for LLMs to produce correct solutions. In contrast, SYSCLI
tests focus solely on specifying command-level interactions,
withholding all implementation details. This may increase the
difficulty for LLMs in generating correct solutions.

Design freedom and plagiarism detection: Granting
students design freedom in their assignments led to a wide
range of student solutions, often employing very distinct design
decisions. This diversity was reflected in the high variance of
software metrics across the submissions (see Section IV). We
have also found that such diversity across student submissions
makes it extremely improbably and suspicious for two students
to independently arrive at an identical OOP design solution.
Prior to incorporating SYSCLI into our assignments, where
students were required to follow the same implementation
design prescribed by unit and integration tests, detecting
plagiarism was very challenging due to the uniformity of
expected solutions. We have found that SYSCLI not only
facilitates creativity and critical thinking, but it also helped us
to more effectively identify plagiarism cases.

B. Challenges

Maintaining the test cases: One of the biggest challenges
we face is the maintenance of SYSCLI test cases. Although
writing these tests is simple, modifying them to align with
frequent assignment changes can be challenging—especially
when drafting a new assignment. Unlike standard unit or
integration JUNIT tests, SYSCLI tests require careful review
of all string arguments in both commands and assertions.
When a test prescribes a complex sequence of interactions, it
becomes long and includes multiple assertions, which can be
difficult to update without extensive review. The presence of
multiple assertions within a single test is often unavoidable in
SYSCLI, as the interactions tested often involve a sequence
of commands. Test cases containing multiple assertions are
sometimes considered suffering from a “test smell”, known as
Assert Roulette [40]. Multiple assertions can make debugging
more challenging, as developers may need to spend additional
time identifying the specific cause of test failure. However,
recent research by Panichella et al. [41] suggests that the impact
of Assert Roulette on test readability and maintainability has
reduced with the advancement of modern testing frameworks,
which now provide feedback on individual assertion failures.
SYSCLI also provides such a feedback (see Section II).

It is worth noting that, unlike real-world software projects,
assignments in educational settings are not expected to evolve
over time, so test cases generally do not require continuous
updates. However, should assignments be revised before
releasing to students, maintaining and updating the test cases
to reflect these changes can be a delicate process. In such
cases, it may be more efficient to discard the old test cases,
and create new one by copying and pasting the updated CLI
interactions obtained when running the revised solution.

C. Lessons Learned

Use meaningful test case names: Descriptive test case
names help students quickly understand the purpose of each test.
They also provide immediate context when a test fails, making
it easier for students to identify the specific functionality that is
not working. Instead of JAVA’s traditional camelCase, we use
underscores in test names—a trend that enhances readability
in longer, descriptive JUNIT test names [42].

Start with simple tests: To boost student confidence,
we suggest beginning each assignment with very
simple tests that students can pass easily. We also use
@FixMethodOrder(MethodSorters.NAME_ASCEN
DING) to ensure that test cases are executed in alphabetic
order, as specified by an incremental identifier in the test
names. For example, the prefix T101 in Listing 3 specifies
that this is the first test case of Task 1.

Avoid creating test cases that are too similar: Tests that
are too similar can make a sudden jump in passing multiple
tests with a single code change, which undermines the gradual
progress intended by a test-driven approach. We also ask
students to make a GIT commit each time they pass a new test
case. This practice helps us identify plagiarism or suspicious
cases where students make a single commit with a full solution,
allowing us to observe more genuine, incremental progress.

Ensuring robust test cases with teaching assistants: To
ensure test cases are correct, have teaching assistants complete
the assignment using only the handout and visible test cases —
simulating the student experience — before releasing it. Then
run all tests (both visible and hidden) on their solutions to
verify they pass. Any failing tests may indicate issues with the
assignment instructions or inconsistencies in the hidden test
cases. We have consistently found this approach helps identify
problems before releasing the assignment to students.

Using GitHub Copilot: Using an IDE with the GITHUB
COPILOT plugin greatly enhanced productivity in generating
test cases. The plugin, which is free for educators [43], was
helpful for brainstorming test scenarios and coding SYSCLI
test cases. After creating a few initial tests, GITHUB COPILOT
quickly grasped the assignment’s interactive CLI nature. Often,
simply providing a descriptive test method name was enough
for the plugin to generate most of the test code. Alternatively,
instructors could paste terminal output as a comment before
the test case, allowing GITHUB COPILOT to translate it into
the required SYSCLI format.

Preventing hard-coded solutions by students: To discour-
age students from hard-coding logic to pass specific visible test
cases, we inform them that we will check for such attempts.
We achieve this by modifying the visible test cases using
simple find-and-replace methods (e.g., changing "John" to
"Jenny" or "23" to "25"), while maintaining the original
intent. This approach ensures that genuine solutions remain
effective regardless of these changes and prevents students from
undermining the assignment’s integrity. It encourages them to
develop robust solutions that work for a range of equivalent
values—not just to pass the visible test cases, which should be
viewed only as exemplars to guide them in their development.

Discuss the assignment design in class: After each
assignment deadline, we held in-class discussions to review
the instructor’s solution. This helps students understand key
software design decisions and recognize the qualities of a well-
designed solution, supporting learning of OOP design [44]. We
highlighted that multiple equally valid design solutions exist
and encouraged students to share their ideas, fostering open
dialogue on design practices. This approach presented various
ways to solve the same problem and provided opportunities
for peer learning and constructive feedback.

VI. RELATED WORK

This section discusses related work on SYSCLI in assessing
programming assignments and system-level testing frameworks.

Automated program assessment of student coding as-
signments has been widely studied, with several surveys that
overview the field [1]–[6]. However, the automated assessment
and feedback of CLI-based assignments remains underex-
plored, despite evidence suggesting that CLI-based assignments
are highly effective for introductory software engineering
courses [15]–[18]. Indeed, CLI-based tasks simulate real-
world software usage scenarios offering practical benefits like
simplicity and emphasis on core programming skills [15].

System-Level testing frameworks primarily focus on Web
and GUI applications, aiming to simulate user interactions in
GUI environments. Popular frameworks are SELENIUM [45]
and CYPRESS [46], which automate web testing, and tools
like AUTOIT [47] and SIKULI [48], which are designed for
GUI automation. These tools lack support for CLI applications,
which involve text-based command input and output parsing.
In contrast, SYSCLI is a system-level testing framework for
interactive CLI-based applications.

Testing frameworks for CLI-based applications: EX-
PECT [49] is a tool primarily designed for task automation
of BASH applications. It enables users to automate CLI
interactions by simulating command inputs and capturing
program outputs. While EXPECT is effective for automating
complex terminal workflows, it lacks structured test case
definitions and built-in assertion mechanisms. In contrast,
SYSCLI allows us to define inputs and assertions in a structured
manner, similar to how JUNIT tests are defined. CLITEST [19]
and BATS [20] are frameworks for implementing system-level
tests for PYTHON and BASH CLI applications, respectively.

Both CLITEST and BATS offer a way to automate command-
line interactions and verify outputs. However, both tools are
limited to their respective languages and do not support JAVA-
based CLI applications, making them not applicable in contexts
where JAVA is the chosen language for CLI development.
Moreover, to the best of our knowledge, there have been no
studies examining the use of system-level testing tools (like
CLITEST and BATS) for assessing student assignments.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented an experience report on using SYSCLI,
a novel framework for developing system-level test cases to
assess and provide feedback on student assignments. Overall,
our experience has been highly positive. Our evaluation demon-
strates that SYSCLI test cases are effective in assessing student
assignments while also allowing students design freedom,
which is essential for fostering a deeper understanding of
object-oriented programming principles.

We plan to continue using SYSCLI in our course and we
encourage the software engineering education community to
adopt it as well. There are several exciting future works for
SYSCLI. We now discuss the three most promising ones.

Adding new assertion types: Expanding assertion types
would enhance SYSCLI’s test case expressiveness. For ex-
ample, an assertMatchesRegex(regex) could ver-
ify output against regular expression patterns, useful for
testing specific formats like dates. Another example is
assertCountString(string, n), which could check
if a string appears a specified number of times in the output.

Record and replay: Testing frameworks for web and
GUI applications often offer record-and-replay modes to
automatically translate interactions into test cases. For ex-
ample, SELENIUM [45] provides a plugin that records user
interactions and generates JUNIT test cases. We envision
a similar feature for SYSCLI, where a specific command
(e.g., START_RECORDING) begins recording interactions, and
END_RECORDING stops the recording and automatically gen-
erates a SYSCLI test case. This could significantly accelerate
test case creation for instructors and help students generate
regression tests. Assertions like assertContains could be
auto-generated from console output, and test names could be
suggested by LLMs based on the test code and handout.

Automated test generation using LLMs: Automated test
generation for programming assignments [50] has potential to
further reduce instructor effort in defining test cases. We began
exploring the idea of using a white-box approach to generate
commands that maximize branch coverage of the instructor
solution. However, as discussed in this paper, we believe that a
black-box approach is preferable, as white-box-generated tests,
while effective for coverage, may not align with canonical
or meaningful usage of the application. Given our positive
experience with GITHUB COPILOT, future research could
explore whether LLMs can generate semantically meaningful
tests based on the assignment handout.

REFERENCES

[1] R. Romli, S. Sulaiman, and K. Z. Zamli, “Automatic programming
assessment and test data generation a review on its approaches,” in 2010
International symposium on information technology, vol. 3. IEEE, 2010,
pp. 1186–1192.

[2] S. Nayak, R. Agarwal, and S. K. Khatri, “Automated assessment tools for
grading of programming assignments: A review,” in 2022 International
Conference on Computer Communication and Informatics (ICCCI).
IEEE, 2022, pp. 1–4.

[3] H. Aldriye, A. Alkhalaf, and M. Alkhalaf, “Automated grading systems
for programming assignments: A literature review,” International Journal
of Advanced Computer Science and Applications, vol. 10, no. 3, 2019.

[4] J. C. Caiza and J. M. Del Alamo, “Programming assignments automatic
grading: review of tools and implementations,” INTED2013 Proceedings,
pp. 5691–5700, 2013.

[5] A. Luxton-Reilly, E. Tempero, N. Arachchilage, A. Chang, P. Denny,
A. Fowler, N. Giacaman, I. Kontorovich, D. Lottridge, S. Manoharan,
S. Sindhwani, P. Singh, U. Speidel, S. Stephen, V. Terragni, J. Whalley,
B. Wuensche, and X. Ye, “Automated Assessment: Experiences From
the Trenches,” in Proceedings of the Australasian Computing Education
Conference, 2023, pp. 1—-10.

[6] H. Keuning, J. Jeuring, and B. Heeren, “A systematic literature review
of automated feedback generation for programming exercises,” ACM
Transactions on Computing Education (TOCE), vol. 19, no. 1, pp. 1–43,
2018.

[7] C. Iddon, N. Giacaman, and V. Terragni, “GradeStyle: GitHub-Integrated
and Automated Assessment of Java Code Style,” in IEEE/ACM Inter-
national Conference on Software Engineering, SEET track, 2023, pp.
192–197.

[8] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback
generation for introductory programming assignments,” in Proceedings
of the 34th ACM SIGPLAN conference on Programming language design
and implementation, 2013, pp. 15–26.

[9] K. Buffardi and S. H. Edwards, “The role of automated feedback in
supporting students learning computer science,” in Proceedings of the
46th ACM Technical Symposium on Computer Science Education. ACM,
2015, pp. 529–534.

[10] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing,
3rd ed. John Wiley & Sons, 2011.

[11] T. B. Hilburn and M. Towhidnejad, “Large projects as capstones: Benefits
for software engineering students,” IEEE Transactions on Education,
vol. 50, no. 3, pp. 224–232, 2007.

[12] D. Parsons and M. Mentis, “Large-scale software engineering projects in
education: Learning benefits and challenges,” in Proceedings of the 17th
ACM Annual Conference on Innovation and Technology in Computer
Science Education. ACM, 2012, pp. 21–26.

[13] G. Schilling and M. Harris, “The impact of long-term projects on student
learning in software engineering courses,” in Proceedings of the 2015
ASEE Annual Conference & Exposition. ASEE, 2015, pp. 1–8.

[14] M. Fowler and A. Scott, “Experience report: Large project assignments in
software engineering courses,” in Proceedings of the 25th International
Conference on Software Engineering. IEEE, 2002, pp. 469–476.

[15] S. Rogerson and P. Biddle, “Cli vs. gui: Teaching programming
fundamentals in an introductory course,” in Proceedings of the 2019
IEEE Frontiers in Education Conference (FIE). IEEE, 2019, pp. 1–5.

[16] A. Gupta and N. Sharma, “Teaching introductory programming through
command-line interfaces: A case study,” Journal of Computer Science
Education, vol. 30, no. 2, pp. 105–123, 2020.

[17] J. Foster and T. Rahman, “Using command-line programs to teach
software development principles,” in Proceedings of the 47th ACM
Technical Symposium on Computing Science Education. ACM, 2016,
pp. 128–133.

[18] R. Milliken and A. Smith, “Introducing command-line tools to first-year
computing students,” in Proceedings of the 23rd Annual ACM Conference
on Innovation and Technology in Computer Science Education. ACM,
2018, pp. 300–305.

[19] A. Jargas, “clitest: Command line interface tester,” https://github.com/
aureliojargas/clitest, 2024, accessed: 2024-10-26.

[20] B. C. Team, “Bats-core: Bash automated testing system,” https://github.
com/bats-core/bats-core, 2024, accessed: 2024-10-26.

[21] M. M. Hakan Erdogmus and M. Torchiano, “On the effectiveness of
the test-first approach to programming,” IEEE Transactions on Software
Engineering, vol. 31, no. 3, pp. 226–237, 2005.

[22] V. Terragni and N. Giacaman, “Syscli: A system-level test-
ing framework for cli applications,” 2024, https://github.com/
Digital-Educational-Engineering/syscli.

[23] V. Terragni, P. Salza, and F. Ferrucci, “A Container-Based Infrastructure
for Fuzzy-Driven Root Causing of Flaky Tests,” in 42nd IEEE/ACM
International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), 2020, pp. 69–72.

[24] N. Giacaman, P. Roop, and V. Terragni, “Evolving a Programming CS2
Course: A Decade-Long Experience Report,” in Proceedings of Technical
Symposium on Computer Science Education, 2023, pp. 507–513.

[25] J. L. Bishop and M. A. Verleger, “The flipped classroom: A survey of
the research,” Proceedings of ASEE National Conference, pp. 23–1200,
2013.

[26] J. O’Flaherty and C. Phillips, “The use of flipped classrooms in higher
education: A scoping review,” The Internet and Higher Education, vol. 25,
pp. 85–95, 2015.

[27] J. R. Anthony Robins and N. Rountree, “Learning and teaching
programming: A review and discussion,” Computer Science Education,
vol. 29, no. 3, pp. 221–263, 2019.

[28] M. Guzdial, “Why i use media computation for teaching computer
science,” in Proceedings of the 45th ACM Technical Symposium on
Computer Science Education, 2014, pp. 89–94.

[29] Y.-C. Tu, V. Terragni, E. Tempero, A. Shakil, A. Meads, N. Giacaman,
A. Fowler, and K. Blincoe, “Github in the classroom: Lessons learnt,”
in Proceedings of the Australasian Computing Education Conference,
2022.

[30] C. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development. Prentice Hall,
2005.

[31] D. Janzen and H. Saiedian, “Test-driven learning in early programming
courses,” in Proceedings of the 39th International Conference on Frontiers
in Education, 2005, pp. T2G–1–T2G–6.

[32] K. Beck, Test-Driven Development: By Example. Addison-Wesley, 2000.
[33] B. S. Clegg, P. McMinn, and G. Fraser, “An empirical study to determine

if mutants can effectively simulate students’ programming mistakes to
increase tutors’ confidence in autograding,” in Proceedings of the 52nd
ACM Technical Symposium on Computer Science Education, 2021, pp.
1055–1061.

[34] Y. Jia and M. Harman, “Analysis and comparison of mutation testing
strategies,” Software Testing, Verification & Reliability, vol. 20, no. 3,
pp. 239–262, 2010.

[35] D. Schuler and A. Zeller, “Evaluating the effectiveness of test suites in
detecting faults using mutation testing,” Software Testing, Verification &
Reliability, vol. 23, no. 5, pp. 366–394, 2013.

[36] M. Gouveia and A. Costa, “Black-box testing in software engineering
education: A case study,” IEEE Transactions on Education, vol. 66, no. 1,
pp. 45–58, 2023.

[37] K. Maurer and D. Wong, “Promoting design flexibility through black-box
testing,” Journal of Software Testing and Verification, vol. 30, no. 4, pp.
372–389, 2022.

[38] M. Aniche, Java code metrics calculator (CK), 2015, available in
https://github.com/mauricioaniche/ck/.

[39] P. Denny, V. Kumar, and N. Giacaman, “Conversing with Copilot:
Exploring prompt engineering for solving CS1 problems using natural
language,” in Proceedings of the 54th ACM Technical Symposium on
Computer Science Education, 2023, p. 1136–1142.

[40] A. Van Deursen, L. Moonen, A. Van Den Bergh, and G. Kok, “Refactoring
test code,” in Proceedings of the 2nd international conference on extreme
programming and flexible processes in software engineering (XP2001).
Citeseer, 2001, pp. 92–95.

[41] A. Panichella, S. Panichella, G. Fraser, A. A. Sawant, and V. J.
Hellendoorn, “Test smells 20 years later: detectability, validity, and
reliability,” Empirical Software Engineering, vol. 27, no. 7, p. 170, 2022.

[42] M. P. Robillard, M. Nassif, and M. Sohail, “Understanding test convention
consistency as a dimension of test quality,” ACM Transactions on Software
Engineering and Methodology, 2023.

[43] GitHub, “Github copilot now available for teachers,” 2023, accessed:
2024-11-01. [Online]. Available: https://github.blog/news-insights/
product-news/github-copilot-now-available-for-teachers

[44] Q. Fu, Y. Zheng, M. Zhang, L. Zheng, J. Zhou, and B. Xie, “Effects
of different feedback strategies on academic achievements, learning
motivations, and self-efficacy for novice programmers,” Educational
technology research and development, vol. 71, no. 3, pp. 1013–1032,
2023.

https://github.com/aureliojargas/clitest
https://github.com/aureliojargas/clitest
https://github.com/bats-core/bats-core
https://github.com/bats-core/bats-core
https://github.com/Digital-Educational-Engineering/syscli
https://github.com/Digital-Educational-Engineering/syscli
https://github.blog/news-insights/product-news/github-copilot-now-available-for-teachers
https://github.blog/news-insights/product-news/github-copilot-now-available-for-teachers

[45] “Selenium: Web application testing framework,” 2024, https://www.
selenium.dev.

[46] “Cypress: End-to-end testing framework,” 2024, https://www.cypress.io.
[47] “Autoit: Automation tool for gui applications,” 2022, https://www.

autoitscript.com.
[48] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: Using gui screenshots

for search and automation,” in Proceedings of the 22nd Annual ACM
Symposium on User Interface Software and Technology, 2009, pp. 183–
192.

[49] D. E. Libes, “Expect: A power tool for systems administration automa-
tion,” NIST Publications, 1995. [Online]. Available: https://www.nist.
gov/publications/expect-power-tool-systems-administration-automation

[50] R. Izuta, S. Matsumoto, H. Igaki, S. Saiki, N. Fukuyasu, and S. Kusumoto,
“Detecting functional differences using automatic test generation for
automated assessment in programming education,” in 2021 28th Asia-
Pacific Software Engineering Conference (APSEC). IEEE, 2021, pp.
526–530.

https://www.selenium.dev
https://www.selenium.dev
https://www.cypress.io
https://www.autoitscript.com
https://www.autoitscript.com
https://www.nist.gov/publications/expect-power-tool-systems-administration-automation
https://www.nist.gov/publications/expect-power-tool-systems-administration-automation

	Introduction
	SysCLI
	Running Example
	Framework Implementation

	Experience Context
	Course Context
	Course Assignments
	Creating Assignment Test Cases
	Course Assessment and Feedback

	Evaluation
	Testing Results
	Evaluating Test Effectiveness
	Evaluating OO Design Freedom

	Reflection and Lessons Learned
	What Went Well
	Challenges
	Lessons Learned

	Related Work
	Conclusions and Future Work
	References

