
Differential Testing of Concurrent Classes
Valerio Terragni

University of Auckland
Auckland, New Zealand
v.terragni@auckland.ac.nz

Shing-Chi Cheung
The Hong Kong University of Science and Technology

Hong Kong, China
scc@cse.ust.hk

Abstract—Concurrent programs are pervasive, yet difficult
to write. The inherent complexity of thread synchronization
makes the evolution of concurrent programs prone to concurrency
faults. Previous work on regression testing concurrent programs
focused on reducing the cost of re-run the existing tests. However,
existing tests may not be able to expose the regression faults
in the modified program. In this paper, we present CONDIFF a
differential testing technique that generates concurrent tests and
oracles to expose behavioral differences between two versions of
a given concurrent class. Since concurrent programs are non-
deterministic, this involves exploring all possible non-deterministic
thread interleavings of each generated test on both versions.
However, we can afford to analyze only a few concurrent tests
due to the high cost of exhaustive interleaving exploration. To
address the challenge, CONDIFF leverages the information of
code changes and trace analysis to analyze only those concurrent
tests that are likely to expose behavioral differences (if they exist).
We evaluated CONDIFF on a set of Java classes. Our results
show that CONDIFF can effectively generate concurrent tests that
expose behavioral differences.

Index Terms—differential testing, concurrency, regression
testing, test generation, oracle generation, thread-safety

I. INTRODUCTION

The ubiquity of multi-core processors has led to the pervasive
adoption of concurrency programming to leverage the available
parallelism. The inherent complexity of concurrency and
synchronization makes the evolution of concurrent programs
an error-prone activity [1] as code modification could introduce
concurrency faults. Such faults are difficult to expose at runtime
since they only manifest under some specific – usually few –
non-deterministic thread interleavings [2], [3].

Regression testing is the activity to guard against such faults
by identifying tests that behave differently before and after
code modifications [4], [5]. Developers usually start regression
testing by re-running on the modified version the existing tests
that run successfully before the code modification [5]. This to
check if any of such tests fail unexpectedly.

A fundamental problem of such an approach is that the time
required to re-execute all existing tests can easily exceed the
affordable time budget [5]–[8]. This problem is exacerbated
when regression testing concurrent programs, as concurrent
(multi-thread) tests are usually long-running in order to explore
a large number of thread interleavings [9], [10]. Researchers
have proposed techniques that tackle this problem in the context
of regression testing of concurrent programs [10], [11]. Given a
set of existing concurrent tests, these techniques perform selec-
tion at test (SIMRT [11]) or at interleaving (RECONTEST [10])

levels. However, the existing tests may not necessarily expose
all regression faults in the modified program [12]–[14], as
tests are often written without considering how the program
will be modified [15]. They may miss either the scenarios
that exhibit behavioral differences or the oracles capable of
detecting such differences [16], [17]. Regression testing often
requires defining additional regression tests and oracles [13].

Differential Testing [18] is an automated approach that
exposes various errors by analyzing two or more comparable
systems [19]–[28]. One can employ differential testing to
generate new regression tests by treating two versions of the
same program as comparable systems [15], [16], [29]–[31].

In a nutshell, differential testing for regression testing works
in two phases: test generation and behavioral checking. The
first phase generates a large number of tests that exercise the
modified parts of the program. The second phase executes each
generated test on both program versions to collect the test
outputs (e.g., method return values, program states, exceptions)
and reports a behavioral difference (oracle violation) if the
outputs of a test diverge across the versions [16], [29]. By
using the two versions as cross-referencing oracles, differential
testing is able to detect also those regression faults that do not
exhibit explicit erroneous behaviors like crashes or assertion
failures [16]. Note that differential-testing cannot (nor aim
to) guess developers’ intentions [15], [16], [29]–[31]. After
behavioral differences are exposed, developers need to identify
the unintentional differences from the intentional ones.

In this paper, we propose the use of differential testing
for generating tests and oracles to expose concurrency faults
introduced by code modifications. More specifically, we target
regression testing of Object-Oriented (OO) concurrent programs
at class level. Existing differential testing techniques for OO
programs mostly target sequential faults (e.g., [16], [17],
[29], [30], [32]), which makes them inadequate. First, they
generate sequential tests [33] (i.e., single-threaded method
call sequences), which cannot manifest concurrency faults.
Second, they assume deterministic executions, while multi-
thread executions are intrinsically non-deterministic [34], [35].

To address this gap, this paper presents a novel differential
testing technique called CONcurrent DIFFerential testing
(CONDIFF) aiming at exposing non-deterministic behavioral
differences between two versions of a concurrent class. CON-
DIFF adapts the two phases of traditional differential testing as
follows. In the test generation phase, CONDIFF generates con-
current unit tests that invoke the changed methods of the class.

vter674
This is the authors’ version of the paper that has been accepted for publication in the
18th IEEE International Conference on Software Testing, Verification and Validation (ICST 2025)

A concurrent test consists of multiple concurrently executing
threads that exercise a shared instance of the class [36]–[38].
In the behavioral checking phase, CONDIFF executes each
generated test on both program versions under all possible
non-deterministic thread interleavings (using the stateful model-
checker JPF [39]) while collecting the test outputs. CONDIFF
needs to explore all interleavings to guarantee that behavioral
differences are caused by code changes and not by the non-
determinism of concurrent executions.

These adaptations, although necessary, introduce a funda-
mental challenge. The behavioral checking phase is often
computational expensive since there is a huge number of
possible interleavings for a concurrent test [40], [41]. As such,
the behavioral checking can analyze, within a reasonable time
budget, only a few concurrent tests. This is an issue because
there are a lot of possible concurrent tests that exercise a given
concurrent class [36]. Test generation often needs to generate
many concurrent tests before finding a test that manifests the
concurrency fault (behavioral difference) [36], [38].

To address the challenge, our intuition is that manifesting
different interleavings across the two program versions before
and after modification is a pre-requisite for a concurrent test
to expose non-deterministic behavioral differences. Based on
this intuition, CONDIFF performs an additional filtering phase
after the test generation and before the behavioral checking
phase. In this phase, CONDIFF adapts the change impact
analysis from our previous work RECONTEST [10] to identify
whether each generated test can expose different interleavings
across program versions. CONDIFF performs the (expensive)
behavioral checking only for tests meeting this criterion. The
analysis is precise and inexpensive. Its precision comes from
using information gathered during a test’s real execution, and
it avoids high costs by inferring different interleavings without
enumerating them (which is exactly the cost to avoid).

We evaluate CONDIFF with 24 revisions of Java concurrent
classes that manifest behavioral differences only under partic-
ular thread interleavings. CONDIFF is able to expose all of
them in four minutes on average. Compared with a version
of CONDIFF without the filtering phase, CONDIFF reduces
the number of tests for behavioral checking as much as 96.5x
(15.5x on average), and it reduces the time for revealing the
behavioral differences as much as 9.9x (3.2x on average). In
summary, this paper makes four contributions:
• We present the first formal definition of differential testing

with the goal of exposing concurrency faults that manifest
only under specific non-deterministic thread interleavings;

• We prove that, under a certain assumption, concurrent tests
that exhibit behavioral differences are included in the class
of concurrent tests that exhibit different interleavings;

• We leverage this result and propose CONDIFF, the first tech-
nique to effectively expose behavioral differences between
two versions of a concurrent class;

• We implement the proposed technique for Java programs and
we demonstrate its effectiveness on 24 faulty revisions.

• We released our experimental data to facilitate future work
in this area [42].

II. BACKGROUND AND PROBLEM FORMULATION

An Object-Oriented OO program is composed of a set of
classes. Each class defines a set of fields and methods. During
a program execution, each object (i.e., an instance of a class)
has a state that encompasses all of the current values of each of
its fields (e.g., 3, true, "hi!" for primitive fields). The value
of a non-primitive field is the state of the object referenced
by the field in a deep-copy semantic [43]. Each method in a
class has possibly empty sequence of input parameters, which
can be primitive values or object references. We treat the
object receiver of an instance method as the method’s first
parameter [33]. Since the behavior of method executions often
depends on the value/state of its input parameters [44], a test for
OO programs is no longer a set of input values but a sequence
of method calls that instantiates non-primitive parameters and
brings them to certain states [33], [44], [45].

Definition 1. A sequential test (st) is an ordered sequence of
method calls st = ⟨mc1, . . . ,mcn⟩ that exercises from a single
thread the public interface of a program.

Differential testing for OO sequential classes [16], [29],
[30] aims to determine via dynamic analysis how the behaviors
of a program P differ from the behaviors of P ′, a modified
version of P . Previous work mostly quantify behaviors by
considering the observable outputs of outer-most1 method calls.

Definition 2. The observable output Oi of a method call
mci ∈ st consists of two elements:

(i) the states of the non-primitive input parameters (including
the object receiver state) when mc exits

(ii) mc return value (if any)

If the return type is non-primitive, the return value is the state
of the returned object. If a method terminates with an exception,
its return value is the stack trace of the exception [16].

Proving behavioral equivalence is undecidable in general
(Rice’s theorem [46]) and intractable in practice [47]. This is
because, given any non-trivial OO program the are infinitely
many sequential tests, since the length of method call sequences
can be arbitrary long [33]. On the contrary, differential testing
can prove that two program versions are behaviorally different
by proving the existence of a difference-revealing sequential
test. Following previous work, we define such tests as follows.

Executing a sequential test st = ⟨mc1, . . . ,mcn⟩ induces a
sequence of state transitions S0

mc1−−→ S1
mc2−−→ S2 . . .

mcn−−−→ Sn.
Let Si−1 denote the state of the program before mci is invoked,
and Si the state after. Let Ii ⊆ Si−1 denote the states/values of
mci’s parameters before mci is invoked. Let Oi ⊆ Si denote
the observable output of mci when it exists. Let OP

i and OP′

i

denote Oi when mi is executed with P and P ′, respectively.

Definition 3. A sequential test st is difference-revealing if and
only if ∃ mci ∈ st, OP

i (I) ̸= OP′

i (I), where I = IPi = IP
′

i .

1Each method call execution in st could transitively invoke other method
calls. We refer as outer-most the method calls in st, while we refer as nested
those that are transitively invoked by the execution of outer-most method calls.

Differential testing for OO concurrent classes. In this
paper, we study the problem of exposing non-deterministic
behavioral differences between two versions of a concurrent
class. A class is called concurrent if instances of such a class
are meant to be accessed concurrently from multiple threads.
Figure 2 shows an example of a Java concurrent class. A
concurrent class is thread-safe if it encapsulates synchronization
mechanisms (e.g., synchronized blocks in Java and mutexes
and semaphores in C) that guarantee that the same instance
of the class can be correctly accessed from multiple threads
without additional synchronization mechanisms other than the
ones implemented in the class [36], [38], [48]. A class is
thread-unsafe otherwise. Differential testing can be an effective
approach to expose thread-safety violations introduced by code
changes. The key idea is to assume that the previous version of
a concurrent class is thread-safe. Behavioral differences with a
modified version of the class represent thread-safety violations.

Traditional differential testing techniques for sequential
programs are inadequate for concurrent classes. They can only
reveal those differences that manifest sequentially, but not those
that manifest concurrently. The reason is twofolds.

Reason 1) They generate sequential (single-threaded) tests,
which unlikely exercise concurrency behaviors. Threads are
rarely spawned by the methods of concurrent classes [36],
[49]. Instead, the logistics of creating and running new threads
to invoke the methods of such class concurrently are often
taken care of by client code (e.g., test code). Therefore, we
need (multi-threaded) concurrent tests [36], [37], [49]–[51] to
exercise and validate concurrency behaviors.

Definition 4. A concurrent test (ct) is a series of method call
sequences ct=⟨prefix, suffix1, ..., suffixn⟩ (n ≥ 2) that exercise
from multiple threads a shared instance of a given class [36].

A concurrent test executes each call sequences in a distinct
thread. The prefix is a call sequence to be executed before all
suffixes. The prefix contains method calls that create shared
instances of a given class that will be accessed concurrently by
the suffixes. The prefix also contains method calls to bring the
shared instances to certain states that may allow the suffixes
to behave differently. A suffix is a call sequence supposed to
be executed concurrently with other suffixes after executing
the common prefix. The suffixes share instances created by the
prefix and use them as input parameters. Intuitively, we need
at least two concurrent threads (suffixes) (n ≥ 2) to create
meaningful concurrent tests [36], [41], [49].

Reason 2) They assume deterministic executions, while
concurrent executions are intrinsically non-deterministic, i.e.,
the execution of a method call mci is deterministic given Ii [43].
Under such assumption, these techniques can guarantee that the
reported behavioral differences is caused by the code revision.
This is a reasonable assumption for sequential programs2. How-
ever, this assumption is not realistic for concurrent programs, as
concurrent executions are intrinsically non-deterministic [34].

2Examples of non-deterministic sequential programs are those that behave
differently based on the current time, resource consumptions, network resources,
and randomness. Programs with such characteristics are fairly uncommon [52].

The behavior of a method call when executed concurrently
depend not only on the inputs, but also on the manifested
non-deterministic execution order of shared-memory accesses
across multiple threads, called interleaving [40], denoted by σ.

We now define a difference-revealing concurrent test by
taking into account the non-determinism of multi-threaded
executions. We use IS(P , ct) to denote the set of all feasible
interleavings that can be manifested when ct executes on P .
Let OP

i (I
P
i , σ) denote the observable outputs of executing a

method call mci on program P with input parameters IPi and
interleaving σ ∈ IS(P , ct).

Definition 5. A concurrent test ct is difference-revealing
if and only if ∃mci ∈ suffixj of ct such that I = IPi = IP

′

i and{ ⋃
σ∈IS(P,ct)

OP
i (I, σ)

}
△
{ ⋃

σ′∈IS(P′,ct)

OP′

i (I, σ′)

}
̸= ∅

△ is the symmetric difference A△B = (A−B)∪ (B−A).
A concurrent test is difference-revealing if executed on P ′

(or P) under a certain interleaving, it produces an observable
output that cannot be produced under any of the interleavings
that can be manifested by the test when executes on P (or P ′).

PROBLEM FORMULATION. Given two versions P and P ′

of a concurrent class and a time budget B, our research goal
is to automatically infer within B if P and P ′ are behavioral
different by generating a difference-revealing concurrent test.

III. MOTIVATING EXAMPLE

Figure 2 shows a simple example that we use to illustrate
the limitations of traditional approaches and the challenges of
differential testing concurrent classes. It shows two consecutive
versions (P and P ′) of a Java concurrent class by marking
the + added, − deleted lines. The public interface exposes
two operations: the withdraw and deposit of a positive amount.

In P every public method is declared synchronized.
Therefore, when a thread invokes one of these methods, it
acquires the lock associated with the object instance before
entering the method and releases it after. As such, if two threads
invoke these methods concurrently on the same instance their
executions are mutually exclusive. This makes the original
version of the class thread-safe.

To boost execution parallelism, developers reduce the size
of the critical sections in P ′ by postponing the lock acquisition
from the method declaration to the method body. The change
promotes concurrency: multiple threads can now check in
parallel if the thread-local variable amount is positive (line
7 and 13 in Figure 2). However, the developers erroneously
left the statement at line 14 outside the critical section. Line
14 performs an access to the thread-shared variable balance,
which could read a stale value of balance while another
thread is updating it. This makes the new version of the class
no longer thread-safe. In fact, concurrent tests exist that behave
differently when executed on P and P ′. The goal of differential
testing is to generate such tests automatically and to report
their behavioral differences to the developers.

thread t1

prefix:	Account	a	= new Account();
a.deposit(3);
a.deposit(7);
a.withdraw(5);

suffix	1		
a.deposit(3);	

ct2

thread t2
suffix	2

a.deposit(2);	

thread t1

prefix:	Account	a	= new Account();
a.deposit(3);
a.withdraw(5);
a.deposit(7);

ct3

thread t2

suffix	1		
a.withdraw(8);	

suffix	2
a.withdraw(10);	

prefix:	Account	a	= new Account();
a.deposit(3);
a.deposit(2);

ct1

thread t1
suffix	1		
a.withdraw(10);	

thread t2
suffix	2

a.deposit(5);	

Fig. 1. Examples of concurrent tests for the class in Figure 2.

Fig. 2. Two versions of a concurrent class that exhibit behavioral differences
when the class is accessed concurrently from multiple threads.

We now discuss three concurrent tests (ct1, ct2, and ct3)
shown in Figure 1. Among the three concurrent tests, ct3 is the
only difference-revealing test (Definition 5). Each test has two
concurrent threads t1 and t2 executing the suffix1 and suffix2,
respectively. All suffixes are composed of one method call. We
use mcS1 to denote the one of suffix1 and mcS2 the one of
suffix2. The input of the method calls mcS1 and mcS2 (IS1

and IS2) comprises (i) the state of the object receiver a after
executing the common prefix and (ii) the value of the input
parameter amount. For any test, IPS1 = IP

′

S1 and IPS2 = IP
′

S2 as
the behavioral difference cannot manifest sequentially.

To ease the following discussion, Table I shows for each
concurrent test (ct1, ct2 and ct3) and program version (P and
P ′) the possible interleavings and the corresponding observable
outputs of mcS1 and mcS2 (OS1, OS2). For describing the
interleavings we use W t

l (x) and Rt
l(x) to denote the write and

read accesses, respectively, on the shared-memory balance

with value x, triggered by the execution of line l, performed
by thread t. For example, Rt1

14(5), represents that thread t1
reads 5 from the shared-memory balance by executing the
statement at line 143. The observable outputs of mcS1 and
mcS2 (OS1 and OS2) are composed of the state of the object
receiver a when the method calls exits.

There are two possible interleavings when the first test (ct1)
executes on P (see Table I). In σ1, t1 evaluates the if condition

3Note that we do not show the execution order of shared-memory accesses
in the prefix. By being executed sequentially before all the concurrent suffix
the execution order is always the same.

TABLE I
INTERLEAVINGS AND OUTPUTS OF THE TESTS IN FIG. 1
σ interleaving OS1 OS2

ct1

P 1 ⟨Rt1
14(5), R

t2
9 (5),W t2

9 (10)⟩ 5 10
2 ⟨Rt2

9 (5),W t2
9 (10), Rt1

14(10), R
t1
16(10),W

t1
16(0)⟩ 0 10

P ′
3 same as σ1 5 10
4 same as σ2 0 10
5 ⟨Rt2

9 (5), Rt1
14(5),W

t2
9 (10)⟩ 5 10

ct2

P 6 ⟨Rt1
9 (5),W t1

9 (8), Rt2
9 (8),W t2

9 (10)⟩ 8 10
7 ⟨Rt2

9 (5),W t2
9 (7), Rt1

9 (7),W t1
9 (10)⟩ 10 7

P ′ 8 same as σ6 8 10
9 same as σ7 10 7

ct3

P 10 ⟨Rt1
14(10), R

t1
16(10),W

t1
16(2), R

t2
14(2)⟩ 2 2

11 ⟨Rt2
14(10), R

t2
16(10),W

t2
16(0), R

t1
14(0)⟩ 0 0

P ′

12 same as σ10 2 2
13 same as σ11 0 0
14 ⟨Rt1

14(10), R
t2
14(10), R

t1
16(10),W

t1
16(2), R

t2
16(2),W

t2
16(−8)⟩ 2 -8

15 ⟨Rt2
14(10), R

t1
14(10), R

t1
16(10),W

t1
16(2), R

t2
16(2),W

t2
16(−8)⟩ 2 -8

16 ⟨Rt1
14(10), R

t1
16(10), R

t2
14(10),W

t1
16(2), R

t2
16(2),W

t2
16(−8)⟩ 2 -8

17 ⟨Rt2
14(10), R

t1
14(10), R

t2
16(10),W

t2
16(0), R

t1
16(0),W

t1
16(−8)⟩ -8 0

18 ⟨Rt1
14(10), R

t2
14(10), R

t2
16(10),W

t2
16(0), R

t1
16(0),W

t1
16(−8)⟩ -8 0

19 ⟨Rt2
14(10), R

t2
16(10), R

t1
14(10),W

t2
16(0), R

t1
16(0),W

t1
16(−8)⟩ -8 0

at line 14 to false and therefore it does not perform the withdraw
operation. Conversely, in σ2, t1 evaluates the condition to
true since line 14 is executed after t2 terminates the deposit
operation. The test has a non-deterministic behavior because
t1 can perform the withdraw only under σ1. OP

S1(I, σ1) = 5,
while OP

S1(I, σ2) = 0. There are three different interleavings
when the test executes on P ′ (σ3, σ4, σ5 Table I). σ5 is a new
interleaving introduced by the code changes, which does not
lead to new observable outputs. As a result, the concurrent
test ct1 is not difference-revealing. Note that under Def. 3,
ct1 would be erroneously marked difference-revealing if σ1 is
observed when ct1 executes on P and σ3 on P ′.

The second test (ct2) performs two concurrent deposits
on a shared account with balance 5. There are two possible
interleavings when the test executes on both P and P ′. All of
these interleavings produce the same observable outputs.

The third test (ct3) performs two concurrent withdrawals on
a shared account with balance 10. Only one can be completed
as the balance is not enough to perform both of them. There
are two possible interleavings when the test executes on P .
When the test executes on P ′ it can manifest eight different
interleavings, six of them cannot be manifested in P . In P ′ the
synchronization mechanism is changed and now the read access
at line 14 can interleave between the read and write accesses
at line 16. For such new interleavings the observable outputs
of mcS1 or mcS2 is -8. This behavior cannot be observed
in P under all possible interleavings. As a result, ct3 is a
difference-revealing test under Definition 5.

From this motivating example, we can identify two main
challenges of differential testing for concurrent classes.

Challenge 1: Differential testing needs to explore a large
number of concurrent tests, since only particular combinations
of sequential prefix, concurrent suffixes and input parameter
values manifest behavioral differences. For example, changing
the order between a.deposit(7) and a.withdraw(5) in
the prefix of ct3 or changing the input parameter amount to
5 on both mcx and mcy would make ct3 ̸∈ CTdr. If we set a
bound l on the maximum call sequence length, and a bound k
on the number of parameters values for each method call in a
test. Given a class with m public methods there are at most
(k ·m)(n+1)·l concurrent tests, where n (≥ 2) is the number of
suffixes (see Definition 5). For illustration, let us consider the
class in Figure 2 (m = 2). With a relatively small values of l
(= 10) and k (= 5) there are 1030 possible concurrent tests.

Challenge 2: High cost of behavioral checking. To infer if
a concurrent test ct is difference-revealing by Definition 5
requires to explore all interleavings in IS(P, ct) and all
interleavings in IS(P ′, ct). There are (M1+M2)!

M1!·M2!
possible

interleavings for a concurrent test with two concurrent threads,
where M1 is the number of shared-memory accesses trig-
gered by the first thread, and M2 that of the second. For
illustration, consider ct3 (M1=M2=3). In the worst case
(when all interleavings are feasible on both program versions),
CONDIFF needs to execute ct on 40 different interleavings
while collecting the observable outputs of the method calls.
With the increase of M1 and M2 this number grows rapidly.
For example, it becomes ∼ 7 · 1011 for M1=M2=10.

IV. CONDIFF

These challenges highlight the need for a differential
testing approach that efficiently identifies difference-revealing
concurrent tests while minimizing the search space. A common
strategy, widely used in differential testing for sequential
programs [16], [29], [30], [53], is to generate tests that invoke
only the changed methods. However, this alone does not signif-
icantly reduce the search space, as traditional approaches still
require generating many sequential tests to reveal behavioral
differences [29]. Generating many tests is manageable for
sequential programs but problematic for concurrent programs
due to the high cost of behavioral checking.

Our intuition to further reduce the search space is that the set
of difference-revealing concurrent tests (CTdr) can be over-
approximated, under a certain assumption, by CT∆IS the set of
tests that manifest different interleavings across P and P ′, i.e.,
CT∆IS = {ct ∈ CT : IS(P, ct) △ IS(P ′, ct) ̸= ∅} ⊆ CT .

The following theorem and proof assume that if a test
follows the same interleaving (i.e., same memory accesses,
same values, and same order of accesses) it will produce the
same observable outputs. This is a common assumption used
in many deterministic record-replay techniques for concurrent
programs [54], [55]. This implies that (i) the call sequences
in a concurrent test do not reveal differences when executed
sequentially (Definition 3), which can be easily verified by
traditional methods, and (ii) the thread scheduler is the only
source of non-determinism2.

Theorem 1. If a concurrent test ct is difference-revealing
(ct ∈ CTdr) then ct exhibits different interleavings if executed
on P and on P ′ (ct ∈ CT∆IS). i.e., CTdr ⊆ CT∆IS

Proof. It will be proven by contradiction. Let assume that
∃ct such that ct ∈ CTdr and ct /∈ CT∆IS . Because ct ∈ CTdr

from Definition 5 we have that one or both of the following
conditions are true ① ∃mci ∈ ct : ∃σ′ ∈ IS(P ′, ct) such that
∀σ ∈ IS(P, ct), OP

i (I, σ) ̸= OP′

i (I, σ′) ② ∃mci ∈ ct : ∃σ ∈
IS(P, ct) such that ∀σ′ ∈ IS(P ′, ct), OP′

i (I, σ′) ̸= OP
i (I, σ).

Let consider case ①. IS(P, ct) = IS(P ′, ct) because we
assume that ct /∈ CT∆IS , i.e., ct exhibits the same interleavings
if executed on P and P ′. This means that the interleaving
σ′ ∈ IS(P ′, ct) (from ①) can also manifest when ct is executed
on P , i.e., σ′ ∈ IS(P, ct). Thus ∃σ ∈ IS(P, ct) (σ = σ′) such
that OP

i (I, σ) = OP′

i (I, σ′). This is a contradiction because we
assumed that such an interleaving does not exist (ct ∈ CTdr).
The proof is analogous for the symmetric case ② □.

Theorem 1 implies that the set CT∆IS gives a precise, though
not minimal, approximation of CTdr. It is not minimal because
different interleavings can result in equivalent behaviors, as
seen with σ5 in Table I, which produces the same outputs as
the old interleaving σ1. However, CONDIFF can safely skip
behavioral checks for tests not in CT∆IS (e.g., ct2 in Figure 1)
without missing behavioral differences. We now explain how
CONDIFF generates tests and filters those in CT∆IS .

A. CONDIFF Algorithm

Function CONDIFF in Figure 3 summarizes the CONDIFF
approach. Given two versions of a concurrent class, P and P ′,
CONDIFF alternates between generating concurrent tests and
exploring their interleaving space until it finds a difference-
revealing test or the time limit expires. To reduce the cost of
behavioral checks, CONDIFF limits tests to two concurrent
threads (i.e., suffix1 and suffix2), a common practice [41] as
most concurrency faults occur with just two threads [56].

CONDIFF starts by statically analyzing P and P ′ (line 2) to
identify the set of public methods (CM) that contain at least one
changed statement (regardless of the change type). Note that,
considering only changes to synchronization-related statements
(e.g, synchronization blocks) would likely miss behavioral
differences. This is because, in principle, any code change
could introduce concurrency faults [1], [10], [11] (see Column 8
Table II). Given CM, CONDIFF computes the set of changed
method pairs (CMP) (line 3) that constitutes the coverage
targets of CONDIFF. CMP is an adaptation of the concurrent
method pairs metric [57] recently exploited by Choudhary et al.
[38] to improve the effectiveness of concurrent test generation.
The original metric is defined as the set of all possible pairs
of public methods of a class (⟨m1, m2⟩ and ⟨m2, m1⟩ is
the same pair). CONDIFF adapts this metric for differential
testing by considering only those method pairs composed of at
least one changed method. For example, in Figure 2 all public
methods are changed, thus CMP = {⟨w, w⟩, ⟨w, d⟩, ⟨d, d⟩},
where w is the method withdraw and d is the method deposit.

CONDIFF generates a random prefix to instantiate the
class under test and performs up to l method calls
(GENRANDOMPREFIX, line 5) to set the object in a state where
suffixes may behave differently. Following OO test generators,
we assume method calls that do not throw exceptions in
sequential execution result in valid states. If the prefix shows
behavioral differences sequentially (Definition 3), CONDIFF
skips it and reports a sequential regression warning (ISDIFFSEQ,
lines 6-7). For each method pair ⟨m1,m2⟩ in CMP, CONDIFF
generates k pairs of random suffixes (function GENRAN-
DOMSUFFIX lines 10-11) using a different combination of
randomly chosen parameters values (e.g., value of amount in
Figure 2). The suffixes use the same the same object under test
created by the prefix as an input parameter (e.g., the object
receiver a in Figure 1) to trigger shared-memory accesses. If
the suffixes reveal differences after the prefix in sequential
execution, CONDIFF skips them (lines 13-14). Then it creates
a new concurrent test ct by assembling the prefix and suffixes
(line 15). Lines 16-17 perform the filtering phase. For only the
unfiltered tests, CONDIFF performs the behavioral checking,
which follows Definition 5 (lines 18-24).

B. Filtering Phase

Recent regression testing techniques use change impact
analysis (CIA) [58] to reduce the cost of re-running concurrent
tests on P ′ [10], [11], [59]. These techniques show that new
interleavings (i.e., new behaviors) can be detected through
impacted shared-memory accesses [10]. Impact occurs in two
ways: (i) a new access triggered by added/changed statements
or execution paths, or (ii) an old access with changes to its
Concurrency Context (CC) [10] (i.e., lockset or happens-before
relations) enabling new interleavings. For example, Rt1

14 of ct3
in Figure 1 is an impacted access of type (ii). For example,
when ct3 runs on P , the lockset of Rt1

14 (the locks held by
thread t1 during access [60]) includes the object’s lock (this).
On P ′, however, the lockset is empty. In contrast, ct2 triggers
no impacted shared-memory accesses on P ′. For example, even
though the deposit method is no longer synchronized in P ′, the
lockset of Rt1

14 remains the same in both P and P ′. CONDIFF
leverages this key result to determine whether a concurrent test
belongs to CT∆IS (ISIN∆IS, lines 25–29). To achieve this,
CONDIFF adapts the CIA of RECONTEST as follows:

Given a concurrent test ct, CONDIFF executes4 ct on an
instrumented version of P and P ′ and collects two execution
traces EP and EP′

, respectively (line 26 Figure 3). An execution
trace E=⟨ei⟩ is an ordered sequence of shared-memory accesses
and synchronization events [61]. To avoid redundant analysis,
CONDIFF before computing the CC it checks if the pair
of traces EP, EP

′
has been already witnessed in previous

iterations. If yes, it discards ct since the resulting interleaving
spaces would be identical to a previously generated test [37].

CONDIFF scans both execution traces individually to pre-
compute two maps CCP and CCP′

(lines 27-28). Each map

4Like most differential testing techniques we assume that the method
signatures (name and parameters) have not changed across P and P ′. As such,
ct can be compiled and executed on both versions without adaptation.

input : two versions of a conc. class P and P ′, time-budget B
l max prefix length, k max # of parameters values

output : difference-revealing concurrent test ct
OP△ OP′

behavioral differences of ct
1 function CONDIFF
2 CM ← GETCHANGEDMETHODS(P , P ′)
3 CMP ← GETCHANGEDMETHODPAIRS(P , P ′, CM)
4 while time budget B not expired do

/* Test Generation */
5 prefix = GENRANDOMPREFIX(l)
6 if ISDIFFSEQ(prefix, P , P ′) then
7 skip prefix and continue while loop at line 4

8 for each ⟨m1,m2⟩ ∈ CMP do
9 for 1 to k do

10 suffix1 ← GENRANDOMSUFFIX(m1)
11 suffix2 ← GENRANDOMSUFFIX(m2)
12 if ISDIFFSEQ(prefix ⊕ suffix1, P , P ′) or
13 ISDIFFSEQ(prefix ⊕ suffix2, P , P ′) then
14 skip suffixes, continue for loop at line 9

15 ct← ⟨prefix, suffix1, suffix2⟩ // #CT++
(§V)

/* Filtering */
16 if ISIN∆IS(ct, P , P ′) = false then
17 skip ct, continue for loop at line 9

/* Behavioral Checking */

18 ⟨OP ,OP′
⟩ ← ⟨∅,∅⟩ // #BC++ (§V)

19 for each σ ∈ IS(ct, P) do
20 add OP (σ) to OP

21 for each σ′ ∈ IS(ct, P ′) do
22 add OP′

(σ′) to OP′

23 if OP ̸= OP′
then // difference

found!

24 return ct and OP△ OP′

input : newly generated concurrent test ct, P and P ′

output : true if ct ∈ CT∆IS , false otherwise

25 function ISIN∆IS
26 ⟨EP , EP

′
⟩ ← COLLECTTRACE(ct, P , P ′)

27 CCP ← COMPUTECC(EP)
28 CCP′

← COMPUTECC(EP
′
)

29 return ISIMPACTED(EP , EP
′
,CCP ,CCP′

) or
ISIMPACTED(EP

′
, EP ,CCP′

,CCP)
input : execution traces EV 1, EV 2 and CCV 1, CCV 2

output : true if EV 2 has an impacted access, false otherwise.

30 function ISIMPACTED
31 for each ex ∈ EV 2 do
32 s∗ ← s ∈ V1 | sx ∼ s
33 if s∗ = null or CCV 1(s∗) = ∅ then
34 return true
35 else if [ISDIFFCC(CCx, CCV 1(s∗)) or

ISNEWVALUE (ex, EV 1)] and ISCONFLICT(ex,
EV 2) then

36 return true

37 return false
Fig. 3. CONDIFF Algorithm.

contains all the unique concurrency contexts of the shared-
memory accesses in the trace triggered by statement s, i.e.,
CCP(s) = {CCx | ex ∈ EP , sx = s}, where CCx is the
context of ex and sx is the statement triggering ex.

RECONTEST needs to compute all impacted accesses in
EP′

to identify all problematic interleavings [10]. In contrast,
ISIMPACTED function returns true if the trace has at least
one impacted access, and false otherwise. Since even a single
impacted access makes IS(ct,P ′) ̸= IS(ct,P), this approach

TABLE II
DESCRIPTION OF THE CORRECT AND BUGGY VERSIONS OF THE CONCURRENT CLASSES CONSIDERED IN OUR EXPERIMENTS

Class Class Name LOC # Public # Method Code Base Buggy Code Change that Type of Behavioral Difference Bug Report
ID Methods Pairs Version Fixes the Fault
C1 AbstractMultiMap$AsMap 1,647 26 351 Google Commons 1.0 fix “if” condition wrong return value/NullPointerException GUAVA-339
C2 BufferedInputStream 404 10 55 JDK 1.1 add synchronization NullPointerException JDK-4728096
C3 IntRange 423 26 351 Apache Commons 2.4 use a temp variable corrupted object receiver state LANG-481
C4 AppenderAttachableImpl 172 8 36 Log4J 1.2.17 add synchronization ArrayIndexOutOfBoundsException LOG4J-54325
C5 Logger 1,297 44 990 JDK 1.4.1 add synchronization NullPointerException JDK-4779253
C6 ObjectPool 63 4 10 java-design-patterns 1.17.0 add synchronization wrong return value ISSUE-621

reduces analysis costs when many impacted accesses exist.
Even if the impact set of EP′

is empty, meaning ct shows
no new interleavings in P ′, the concurrent test can still reveal
behavioral differences. This occurs when old interleavings
(i.e., behaviors) appear in P but not in P ′. Regression faults
arise not only from new faulty behaviors in P ′, but also when
old correct behaviors in P no longer occur in P ′ [4], [62].
Therefore, CONDIFF calls ISIMPACTED twice to check if EV 2

(either EP′
or EP) contains an impacted access (see line 29).

For each shared-memory access event ex in EV 2, ISIM-
PACTED finds the statement s∗ in V1 that corresponds to sx
(using the ∼ relation [10]). For instance, in Figure 2, line 9 in
P ′ corresponds to line 8 in P . Access ex is new if (i) s∗ does
not exist (i.e., sx is new or modified in P ′) or (ii) CCV 1(s∗) is
empty, meaning ex arises from a new execution path. ISDIFFCC
determines if ex’s concurrency context (CCx) differs from any
in CCV 1(s∗). Differences are clear when cardinalities vary,
e.g., Rt1

14 in ct3 has a lockset cardinality of zero in P ′ but one
in P . For matching CCs with the same cardinality, CONDIFF
uses change-resilient object abstractions from RECONTEST to
align lock objects cross the two executions [10].

CONDIFF introduces two additional analyses to improve
results. First, the ISNEWVALUE function checks if the value
accessed by ex in EV 2 was never accessed by the corresponding
statement s∗ in EV 1. Unlike RECONTEST, which assumes the
value-independent assumption [63], CONDIFF considers an
access impacted if it reads or writes a new value. This is
achieved by instrumenting the values read or written by shared-
memory accesses. Second, the ISCONFLICT function checks if
an impacted access ex ∈ EV 2 by thread t1 (or t2) accesses a
memory location also accessed by its concurrent thread t2 (or
t1) in EV 2. If so, ISIMPACTED returns TRUE; otherwise, FALSE.
Intuitively, if the thread does not access the same memory
location accessed by ex any new interleaving involving ex
cannot affect the execution behavior [64].

V. EVALUATION

This section describes the experiments that we conducted to
evaluate CONDIFF. We study three research questions.

• RQ1 - Effectiveness. Can CONDIFF detect non-determ-
inistic behavioral differences within time budget B?

• RQ2 - Efficiency. How fast is CONDIFF in detecting the
behavioral differences?

• RQ3 - Evaluation of the filtering phase ∆IS. What is
the contribution of the filtering phase based on Theorem 1
in reducing the search space?

A. Implementation

We created a prototype of CONDIFF for Java classes.
Concurrent test generation builds on COVCON [38], while
instrumentation for execution traces and shared-memory values
uses ASM [65]. Static change analysis adapts CHANGEDIS-
TILLING [66], and the filtering phase is based on RECON-
TEST [10]. CONDIFF systematically explores interleavings
with the stateful model-checker JPF [39], and Java reflection
collects observable outputs from outermost method calls.

B. Subjects

We conducted experiments on six known concurrency faults
in open-source Java concurrent classes, with details in Table II.
In all cases, the faults are in a single method, covering a range
of behavioral differences: runtime exceptions, incorrect return
values, and invalid object states. The limited number of classes
is due to JPF compatibility issues. For each faulty version, we
obtained the correct version that fixes the fault, as done in
prior regression testing studies [10], [17], [59], given the lack
of benchmarks for Java concurrent regression faults.

However, this approach may not generate scenarios that
accurately represent regression faults [17]. Each correct version
reflects only the minimized difference between the faulty and
fixed versions, which may not represent the actual code changes
that caused the fault. This minimized difference is advantageous
for CONDIFF and differential testing since only the fault-
inducing statements are modified. For instance, in the fixed
version of C5, only one method is changed, limiting the usable
method pairs to 44 out of 990. To address this and create more
realistic scenarios, we developed various faulty versions with
additional semantics-preserving modifications that do not alter
the class’s sequential or concurrent behavior. If the method to
modify is synchronized, we enclosed the method body inside
a synchronized block with this as the lock (Fig. 4 left).
Otherwise, we added a local variable (Fig. 4 right).

For each of the six classes, we considered four possible
scenarios (see Table III). The scenario C-B involves changes
only to the faulty method. In contrast, C-BR%25, C-BR%50,
and C-BR%100 include modifications to 25%, 50%, and
all public methods in the faulty version, respectively. For
example, C1 has 26 public methods, and in C-BR%25,
we manually modified six randomly chosen methods using
semantics-preserving changes, resulting in a total of seven
changed methods. To obtain C-BR%50, 12 methods, for
C-BR%100 25 methods. In C-BR%100, all methods are
changed, but only one change causes a behavioral difference.

https://github.com/google/guava/issues/339
https://bugs.java.com/bugdatabase/view_bug.do?bug_id=4728096
https://issues.apache.org/jira/browse/LANG-481
https://bz.apache.org/bugzilla/show_bug.cgi?id=54325
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4779253
https://github.com/iluwatar/java-design-patterns/issues/621

TABLE III
RQ1 AND RQ3 - EFFECTIVENESS RESULTS

RQ1: CONDIFF RQ3: BASELINE
Subject # Changed # Changed SR #CT #BC #CT − #BC SR #BC (#CT) SR #BC
ID Methods M. Pairs % avg max min avg max min avg max min % avg max min +% ↘
C1-B 1 26 100% 3 5 1 1 1 1 2 4 0 100% 3 5 1 - 2.5x
C1-BR25% 7 161 100% 4 8 1 1 1 1 3 7 0 100% 4 8 1 - 3.7x
C1-BR50% 13 260 100% 4 9 1 1 1 1 3 8 0 100% 4 9 1 - 3.9x
C1-BR100% 26 351 100% 8 23 1 1 1 1 7 22 0 100% 8 23 1 - 7.6x
C2-B 1 10 100% 7 12 1 3 6 1 4 8 0 100% 7 12 1 - 2.2x
C2-BR25% 3 27 100% 18 27 7 6 10 2 12 24 4 100% 18 27 7 - 3.0x
C2-BR50% 5 34 100% 25 52 7 8 15 2 17 37 4 100% 25 52 7 - 3.3x
C2-BR100% 10 55 100% 41 62 8 11 18 2 30 45 6 100% 41 62 8 - 3.8x
C3-B 1 26 100% 19 32 6 9 13 4 10 19 2 100% 19 32 6 - 2.0x
C3-BR25% 7 161 100% 115 243 3 8 16 2 107 227 1 100% 115 243 3 - 14.5x
C3-BR50% 13 260 100% 285 411 204 11 15 6 274 397 198 100% 285 411 204 - 25.7x
C3-BR100% 26 351 100% 223 430 8 6 12 1 217 418 7 100% 223 430 8 - 35.4x
C4-B 1 8 100% 2 3 1 1 2 1 1 1 0 100% 2 3 1 - 1.3x
C4-BR25% 2 15 100% 23 45 8 2 2 1 22 43 6 100% 22 45 8 - 14.3x
C4-BR50% 4 26 100% 90 230 29 2 2 1 88 229 27 100% 90 230 29 - 55.9x
C4-BR100% 8 36 100% 163 442 49 2 3 1 162 441 48 100% 154 442 49 - 96.5x
C5-B 1 44 100% 60 143 10 10 18 3 50 128 6 100% 54 101 10 - 5.5x
C5-BR25% 11 429 90% 274 638 47 10 21 4 264 617 43 60% 229 356 47 +30% 22.4x
C5-BR50% 22 665 70% 204 385 7 5 8 1 199 379 6 0% 178 307 29 +70% 34.9x
C5-BR100% 44 990 60% 904 1,360 382 8 12 6 896 1,353 376 0% 209 498 110 +60% 26.4x
C6-B 1 4 100% 4 4 4 3 3 3 1 1 1 100% 4 4 4 - 1.3x
C6-BR25% 1 4 100% 4 4 4 3 3 3 1 1 1 100% 4 4 4 - 1.3x
C6-BR50% 2 6 100% 5 7 3 2 3 1 3 4 2 100% 5 7 3 - 2.5x
C6-BR100% 4 10 100% 6 9 2 2 3 1 4 6 1 100% 6 9 2 - 2.7x
AVG 96% 104 191 33 5 8 2 99 184 31 90% 71 138 23 15.5x

Fig. 4. Semantics-preserving code modifications.

Table III shows, for each of the 24 subjects (scenarios), the
number of changed methods and the number of method pairs
that involve at least one changed method. These scenarios align
with recent findings that faulty code is often more ”unnatural”
(improbable) than correct code [67], [68], as most code changes
in a revision do not introduce faults [67]. Additionally, these
scenarios simulate faults arising from common activities, such
as refactoring or performance improvements, where all changes
should be semantics-preserving.

C. Setup

We ran CONDIFF on each of the 24 subjects with a time
budget B of one hour per subject [37], [38], [64]. We used the
upper bounds l = 10 and k = 5 (see Figure 3). We repeated
the experiments ten times to cope with the randomness of the
test generation process. To obtain replicable results, CONDIFF
generated tests pseudo-deterministically given a random seed.
To avoid biases in selecting the seeds, we used the numbers
from 1 to 10. We evaluate CONDIFF with the following metrics:

• Success Rate (SR) whose value is true if CONDIFF
generates and reports a difference-revealing concurrent
test within the given time budget B, false otherwise.

• Number of Concurrent Tests generated (#CT) and Number
of Behavioral Checking performed (#BC) when the time
budget expired or when the technique found the first
difference-revealing concurrent test.

• Difference Revealing Time (DRT), which is given by the
overall time in seconds to identify the first difference-
revealing concurrent test. If SR = false, DRT = B.

D. Results

RQ1- Effectiveness. (Columns 4 to 13 in Table III). The
success rate SR for 21 out of 24 subjects is 100%, meaning
that CONDIFF is able to report their behavioral differences
within B in all the ten runs. We manually validated that the
results of all runs were correctly reported. The three subjects
with SR < 100% are C5-BR%25, C5-BR%50 and C5-BR%100.
These are the subjects with the highest number of changed
method pairs (Column 3 Table III). Manifesting behavioral
differences for C5 requires a peculiar concurrent test that was
not generated in some runs within the given time budget. The
average number of concurrent tests #CT ranges from 2 to 904,
(104 on average). As expected, for each subject, #CT increases
when the number of changed methods increases. The average
#BC ranges from 1 to 10, with an avg of 5 concurrent tests.

The difference between #CT and #BC quantifies the effec-
tiveness of the filtering phase. CONDIFF prunes a large number
of concurrent tests that execute changed methods but do not
yield to different interleavings across P and P ′. Columns 8-10
show the number of filtered tests for each subject. In many
cases, the concurrent behavioral checker analyses only the
reported difference-revealing concurrent test (i.e., #BC = 1).
In other cases #BC > 1, meaning that it analyzes concurrent
tests that are not difference-revealing. This result is expected
since the manifestation of different interleavings across P and
P ′ is a necessary but not sufficient condition for a concurrent
test to reveal behavioral differences (see Theorem 1).

RQ2 - Efficiency (Columns 2 to 10 in Table IV).The
difference-revealing time DRT ranges from 6 to 2,260 seconds
(245 seconds on average). This shows that CONDIFF rapidly
exposes the behavioral differences in our subjects. Columns
5-9 in Table IV details the time spent on various parts of
CONDIFF: test generation (TIME GEN), concurrent behavioral

TABLE IV
RQ2 AND RQ3 - EFFICIENCY RESULTS

RQ2: CONDIFF RQ3: BASELINE
Subject DRT TIME GEN TIME BC TIME ∆IS DRT TIME GEN TIME BC DRT
ID avg max min avg % avg % avg % avg max min avg % avg % ↘
C1-B 6 7 5 <1 13% 5 73% <1 <1% 10 14 6 1 11% 7 78% 1.5x
C1-BR25% 6 8 5 1 22% 4 63% <1 1% 12 23 5 2 19% 9 73% 1.9x
C1-BR50% 6 7 5 <1 17% 4 67% <1 1% 10 21 5 2 17% 8 75% 1.8x
C1-BR100% 6 7 5 2 26% 4 59% <1 <1% 15 36 7 3 18% 12 76% 2.5x
C2-B 7 7 6 <1 8% 5 78% <1 1% 20 31 6 15 77% 4 19% 2.9x
C2-BR25% 38 83 8 33 86% 4 10% <1 1% 122 192 59 118 97% 3 2% 3.2x
C2-BR50% 58 145 7 51 88% 6 9% <1 1% 164 381 64 147 90% 16 10% 2.8x
C2-BR100% 78 161 8 68 87% 8 10% <1 1% 260 442 48 236 91% 22 9% 3.3x
C3-B 126 151 110 <1 1% 123 98% <1 <1% 156 211 117 <1 1% 154 99% 1.2x
C3-BR25% 135 179 99 6 5% 124 91% 1 1% 488 899 108 4 1% 481 99% 3.6x
C3-BR50% 169 201 133 18 11% 137 81% 4 2% 1,046 1,513 691 13 1% 1,026 98% 6.2x
C3-BR100% 149 202 93 20 13% 117 79% 3 2% 832 1,601 113 17 2% 807 97% 5.6x
C4-B 7 13 3 2 31% 4 58% <1 1% 8 13 3 2 29% 5 62% 1.1x
C4-BR25% 10 17 6 4 35% 5 49% <1 3% 41 82 15 4 9% 36 88% 4.0x
C4-BR50% 17 54 5 8 45% 5 28% 1 7% 173 452 53 9 5% 160 93% 9.9x
C4-BR100% 31 104 5 17 56% 5 17% 2 7% 271 795 78 16 6% 248 92% 8.8x
C5-B 146 245 60 38 26% 102 70% 2 1% 534 1,049 153 27 5% 503 94% 3.7x
C5-BR25% 649 3,600 110 521 80% 100 15% 8 1% 2,720 3,600 727 246 9% 2,462 91% 4.2x
C5-BR50% 1,908 3,600 365 1,833 96% 56 3% 7 <1% 3,600 3,600 3,600 1,263 35% 2,341 65% 1.9x
C5-BR100% 2,260 3,600 658 2,042 90% 103 5% 48 2% 3,600 3,600 3,600 134 4% 3,487 97% 1.6x
C6-B 18 18 17 <1 3% 17 94% <1 <1% 20 21 19 <1 2% 19 95% 1.1x
C6-BR25% 18 19 17 <1 3% 17 94% <1 <1% 20 21 19 <1 2% 19 95% 1.1x
C6-BR50% 14 18 10 <1 3% 13 93% <1 <1% 27 35 18 <1 2% 26 96% 1.9x
C6-BR100% 14 18 10 <1 3% 13 92% <1 <1% 27 37 13 <1 2% 26 96% 1.9x
AVG 245 519 73 195 35% 41 56% 3 1% 591 778 397 94 22% 495 75% 3.2x

checking (TIME BC), and filtering (TIME ∆IS). While the time
spent on initial static change analysis and sequential behavioral
checking is included in DRT, it is not reported here due to
its low cost (averaging less than 1 sec). Notably, TIME ∆IS
averages only three seconds, accounting for less than 1% of
DRT in determining if each of the #CT generated tests belongs
to CT∆IS , demonstrating its low computational cost.

RQ3 - Evaluation of the filtering phase ∆IS. We cre-
ated a variant of CONDIFF, that we call BASELINE which
skips the filtering phase (i.e., bypassing lines 16 and 17 in
Figure 3). We ran BASELINE ten times with the same time
budget, random seeds and upper bounds, and compared it with
CONDIFF. Columns 14-19 in Table III and Columns 11-18
in Table IV show the results. BASELINE failed to expose the
behavioral differences in any of the ten runs (SR = 0%) for
the subjects C5-BR%50 and C5-BR%100 (see Column 14 in
Table III). Moreover, SR of C5-BR%25 is 30% less. Column
“SR +%” in Table III shows the increase in success rate of
CONDIFF over BASELINE. The average #BC of BASELINE
ranges from 2 to 209, with an average of 71 concurrent tests.
CONDIFF performed 15.5× less behavioral checking than
BASELINE, on average (last Column in Table III)5. For each
run, CONDIFF and BASELINE generate the same concurrent
tests in the same order, but BASELINE skips the filtering phase,
i.e., #CT = #BC. When the number of changed methods in
each class increases, #BC of BASELINE rapidly increases while
#BC of CONDIFF remains almost unchanged. This shows that
CONDIFF can correctly identify overlapping interleaving spaces
across program versions under semantically equivalent code
changes. The average DRT of BASELINE ranges from 8 to

5The cell background in the last columns of the two tables indicates the
degrees of reduction with respect to the BASELINE: LOW (>1.0x and <2.0x),
MEDIUM (≥ 2.0x and < 3.0x), or HIGH (≥ 3.0x).

3,600 seconds (591 seconds on average). CONDIFF detects
behavioral differences on average 3.2× faster than BASELINE
(last Column in Table IV).

CONDIFF is always faster than BASELINE in detecting
behavioral differences because (i) CONDIFF performs the
expensive concurrent behavioral checking in fewer tests than
BASELINE; and (ii) TIME ∆IS has a negligible cost. Moreover,
for these two reasons, CONDIFF allocates more time to the test
generator component (see the TIME GEN Columns in Table IV),
thus it explores a larger number of concurrent tests given the
same time. This is the reason why for subjects C5-BR%50 and
C5-BR%100, CONDIFF can detect the behavioral difference in
some runs while BASELINE cannot. In fact, for these subjects
the avg #CT of CONDIFF (Column 4 in Table III) is higher
than the avg #CT of BASELINE (Column 15 in Table III).

Moreover, these results indicate that Theorem 1 is empirically
sound, as none of the filtered tests was difference-revealing.
This can be demonstrated by the result that when both CONDIFF
and BASELINE have SR =100%, their #CT is identical6.

VI. THREATS TO VALIDITY

A threat to external validity is that we evaluated CONDIFF
using only six Java open-source projects, which may not
generalize to all programming languages and characteristics.
The limited number of subjects is due to compatibility issues
with JPF, which we experienced while testing other Java
projects. We plan to replace JPF with a different exhaustive
interleaving explorer and evaluate CONDIFF on a larger set
of subjects. Additionally, although it is standard practice [10],
[17], [59], a potential threat is the lack of real regression faults.
We address this with semantics-preserving code changes.

6There are three exceptions C4-BR%25, C4-BR%100 and C5-B. A
manual investigation revealed that discrepancy was due to JPF crashes.

VII. RELATED WORK

To the best of our knowledge, CONDIFF is the first technique
that generates concurrent tests and oracles to expose behavioral
differences between two versions of a concurrent class. We
discuss related work in the realms of regression testing,
differential testing, and concurrency testing.

Regression testing for concurrent programs is not a well-
studied problem yet [1]. Pioneer studies focus on reducing
the cost of re-executing existing concurrent tests [10], [11],
[59] (e.g., RECONTEST). They can detect concurrent faults
only if the given tests contain fault-revealing interleavings
that can be caught by predefined oracles. CONDIFF addresses
this limitation by generating new tests and oracles to expose
behavioral differences between two versions.

There are also studies to reduce the incremental cost of
software verification for modified sequential or concurrent
software [59], [69]–[73]. All of these studies aim at detecting
regression faults faster with a given set of tests and oracles. In
contrast, CONDIFF aims at generating new tests and oracles
to detect regression faults that cannot be revealed by the
existing ones. Recently, researchers have presented the dynamic
symbolic techniques CONTESA [74], CONC-ISE [75] and
TACO [76] to generate test inputs that exposes new interleavings
for regression testing concurrent programs. These techniques
differ substantially from CONDIFF. First, they do not tackle
the differential testing problem as they do not check if the
program behavior of the new interleavings is equivalent to
the behavior of the old interleavings. Second, they generate
test inputs but no concurrent tests (multi-threated method call
sequences, see Figure 1). In principle, these techniques could be
used to generate additional test inputs for the concurrent tests
generated by CONDIFF. Third, they detect faults by relying
on the assertions encoded in the program or software crashes,
while CONDIFF generates regression oracles.

Differential testing for sequential programs either generate
difference-revealing test inputs relying on various symbolic
analyzes [12]–[14], [77], [78] or generate difference-revealing
sequential tests (Definition 1). The main techniques of the latter
type are: DIFFUT [16], BERT [29], [32], [79], DIFFGEN [30],
and EVOSUITER [17], [53]. Unlike CONDIFF, all of these
techniques do not generate concurrent tests and they do not
address the issues of non-determinism and interleaving space
exploration. There are only two differential testing techniques
for concurrent classes, proposed by Pradel et al [80], [81].
They differ from CONDIFF, as they either target regression
performance issues [80] or incorrect substitutability faults [81].

SPEEDGUN [80] compares the execution time of automati-
cally generated concurrent tests across program revisions to
expose performance issues introduced by code modifications.
Conversely, CONDIFF targets correctness problem, and thus it
complements SPEEDGUN. Nevertheless, the tools could work
in synergy. After modifying a concurrent class, developers
could use CONDIFF and SPEEDGUN to detect correctness
and performance issues, respectively. Note that SPEEDGUN
generates long-running performance tests that have a high

degree of concurrency [80]. Using these tests to identify
behavioral differences would be expensive as the number of
interleavings grows exponentially with respect to execution
length and number of concurrent threads [3], [40].

The other differential testing technique generates both
sequential and concurrent tests to identify behavioral differences
between a subclass and its superclass [81]. While its behavioral
checking resembles that of CONDIFF, its test generation focuses
on a single program version. Adapting this technique would
likely produce results similar to BASELINE, the version of
CONDIFF without the filtering phase (see RQ3).

Concurrency testing. CONDIFF builds on top of recent
concurrent test generators [36]–[38], [49]–[51], [82], [83].
Unlike CONDIFF, they analyze a single program version and
do not consider program changes while generating concurrent
tests, since their goal is not regression testing. Thus, many of
the generated tests are likely to explore interleavings involving
unmodified code and program behaviors, and thus not effective
in exposing regression faults. Moreover, these techniques can
detect only those concurrency faults that manifest visible oracle
violations (i.e., exceptions or deadlocks) [36], [38], [49] or
that trigger interleavings matching a given set of problematic
access patterns [37], [50], [82], [84]. In contrast, CONDIFF can
also detect regression faults that manifest wrong return values
or incorrect program states (see C1, C3 and C6 in Table II).

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented CONDIFF, a differential testing
technique to expose non-deterministic behavioral differences
across two versions of a concurrent class. We released the
benchmarks and the results to ease future work in this area [42].

CONDIFF makes only the first steps towards differential
testing for concurrent classes. There are several opportunities
for future work. We discuss the three most promising ones.

Program level differential testing. Currently, CONDIFF
focuses on class-level differential testing, handling modified
concurrent classes individually. This may miss behavioral
differences when an unchanged method invokes a changed
method in another class. Future work includes updating the
change analysis and test generation to address such cases.

Incremental analysis. A common usage scenario of CON-
DIFF is to analyze the same version of a class multiple times.
For example, one time with its preceding version and another
time with its subsequent version. Currently, CONDIFF does
not save analysis results for future use. Enabling incremental
analysis [70], [73] could reduce the high cost of behavioral
checking. How to effectively re-use the analysis results of
CONDIFF is an interesting research problem.

Test augmentation. CONDIFF is intended for cases where
existing regression tests fail to expose faults in the modified
version. However, it could leverage these tests [4], [14] to
improve effectiveness by targeting test generation only on
those classes or methods where current tests are inadequate.

ACKNOWLEDGMENTS

The research is partially supported by the HKSAR RGC/GRF
grant 16205821.

REFERENCES

[1] R. Gu, G. Jin, L. Song, L. Zhu, and S. Lu, “What Change History Tells
Us About Thread Synchronization,” in FSE, 2015, pp. 426–438.

[2] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu,
“Finding and Reproducing Heisenbugs in Concurrent Programs,” in OSDI,
2008, pp. 267–280.

[3] S. Lu, S. Park, and Y. Zhou, “Finding Atomicity-Violation Bugs through
Unserializable Interleaving Testing,” IEEE TSE, vol. 38, no. 4, pp. 844–
860, 2012.

[4] S. Yoo and M. Harman, “Regression Testing Minimization, Selection
and Prioritization: A Survey,” STVR, vol. 22, no. 2, pp. 67–120, 2012.

[5] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. A. Spoon, and A. Gujarathi, “Regression Test Selection for
Java Software,” in OOPSLA, 2001.

[6] M. Gligoric, L. Eloussi, and D. Marinov, “Practical Regression Test
Selection with Dynamic File Dependencies,” in ISSTA, 2015, pp. 211–
222.

[7] M. Gligoric, S. Negara, O. Legunsen, and D. Marinov, “An Empirical
Evaluation and Comparison of Manual and Automated Test Selection,”
in ASE, 2014, pp. 361–372.

[8] T. Xie and D. Notkin, “Checking Inside the Black Box: Regression
Testing By Comparing Value Spectra,” IEEE TSE, vol. 31, no. 10, pp.
869–883, 2005.

[9] S. Park, S. Lu, and Y. Zhou, “CTrigger: Exposing Atomicity Violation
Bugs from Their Hiding Places,” in ASPLOS, 2009, pp. 25–36.

[10] V. Terragni, S.-C. Cheung, and C. Zhang, “Recontest: Effective regression
testing of concurrent programs,” in ICSE, 2015.

[11] T. Yu, W. Srisa-an, and G. Rothermel, “SimRT: An Automated Framework
to Support Regression Testing for Data Races,” in ICSE, 2014, pp. 48–59.

[12] K. Taneja, T. Xie, N. Tillmann, and J. de Halleux, “eXpress: Guided
Path Exploration for Efficient Regression Test Generation,” in ISSTA
2011, 2011.

[13] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J.
Harrold, “Test-suite Augmentation for Evolving Software,” in ASE, 2008,
pp. 218–227.

[14] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B. Cohen, “Directed
Test Suite Augmentation: Techniques and Tradeoffs,” in FSE, 2010, pp.
257–266.

[15] S. Shamshiri, “Automated Unit Test Generation for Evolving Software,”
in FSE, 2015, pp. 1038–1041.

[16] T. Xie, K. Taneja, S. Kale, and D. Marinov, “Towards a Framework for
Differential Unit Testing of Object-oriented Programs,” in AST, 2007,
p. 5.

[17] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri,
“Do Automatically Generated Unit Tests Find Real Faults? An Empirical
Study of Effectiveness and Challenges ,” in ASE, 2015, pp. 201–211.

[18] W. M. McKeeman, “Differential Testing for Software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[19] M. M. Almasi, H. Hemmati, G. Fraser, P. McMinn, and J. Benefelds,
“Search-based Detection of Deviation Failures in the Migration of Legacy
Spreadsheet Applications,” in ISSTA, 2018, pp. 266–275.

[20] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and Understanding
Bugs in C Compilers,” in PLDI, 2011, pp. 283–294.

[21] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
Differential Testing of JVM Implementations,” in PLDI, 2016, pp. 85–99.

[22] G. Argyros, I. Stais, S. Jana, A. D. Keromytis, and A. Kiayias,
“SFADiff: Automated Evasion Attacks and Fingerprinting Using Black-
Box Differential Automata Learning,” in SIGSAC, 2016, pp. 1690–1701.

[23] A. Groce, G. Holzmann, and R. Joshi, “Randomized Differential Testing
As a Prelude to Formal Verification,” in ICSE, 2007, pp. 621–631.

[24] B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated Testing of
Refactoring Engines,” in FSE, 2007, pp. 185–194.

[25] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana, “Nezha:
Efficient Domain-Independent Differential Testing,” in SP, 2017, pp.
615–632.

[26] T. Kapus and C. Cadar, “Automatic Testing of Symbolic Execution
Engines via Program Generation and Differential Testing,” in ASE, 2017,
pp. 590–600.

[27] D. Lehmann and M. Pradel, “Feedback-Directed Differential Testing of
Interactive Debuggers,” in ESEC/FSE, 2018, pp. 610–620.

[28] T. Zhang and M. Kim, “Automated Transplantation and Differential
Testing for Clones,” in ICSE, 2017, pp. 665–676.

[29] W. Jin, A. Orso, and T. Xie., “Automated Behavioral Regression Testing,”
in ICST, 2010, pp. 137–146.

[30] K. Taneja and T. Xie, “DiffGen: Automated Regression Unit-Test
Generation,” in ASE, 2008, pp. 407–410.

[31] R. B. Evans and A. Savoia, “Differential Testing: A New Approach to
Change Detection,” in FSE, 2007, pp. 549–552.

[32] A. Orso and T. Xie, “BERT: BEhavioral Regression Testing,” in WODA,
2008, pp. 36–42.

[33] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
Random Test Generation,” in ICSE, 2007, pp. 75–84.

[34] A. Pnueli, “The Temporal Semantics of Concurrent Programs,” Theoreti-
cal computer science, vol. 13, no. 1, pp. 45–60, 1981.

[35] V. Terragni, P. Salza, and F. Ferrucci, “A Container-Based Infrastructure
for Fuzzy-Driven Root Causing of Flaky Tests,” in ICSE-NIER, 2020,
pp. 69–72.

[36] M. Pradel and T. R. Gross, “Fully Automatic and Precise Detection of
Thread Safety Violations,” in PLDI, 2012, pp. 521–530.

[37] V. Terragni and S.-C. Cheung, “Coverage Driven Test Code Generation
for Concurrent Classes,” in ICSE, 2016, pp. 1121–1132.

[38] A. Choudhary, S. Lu, and M. Pradel, “Efficient Detection of Thread
Safety Violations via Coverage-Guided Generation of Concurrent Tests,”
in ICSE, 2017, pp. 266–277.

[39] K. Havelund and T. Pressburger, “ Model checking JAVA programs using
JAVA PathFinder,” STTT, vol. 2, no. 4, pp. 366–381, 2000.

[40] S. Lu, W. Jiang, and Y. Zhou, “A Study of Interleaving Coverage Criteria,”
in FSE, 2007, pp. 533–536.

[41] V. Terragni and M. Pezzè, “Effectiveness and Challenges in Generating
Concurrent Tests for Thread-Safe Classes,” in ASE, 2018, pp. 64–75.

[42] V. Terragni and S.-C. Cheung. (2024) ConDiff- experimental data and
subjects https://doi.org/10.5281/zenodo.14722292.

[43] T. Xie, D. Marinov, and D. Notkin, “Rostra: A Framework for Detecting
Redundant Object-Oriented Unit Tests,” in ASE, 2004, pp. 196–205.

[44] G. Fraser and A. Arcuri, “Evosuite: Automatic Test Suite Generation
for Object-oriented Software,” in FSE, 2011, pp. 416–419.

[45] G. Jahangirova and V. Terragni, “Sbft tool competition 2023 - java test
case generation track,” 2023, pp. 61–64.

[46] H. Rogers and H. Rogers, Theory of Recursive Functions and Effective
Computability. McGraw-Hill New York, 1967, vol. 126.

[47] A. Carzaniga, A. Mattavelli, and M. Pezzè, “Measuring Software
Redundancy,” in ICSE, 2015, pp. 156–166.

[48] T. Peierls, B. Goetz, J. Bloch, J. Bowbeer, D. Lea, and D. Holmes, Java
Concurrency in Practice. Pearson Education, 2006.

[49] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov, “Ballerina:
Automatic Generation and Clustering of Efficient Random Unit Tests
for Multithreaded Code,” in ICSE, 2012, pp. 727–737.

[50] S. Steenbuck and G. Fraser, “Generating Unit Tests for Concurrent
Classes,” in ICST, 2013, pp. 144–153.

[51] V. Terragni and M. Pezzè, “Statically driven generation of concurrent
tests for thread-safe classes,” STVR, vol. 31, no. 4, p. e1774, 2021.

[52] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An Empirical Analysis
of Flaky Tests,” in FSE, 2014, pp. 643–653.

[53] S. Shamshiri, G. Fraser, P. McMinn, and A. Orso, “Search-based
Propagation of Regression Faults in Automated Regression Testing,”
in ICSTW, 2013, pp. 396–399.

[54] Y. Jiang, T. Gu, C. Xu, X. Ma, and J. Lu, “CARE: Cache Guided
Deterministic Replay for Concurrent Java Programs,” in ICSE, 2014, pp.
457–467.

[55] J. Huang, P. Liu, and C. Zhang, “LEAP: Lightweight Deterministic
Multi-processor Replay of Concurrent Java Programs,” in FSE, 2010, pp.
207–216.

[56] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from Mistakes: A
Comprehensive Study on Real World Concurrency Bug Characteristics,”
in ASPLOS, 2008, pp. 329–339.

[57] D. Deng, W. Zhang, and S. Lu, “Efficient Concurrency-bug Detection
Across Inputs,” in OOPSLA, 2013, pp. 785–802.

[58] R. S. Arnold, Software Change Impact Analysis. IEEE Computer Society
Press, 1996.

[59] V. Jagannath, Q. Luo, and D. Marinov, “Change-aware Preemption
Prioritization,” in ISSTA, 2011, pp. 133–143.

[60] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A Dynamic Data Race Detector for Multithreaded Programs,”
ACM TOCS, vol. 15, no. 4, pp. 391–411, 1997.

https://doi.org/10.5281/zenodo.14722292

[61] Z. Lai, S. C. Cheung, and W. K. Chan, “Detecting Atomic-set Serializabil-
ity Violations in Multithreaded Programs Through Active Randomized
Testing,” in ICSE, 2010, pp. 235–244.

[62] G. Rothermel and M. J. Harrold, “Analyzing Regression Test Selection
Techniques,” IEEE TSE, vol. 22, no. 8, pp. 529–551, 1996.

[63] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: A Coverage-
driven Testing Tool for Multithreaded Programs,” in OOPSLA, 2012, pp.
485–502.

[64] F. A. Bianchi, M. Pezzè, and V. Terragni, “Reproducing Concurrency
Failures from Crash Stacks,” in FSE, 2017, pp. 705–716.

[65] E. B. et al. (2018) ASM Java Bytecode Manipulation Framework -
http://asm.objectweb.org/.

[66] B. Fluri, M. Wursch, M. PInzger, and H. C. Gall, “Change Distilling:
Tree Differencing for Fine-grained Source Code Change Extraction,”
IEEE TSE, vol. 33, no. 11, pp. 725–743, 2007.

[67] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. Devanbu,
“On the ”Naturalness” of Buggy Code,” in ICSE, 2016, pp. 428–439.

[68] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
Naturalness of Software,” in ICSE, 2012, pp. 837–847.

[69] S. Lauterburg, A. Sobeih, D. Marinov, and M. Viswanathan, “Incremental
State-Space Exploration for Programs with Dynamically Allocated Data,”
in ICSE, 2008, pp. 291–300.

[70] G. Yang, M. B. Dwyer, and G. Rothermel, “Regression Model Checking,”
in ICSM, 2009, pp. 115–124.

[71] D. Beyer, S. Löwe, E. Novikov, A. Stahlbauer, and P. Wendler, “Precision
Reuse for Efficient Regression Verification,” in FSE, 2013, pp. 389–399.

[72] J. Backes, S. Person, N. Rungta, and O. Tkachuk, “Regression Verification
Using Impact Summaries,” in Model Checking Software, 2013, pp. 99–
116.

[73] S. Chaki, A. Gurfinkel, and O. Strichman, “Regression Verification for
Multi-threaded Programs,” in VMCAI, 2012, pp. 119–135.

[74] T. Yu, Z. Huang, and C. Wang, “ConTesa: Directed Test Suite Aug-
mentation for Concurrent Software,” IEEE Transactions on Software
Engineering, 2018.

[75] S. Guo, M. Kusano, and C. Wang, “Conc-iSE: Incremental Symbolic
Execution of Concurrent Software,” in ASE, 2016, pp. 531–542.

[76] T. Yu, “TACO: Test Suite Augmentation for Concurrent Programs,” in
FSE, 2015, pp. 918–921.

[77] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu, “Differential
Symbolic Execution,” in FSE, 2008, pp. 226–237.

[78] H. Palikareva, T. Kuchta, and C. Cadar, “Shadow of a Doubt: Testing for
Divergences Between Software Versions,” in ICSE, 2016, pp. 1181–1192.

[79] W. Jin, A. Orso, and T. Xie., “BERT: A Tool for Behavioral Regression
Testing,” in FSE, 2010, pp. 361–362.

[80] M. Pradel, M. Huggler, and T. R. Gross, “Performance Regression Testing
of Concurrent Classes,” in ISSTA, 2014, pp. 13–25.

[81] M. Pradel and T. R. Gross, “Automatic Testing of Sequential and
Concurrent Substitutability,” in ICSE, 2013, pp. 282–291.

[82] M. Samak, M. K. Ramanathan, and S. Jagannathan, “Synthesizing Racy
Tests,” in PLDI, 2015, pp. 175–185.

[83] V. Terragni, M. Pezzè, and F. A. Bianchi, “Coverage-driven test generation
for thread-safe classes via parallel and conflict dependencies,” in ICST,
2019, pp. 264–275.

[84] T. Yu, W. Srisa-an, and G. Rothermel, “An Empirical Comparison of
the Fault-detection Capabilities of Internal Oracles,” in ISSRE, 2013, pp.
11–20.

http://asm.objectweb.org/

	Introduction
	Background and Problem Formulation
	Motivating Example
	ConDiff
	ConDiff Algorithm
	Filtering Phase

	Evaluation
	Implementation
	Subjects
	Setup
	Results

	Threats to validity
	Related Work
	Conclusion and Future Work
	References

