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Abstract—Thread-safe classes are common in concurrent
object-oriented programs. Testing such classes is important to
ensure the reliability of the concurrent programs that rely
on them. Recently, researchers have proposed the automated
generation of concurrent (multi-threaded) tests to expose con-
currency faults in thread-safe classes (thread-safety violations).
However, generating fault-revealing concurrent tests within an
affordable time-budget is difficult due to the huge search space
of possible concurrent tests. In this paper, we present DEPCON,
an approach to effectively reduce the search space of concurrent
tests by means of both parallel and conflict dependency analyses.
DEPCON is based on the intuition that only methods that can
both interleave (parallel dependent) and access the same shared
memory locations (conflict dependent) can lead to thread-safety
violations when concurrently executed. DEPCON implements an
efficient static analysis to compute the parallel and conflict de-
pendencies among the methods of a class and uses the computed
dependencies to steer the generation of tests towards concurrent
tests that exhibit the computed dependencies. We evaluated
DEPCON by experimenting with a prototype implementation
for Java programs on a set of thread-safe classes with known
concurrency faults. The experimental results show that DEPCON
is more effective in exposing concurrency faults than state-of-the-
art techniques.
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I. INTRODUCTION

Concurrent programming is pervasive due to the ubiquity
of multi-core processors [21]. Developing correct and efficient
concurrent programs is difficult because of the complexity of
thread synchronization [36, 40, 44]. Developers of concurrent
object-oriented programs often delegate such complexity by
relying on existing thread-safe classes [40, 43, 44], which
already encapsulate synchronization mechanisms that prevent
incorrect accesses to the class from multiple threads [17].

Ensuring the correctness of thread-safe classes is important
to avoid serious issues (thread-safety violations) in the con-
current programs that rely on them [4, 36, 42]. Thread-safety
violations are notoriously difficult to expose at testing time
since they often manifest non-deterministically under specific
thread interleavings [9, 42, 43, 54]. An effective approach to
ensure the correctness of thread-safe classes is automated test
generation [56]. The basic idea is that a test generator creates
concurrent tests and an interleaving explorer checks if the
generated tests trigger fault-revealing thread interleavings [9,
39, 43, 53, 54]. A concurrent test for a thread-safe class consists

of multiple concurrently executing threads that invoke the
public methods that exercise shared instances of the class
under test [30, 39, 43]. Figure 2 show examples of concurrent
tests for the class in Figure 1.

There exist a myriad of possible concurrent tests for any
non-trivial thread-safe class. Often only few concurrent tests
that exercise particular combinations of method call invocations
can expose thread-safety violations [9, 54, 56]. As such,
concurrent test generators need to explore thousands and even
millions of concurrent tests before finding one that can trigger a
thread-safety violation [9, 43]. For instance, the random-based
generator CONTEGE [43] may need to generate 17 million
concurrent tests for a given thread-safe class before exposing a
thread-safety violation [43]. Generating many tests is an issue
for concurrent test generators due to the high computational
cost of exploring the interleavings space of each generated
test [4, 25, 39, 59, 61]. Within a reasonable time-budget we can
only afford to explore the interleaving spaces of few tests due
to the large number of possible interleavings [9, 34, 54, 55]. As
a result, concurrent test generators often fail to generate failure-
inducing concurrent tests within the available time-budget [56].

Recently, researchers have proposed coverage-driven test
generators [9, 53, 54] to effectively explore the search space of
possible concurrent tests. These techniques steer test generation
towards those concurrent tests that lead to new program
behaviors (thread interleavings), thus avoiding the high cost of
exploring the interleaving spaces of redundant tests [56].

In this paper, we propose an orthogonal approach based
on parallel and conflict dependencies that combined with the
coverage-driven test generation approach further improves the
effectiveness of concurrent test generation. Our intuition is that
many concurrent tests that increase interleaving coverage [9,
53, 54] are irrelevant for exposing thread-safety violations.
Concurrent tests that increase coverage can trigger a thread-
safety violation only if the method invocations that are executed
concurrently in the test are (i) conflict dependent, that is, they
have to read and write at least one common shared-memory
location, and (ii) parallel dependent, that is, their instructions
can interleave, meaning that the synchronization mechanism
does not prevent the parallel execution of the concurrent
method invocations. Generating and exploring the interleaving
spaces of concurrent tests that do not satisfy both requirements
waste precious time-budget without increasing the likelihood
of exposing thread-safety violations.



Based on this intuition, we present DEPCON, DEPendency-
driven CONcurrency Testing, a technique built on top of
the state-of-the-art coverage-driven concurrent test generator
CovCoN [9]. DEPCON statically analyses the class under test
to compute a summary of the public methods of the class
(preprocessing phase) that it uses to dynamically generate tests.
The summary of each method includes information about both
the shared-memory accesses and the synchronization operations
of the corresponding method. DEPCON uses the summaries
to generate and explore the interleaving spaces of only the
concurrent tests that exercise conflict and parallel dependencies.

To make DEPCON useful the preprocessing phase must
be: (i) efficient, that is, it has a low computational cost,
(i) complete, that is, it identifies all parallel and conflict
dependencies to guarantee that DEPCON does not prevent the
generation of failure-inducing concurrent tests, and (iii) mostly
precise, that is, it identifies as few as possible spurious parallel
and conflict dependencies. Defining an efficient, complete and
precise analysis is challenging due to the intrinsic imprecision
and high computational cost of static analysis [46]. We address
these challenges with a novel combination and adaptation of
classic static analysis techniques for concurrent object-oriented
programs [1, 19, 46].

We implemented DEPCON in a prototype for the Java
language and evaluated it on 15 thread-safe classes with known
concurrency faults. Our results show that DEPCON dramatically
reduces the search space of concurrent tests to be generated as
much as 35.35x (7.17x on average), and exposes thread-safety
violations as much as 33.50x (4.87x on average) faster than
the state-of-the-art technique COVCON [9]. The results also
show that the preprocessing phase is efficient (it requires less
than two seconds on average), complete (it does not prevent
the detection of any thread-safety violation) and mostly precise.
In summary, this paper makes the following contributions:

« The first technique to generate concurrent tests for thread-
safe classes driven by parallel and conflict dependencies.

« The insight that an efficient static computation of parallel
and conflict dependencies can effectively steer dynamic
test generation towards thread-safety violations.

« An implementation and an experimental evaluation of
DEPCON to show the effectiveness of the proposed
technique.

II. PRELIMINARIES: CONCURRENT TEST GENERATION FOR
THREAD-SAFE CLASSES

This section presents the preliminaries of concurrent test
generation for thread-safe classes.

An object-oriented concurrent program is composed of a
set of classes, each defining a set of methods and fields
that can be invoked and accessed concurrently by multiple
threads, respectively. A class is thread-safe if it encapsulates
all necessary synchronization that prevents incorrect accesses to
the class from multiple threads [17]. Thread-safety guarantees
that multiple threads can correctly access the same instance
of the class without additional synchronization other than the
one implemented in the class [17, 43].

Concurrency faults in thread-safe classes lead to thread-
safety violations, that is, deviations from the expected behavior
of a thread-safe class when concurrently accessed. Such
violations often manifest non-deterministically depending on
the order of shared-memory accesses across threads. The
order of accesses to shared-memory locations is fixed within
one thread, but can vary across threads [34]. Such non-
deterministic orders of shared-memory accesses are called
interleavings [34]. Concurrent executions are characterized
by many different interleavings, and only some —usually few—
of them expose thread-safety violations [42]. An effective
approach to effectively expose thread-safety violations is
concurrent test generation [56].

A concurrent test (ct) of a thread-safe class is composed
of three method call sequences (prefix, suffixy, suffixo) that
exercise from multiple threads the public interface of a
class [43]. A prefix is a call sequence that is executed in
a single thread, and that creates instances of the class under
test to be accessed concurrently from multiple threads. A prefix
could also invoke additional methods to bring the instances into
states that may expose errors. A suffix is a call sequence that is
executed concurrently with other suffixes, after executing the
common prefix. All suffixes share the object instances created
by the prefix and can use them as input parameters for suffix
calls. Figure 2 shows examples of concurrent tests for the
class in Figure 1. In this paper, we consider tests with exactly
two concurrent suffixes. This is in line with state-of-the-art
concurrent test generators [56].

In this work, we rely on the thread-safety oracle proposed
by Pradel and Gross [43] to infer if an explored interleaving
of a concurrent test exposes a thread-safety violation.

Definition 1. Thread-safety oracle. A concurrent test violates
thread-safety if and only if one of its thread interleavings
manifests a runtime exception' that is not manifested in any
method-level linearization of the test.

The method-level linearizations of a concurrent test ct is
the set of all permutations of the method calls in ct that
maintain the order of calls in each thread [6, 20]. This thread-
safefy oracle has two main advantages. First, it is general
enough to include a wide range of concurrency faults types,
for example, data races [14], atomicity violations [13] and
atomic-set serializability violations [57]. Second, it guarantees
to report an oracle violation only if the class indeed suffers from
a concurrency issue, since it considers as expected behaviors
the (sequential) linearizations of the concurrent test [6, 20, 43].
In fact, the manifestation of a runtime exception could be an
expected behavior during a linearized execution [6, 9, 20, 43].
For example, calling firstElement() on an empty Java Vector
triggers a runtime exception (NoSuchElementException), which
is an expected behavior of the method. The thread-safety oracle
reports a violation only if the manifested runtime exceptions
are not expected behaviors.

IPradel and Gross consider also deadlocks as violations, we do not. We are
currently working on extending DEPCON to handle deadlocks.



public class BufferedinputStream

extends FilterlnputStream { 10 ensureOpen();

9 public synchronized int available() throws IOException {

11 return (count - pos) + in.available();

[...]// omitted methods 12}
1 private void ensureOpen() throws IOException { 13 public synchronized int read() throws IOException {
2 if (in == null) 14 ensureOpen(); /I missing synchronization
3 throw new IOException("Stream closed"); 15 if (pos >= count) { 22public void close() throws IOException{
4} 16 fill(); 23 if (in == null)
17 if (pos >= count) 24 return;
5 public synchronized void mark(int readlimit) { 18 return-1; 25 in.close();
6 marklimit = readlimit; 19 } 26 in = null;
7 markpos = pos; 20 return buf[pos++] & Oxff; 27 buf =null;
8} 21} 28}
Fig. 1. Buggy version of the JDK class BufferedInputStream, bug id 4728096. Accesses to the instance fields of the class are in bold/blue.

prefix : StringBufferInputStream var0 = new StringBufferInputStream("v;"); BufferedinputStream varl = new BufferedInputStream(var0);

Ctl prefix CtZ prefix
Thread 1 Thread 2 Thread 1 Thread 2
...varl.available(); ..varl.available(10); varl.read(); varl.mark(0);

can be pruned
read $P mark
read =C mark

can be pruned
available P available
available $C available

Fig. 2.

III. MOTIVATION

Figure 1 shows a portion of the BufferedInpuStream class
of JDK 1.4. The class contains a known concurrency fault [31]
that leads to a thread-safety violation when methods close()
and read() are executed concurrently.

Figure 2 shows four concurrent tests for the class in Figure 1:
cti, cto, cts and cty. All tests share the same prefix (see the
top of Figure 2) but have different concurrent suffixes. Among
these tests only cty exposes the thread-safety violation: when
executed with some specific thread interleavings, ct4 triggers
a NullPointerException at line 20, which is not thrown by
any linearizations of the calls in ct4. An interleaving that can
trigger the exception is: Thread 1 executes the statement at line
27 of method close after Thread 2 executes the statement at
line 17 and before Thread 2 executes the statement at line 20
of the method read. There are two possible linearizations [6,
20] of cty: {prefix, vari.read(), varl.close()) and {prefix,
varl.close(), varl.read()). The first linearization does not
throw any exception, while the second linearization throws
an expected IOException at line 3, which is different from
the NullPointerException manifested during the concurrent
execution, thus ct, exposes a thread-safety violation [20].

As recently discussed in our recent empirical study, a major
challenge of automatically generating tests that expose thread-
safety violations is the huge search space of possible concurrent
tests [56]. There exists a myriad of possible combinations
of sequential prefix, concurrent suffixes and input parameter
values that could constitute a concurrent test. To give an
idea of the search space size, let len be the maximum call
sequence length, and p the maximum number of parameters
values for each method call in a test, given a class with
w public methods, there are at most (p - w)"*™ method call
sequences [16, 41]. Since a concurrent test has three method
call sequences (a sequential prefix and two concurrent suffixes),
there are (p - w)>'®"™ possible concurrent tests. The small class
in Figure 1 has 10 public methods, including the ones of

Ct3 prefix Ct4 prefix
Thread 1 Thread 2 Thread 1 Thread 2
varl.close(); varl.mark(3); varl.close(); varl.read();

can be pruned
close =P mark
close $C mark

thread-safety violation
close =P read
close =C read

Examples of concurrent tests for the class in Figure 1. Among the four concurrent tests, only ct4 can manifest the thread-safety violation.

its superclasses. With relatively small values, len = 10 and
p = 5, there are ~10°° possible concurrent tests. Since only
few concurrent tests manifest thread-safety violations, it is
challenging to find them in such a huge search space [43, 56].
There are many concurrent tests for the class in Figure 1 that
do not trigger a thread-safety violation (for example, cty, cto
and cts in Figure 2), and a concurrent test generator could
waste all the available time-budget generating and exploring
the interleaving spaces of such concurrent tests, thus missing
the failure-inducing one [9].

IV. DEPCON

We address this challenge by defining DEPCON, a technique
that leverages static dependency analysis to reduce the search
space of concurrent tests without preventing the generation of
failure-inducing ones. The core intuition behind DEPCON is
that only methods that meet the following two requirements can
lead to thread-safety violations when concurrently executed:

« their executions can interleave (parallel dependent =P);

« they can access (with a write and read) at least one shared-

memory location in common? (conflict dependent =C).

For instance, let us consider the concurrent tests ctq, ¢ty and
cts in Figure 2. These tests do not meet the two requirements
and thus DEPCON can safely avoid generating them: (ct;):
available =P available because the method is synchronized,;
available $=C available because the method does not perform
write accesses on shared-memory locations. (cts): read =P
mark because both methods are synchronized, and thus their
instructions are protected by the same lock (current-object);
read =C mark because the method read writes and the method
mark reads the same field pos. (ct3): close =P mark because
close is not synchronized; read $=C mark because the methods
do not access the same shared-memory locations.

2In fact, all the problematic access patterns of data races [14], atomicity
violations [13] and atomic-set serializability violations [57] have two concurrent
threads that access memory location(s) in common.



However, DEPCON would generate the failure-inducing
test ¢ty as the methods in its concurrent suffixes have both
parallel and conflict dependencies: close =P read because the
instructions of close are not protected by locks; close =C
read because close writes and read reads the same field buf.

DEPCON exposes thread-safety violations for a Class Under
Test (CUT) as follows: (i) it computes the method summary of
each public method of the CUT, the summary encapsulates the
possible access and synchronization operations of the method,
(ii) it computes the parallel and conflict dependencies among
CUT methods by relying on the summaries, (iii) it steers
the generation of tests towards concurrent tests that exhibit
the computed dependencies, and could thus reveal thread-
safety violations, (iv) it explores the interleaving space of
each generated test with a given interleaving explorer [9, 43].

The remainder of this section is organized as follows. Sec-
tion IV-A defines the concept of method summary, Section IV-B
defines parallel and conflict dependencies relying on method
summaries, Section IV-C describes how DEPCON computes
the method summaries, Section IV-D presents how DEPCON
generates tests leveraging the parallel and conflict dependencies.

A. Method Summaries

The method summary of a method m, MS(m), contains
(1) the access summary AS(m), that is, the set of all possible
instructions accessing shared-memory locations that can be
triggered by m and by all of its callees, and (ii) the lock
summary LS(m), that is, the set of locks that protect such
instructions. Intuitively, DEPCON relies on the access and lock
summaries to identify which pairs of methods have conflict
and parallel dependencies, respectively.

We now formally define the access and lock summaries of
a method. A method m is composed of an ordered sequence
of instructions: inst; denotes the i-th instruction in m. Each
instruction has a type: type(inst;) denotes the type of the
instruction inst;. There are four types of instructions needed
to define method summaries:

e R(x), a read access to the memory location x;

o W(x), a write access to the memory location x;

o« ACQ(l), the acquisition of the lock /;

o REL(]), the release of the lock I;

A method can invoke other methods: callees(m) denotes all
the methods that can be directly or indirectly invoked by m.

Definition 2. The access summary AS(m) of a method m, is
the set instructions accessing shared-memory locations that
can be triggered by m and by all of its callees.

AS(m) = {inst; € {m U callees(m)} A (type(inst;) =
R(z) v type(inst;) = W(x)), where x is a shared-memory
location}.

For example, the access summary AS(mark) of method mark
in Figure 1 is {W(marklimit), R(pos), W(markpos)}. The access
summary of a method m is flow-insensitive as it represents
an over-approximation of all the possible accesses of shared-
memory locations performed by all possible invocations of m
under all possible execution paths.

Definition 3. The lock summary LS(m) of a method m is the
set of locks that always protect every shared-memory accesses
that can be triggered by an invocation of m:

LS(m) = {l : (3 ints; € m : type(inst;) = ACQ(l) A i < k)
A (ﬂ inst; € m : type(inst;) = REL(I) A j < w), where k and
w are the indexes of the first and last shared-memory accesses
in m, respectively}.

For example, the lock summary LS(mark) of the method mark
in Figure 1 is {this}, where this is the current-object of the class.
LS(m) considers only shared-memory accesses because we are
not interested in locks that protect accesses to thread-local
memory locations. This is in line with classic static and dynamic
analyses of concurrent programs [23, 28, 32, 65]. Our notion
of lock summary slightly differs from the classic notion of
lockset [51], largely adopted by dynamic and static concurrency
bug detectors [13-15, 24, 27, 28, 32]. Classic lockset is defined
at the granularity of single instructions, while lock summary
at the granularity of a set of instructions (methods). Classic
lockset can tell us if two instructions executed by multiple
threads are protected by the same lock, but cannot infer if
a block of instructions (in our case, all the shared-memory
instructions in a method) can interleave with other blocks [5].

The reader should notice that we define AS(m) with also
information about the callees of m, while we define LS(m)
without looking at the callees of m. This is because any lock
acquired with internal method calls of m does not protect every
shared-memory accesses in m, and thus it can be ignored. This
reduces the cost of computing lock summaries.

B. Parallel and Conflict Dependency Analyses

Definition 4. Methods m1 and ms are parallel dependent,
mq =P meo, if and only if their corresponding lock summaries
do not share common locks:

mi =P mo lﬁc LS(ml) N LS(TTLQ) = O.

Definition 5. Methods my and msy are conflict dependent,
mq =C my, if and only if their access summaries contain
instructions that read and write the same shared-memory
location:

my =C mg iff 3W (z) € AS(m1) A IR(y) € AS(mz2)) v
(AR(z) € AS(mq) A AW (y) € AS(my)), where z = y.

Parallel and conflict dependencies are relations between
methods. Both relations are symmetric (m; = mo implies
mo = my) but neither reflexive (not necessary each method
relates with itself) nor transitive (m; = mo and my = mg
does not imply that m; = m3).

Our notion of conflict differs from classic race condition [60,
62], which include the case in which two thread writes the
same memory location [7, 51]. Instead, DEPCON excludes
the following case: 3W (z) € AS(m4) and IW (y) € AS(m2)
(z = y). This likely reduces the number of conflict depen-
dencies, yielding a further reduction of the search space. The
rationale of this choice is that if m and mo write but never read
a common memory location their executions cannot interfere [5,
64], and their behavior would be the same of that of a sequential
execution [46].



Theorem 1. If a concurrent test ct = {prefix, suffix1, suffixa)
violates thread-safety (with respect to Definition 1), then the
two suffixes contain two methods m € suffixy and meo € suffixo
with parallel and conflict dependencies:

dmq € suffixy A Ims € suffixs : mp =P mo A m1; =C M.

Proof by contradiction: Let us assume that a concur-
rent test ct violates thread-safety and V{(mi,ms) : mi €
suffix; A mg € suffixa A (m; £P mao v m; $£C my). If
V{my,ma) mi $P mo, than the shared-memory accesses
of the two methods do not interleave, and thus all the
concurrent executions of ct are equivalent to the executions
of the linearizations of the method calls of ¢t [20]. Thus ct
cannot violate thread-safety (see Definition 1) (contradiction).
If V{mq,ms) m; $£C my means that each pair of methods
do not access common shared-memory locations, and thus
regardless if their executions interleave or not, the behaviours of
all concurrent executions of ct are equivalent to the executions
obtained by the linearizations of the method calls of ct [20].
As a result, ct cannot violate thread-safety (contradiction). W

Theorem 1 implies that the existence of parallel and conflict
dependencies among methods in the suffixes of a concurrent test
is a necessary condition for exposing thread-safety violations.
DEPCON relies on such finding to improve the effectiveness
of coverage-driven concurrent test generation.

C. Preprocessing Phase: Computing Method Summaries

Figure 3 shows the algorithm for computing the method
summaries MS of a given CUT (COMPUTEALLMS, lines 1
to 6). The algorithm is composed of two main functions:
COMPUTEMS (lines 7 to 38) and ISPURE (lines 39 to 49).
The function COMPUTEMS examines a given method m
that is declared in the CUT and performs a fine-grained
analysis that incrementally populates the method summary
of m. COMPUTEMS invokes ISPURE every time it encounters
an invocation to a method that is not declared in the CUT but
is directly or indirectly invoked from CUT methods. ISPURE
analyses the callee methods to infer if they can modify the
value of shared-memory locations. The ISPURE analysis is
coarse-grained to guarantee a low computational cost, which
is not guaranteed in the common case of presence of many
invocations to non-CUT methods.

COMPUTEALLMS (lines 1 to 6) returns MS the set of the
method summaries of all the public methods declared in the
CUT. The readers should notice that we are not interested
in reporting the method summaries of private or protected
methods as they do not constitute the public interface of the
CUT, which implies that concurrent tests (client code) cannot
directly invoke them. DEPCON considers the shared-memory
accesses of private or protected methods when such methods
are invoked by public methods (line 32).

COMPUTEMS (lines 7 to 38) returns the method summary
of a given method m. It initializes the access summary AS(m),
the lock summary LS(m) and tmp-lock-releases, which is a
supporting variable used for the computation of LS(m) (lines 8-
10) to empty sets. It then scans the ordered sequence of

input :CUT (class under test)
output : MIS method summaries of CUT

1 function COMPUTEALLMS(CUT)

2 MS «— @

3 for each public method m in CUT do

4 MS(m) < COMPUTEMS(m)

5 add MS(m) to MS

6 | return MS // return method summaries of CUT
7 function COMPUTEMS(m)

8 AS(m) «— & // init access summary of m
9 LS(m) «— & // init lock summary of m
10 tmp-lock-releases — & // temporary lock releases
11 for each inst; in m do

12 switch type(inst;) do

13 case Shared-memory accesses: R(x) or W(x) do

14 ref < GETOUTERMOSTREF(inst;)

15 if ISSHAREDLOCATION(ref) then

add R(ref.f) or W(ref.f) to AS(m)
remove tmp-lock-releases from LS(m)
tmp-lock-releases «— &

16
17
18

19 case Lock acquire: ACQ(l) do

20 if AS(m) = @ then

21 | — GETLOCK(inst;)

22 add [ to LS(m)

23 case Lock release: REL(l) do

24 | «<— GETLOCK(inst;)

25 if AS(m) = & then

26 { remove [ from LS(m)

27 else

28 | add [ to tmp-lock-releases

29 case Method invocation: INVOKE(callee) do
30 callee «— GETINVOKEDMETHOD(inst;)

31 if callee is a method declared in the CUT then
32 { add COMPUTEMS(callee) to MS(m)
33 else

34 if ISPURE(calle) == false then

35 for each parameter p of callee do

if ISSHAREDLOCATION(p) then
| add W(p) to AS(m)

36
37

38 | return MS(m) — (AS(m), LS(m))
39 function ISPURE(callee)

40 for each inst; in callee do

41 switch type(inst;) do

42 case W(x) do

43 x «<— GETOUTERMOSTREF(inst;)

44 if x is a parameter of callee then

45 | return false

46 case INVOKE(callee) do

47 callee < GETINVOKEDMETHOD(inst;)
48 return ISPURE(callee)

49 | return frue

Fig. 3. Algorithm for the preprocessing phase.

bytecode instructions inst; of m (line 11), and checks the
type of each inst; to determine if it belongs to one of the
following four categories.

Category 1) Shared-memory accesses: W(x) or R(x)
(line 13). DEPCON generates concurrent tests that share among
threads only CUT instances, therefore, only the fields of the
current-object (the object referred with this in Java) or fields
of static classes can be shared-memory locations [9, 33, 39, 43,
49, 53, 54]. As such, the instructions belonging to Category 1
are read or write accesses to static or non-static fields: getfield,



getstatic as well as putfield and putstatic instructions in
the case of Java bytecode [18]. In this context, a costly thread-
escape analysis [8, 26] is not necessary to identify shared-
memory locations. This reduces the complexity of the analysis.
We only need to infer whether the getfield and putfield
instructions access the current-object. Since fields of an object
can also be objects of their own, the algorithm needs to traverse
the chain of object references until it identifies the outer-most
object reference ref. Moreover, since a method can create and
access local objects that do not reference the fields of the
current-object, the algorithm performs backward analysis on
the JVM stack to discover the outer-most object reference in
the reference chain [18] (line 14). The Java Virtual Machine
(JVM) [18] is a stack-based abstract machine, in which Java
bytecode instructions pop their arguments off the stack and push
their results on the stack [18]. Function ISSHAREDLOC(ref)
(line 15) checks if ref is the current-object. This is trivially true
when x points to the first register [18], which is popped in the
JVM stack with the bytecode instruction aloade. Alternatively,
ISSHAREDLOC(ref) performs an additional backward analysis
on the JVM stack to discover whether the alias of ref is
the current-object. If ISSHAREDLOC(ref) returns true, the
algorithm adds R(ref.f) (for getfield) or W(ref.f) (for putfield)
to AS(m) (line 16), where f is field of ref that is accessed.
Then the algorithm removes from LS(m) all the locks that
were released after the lastly added access in AS(m) (line 17),
since LS(m) contains only the locks released after the last
shared-memory access in m (Definition 3).

Category 2) Lock acquisition: ACQ(l) (line 19). In Java
bytecode, lock acquisitions are monitorenter instructions® [18].
Since LS(m) contains only the locks that are acquired before
the first shared-memory access in m and never released
before the last shared-memory access in m (Definition 3), the
algorithm checks if AS(m) is empty to infer if the lock acquire
instruction is executed before the the first shared-memory
access in m. If AS(m) is empty, the algorithm executes Function
GETLOCK(inst;) that performs backward alias analysis to
identify the acquired lock [, which can be an object or a
class reference (line 21), and adds [ to LS(m) (line 22).

Category 3) Lock release: REL(l) (line 23). In Java
bytecode, lock releases are monitorexit instructions. The
algorithm executes Function GETLOCK(inst;) to get the lock
released by inst; (line 24). If AS(m) is empty, the algorithm
removes [ from LS(m) (line 26), otherwise it adds [ to the
tmp-lock-releases supporting variable. It removes the locks in
tmp-lock-releases from LS(m) only if it meets another shared-
memory access while scanning subsequent instructions in m.

Category 4) Method invocation: INVOKE(callee)
(line 29). In Java bytecode, method invocations corre-
spond to invokedynamic, invokeinterface, invokespecial,
invokestatic and invokevirtual instructions [18]. When the
algorithm meets one of such instructions, it gets the fully
qualified name of the called method (callee line 30), and

3The current implementation of DEPCON does not consider low
level synchronization mechanisms that uses Unsafe operations like
CompareAndSwap.

checks if callee is declared in the CUT. If callee is declared in
the CUT, the algorithm recursively calls COMPUTEMS(callee)
to get the access summary of callee (AS(callee)), and adds it
to AS(m). Otherwise, the algorithm calls Function ISPURE to
check if callee is a pure method [19, 29], that is, if it does not
directly or indirectly writes on object fields. If callee is not
a pure method, the algorithm checks if any parameter of the
method invocation p is aliased to either the current-object or to
any one of the current-object fields (ISSHAREDLOCATION(p)
line 36). If it is an alias, the algorithm adds a write access
(W(p)) to AS(m) (line 37). The algorithm does not need to add
a read access, because it must have already seen an instruction
that pushes p in the JVM stack.

ISPURE (lines 39 to 49) scans the instructions of callee.
If it encounters an instruction that writes a memory location,
it gets ref the outer-most reference in the chain of object
references (GETOUTERMOSTREF line 43). if ref aliases a
method parameter (including the object receiver), the method
is considered inpure (ISPURE returns false). The function
recursively calls ISPURE on the called method when it
encounters an instruction of type INVOKE.

For the sake of readability, we omitted few details in the
algorithm in Figure 3: (i) the algorithm caches the computed
method summaries and purity results to save computational
time; if it meets multiple invocations of the same method, at
line 30 the algorithm simply returns the precomputed result.
(ii) the algorithm avoids endless recursions of the recursive
functions COMPUTEMS and ISPURE caused by methods that
directly or indirectly invoke themselves (such as, with transitive
calls) by maintaining a call stack of the methods that are being
analyzed, and breaking the endless recursion if it encounters
an invocation of a method that is already in the call stack.

Running example of COMPUTEMS. We exemplify the
algorithm on method available in Figure 1, method m in this
example. The first relevant instruction in m is a monitorenter
triggered by the keyword synchronized in the method dec-
laration. GETLOCK at line 21 infers that the acquired lock
is the current-object, and thus DEPCON adds this to LS(m)
(line 22). The second relevant instruction in m is INVOKE(®m),
where m’ refers to the method ensureOpen. Since m’ is a
method declared in the CUT the algorithm recursively calls
COMPUTEMS(m') at line 32. At line 2 in Figure 1 the
class accesses the field in of the current-object, and thus the
algorithm adds R(in) in AS(m’) at line 16. Note that DEPCON
encodes both locks and memory locations with their fully
qualified names since fields in the same class must have unique
names. COMPUTEMS (ensureOpen) returns AS(m’), which is
added to AS(m’). The algorithm adds R(count), R(pos) and
R(in) to AS(m). Since AS(m) already contains R(in) it keeps
only one. When the algorithm encounters the monitorexit,
it adds the released lock to tmp-lock-releases at line 28.
Since after the monitorexit instruction there are no more
instructions that access shared-memory locations, this is never
removed from LS(m). As a result, when the algorithm terminates
AS(m) ={R(in), R(count), R(pos)} and LS(m) ={this}.



input :CUT (class under test), time-budget B
output : thread-safety violation

1 function DEPCON(CUT, B)

2 MS «— COMPUTEALLMS(CUT) // see Algorithm 1

3 M «— CoMPUTECFP(CUT) // all coverage targets

4 Mpc — & // init Mpc € M reduced coverage targets

5 for each {mi,m2) e M do

6 if m1 =P ma A mi1 =C my then

7 L add <m1, m2> to ./\/lpc

8 while B is not expired do

9 {m1, ma) < GETNEXTMETHODPAIR(M.)

10 for i from 0 to 1 do

11 if i % 2 == 0 then

12 & prefix «— GETRANDOMCONSTRUCTOR()

13 else

14 | prefix <~ GETSTATECHANGER(MS)

15 suffix; < GETSUFFIX(1m1)

16 suffixa <« GETSUFFIX(1m2)

17 ct < ASSEMBLETEST(prefix, suffixi, suffixs)

18 for from 1 to numlter do

19 exception «<— EXECUTE(ct)

20 if exception # DA exception ¢
ALLPOSSIBLELINEARIZATIONS(ct) then

21 | return thread-safety violation

- Fig. 4. DEPCON algorithm.

D. Generating Tests via Parallel and Conflict Dependencies

Figure 4 summarizes the DEPCON test generation approach,
highlighting how it leverages parallel and conflict dependencies
while generating concurrent tests. DEPCON takes as an input
a (presumed) thread-safe class (CUT) and a time-budget 5.
DEPCON alternatively generates concurrent tests and explores
their interleaving spaces. DEPCON terminates when either it
detects a thread-safety violation or the time-budget expires.

DEPCON starts by computing the initial coverage targets
M (COMPUTEALLMS line 3) relying on the coverage-driven
approach of CovCON [9], a state-of-the-art coverage-driven
concurrent test generation. COVCON exploits the concept of
concurrent method pairs proposed by Deng et al. [10], who
define concurrent method pairs as the set of pairs of methods
that execute concurrently [10]. COVCON considers the set of all
possible pairs of public methods of a class M [9] as coverage
targets for a class with m public methods®*.

While CovCON considers all possible pairs as coverage
targets, DEPCON considers only those pairs M,. < M that
have parallel and conflict dependencies. DEPCON computes the
method summaries with Function COMPUTEALLMS (line 2
in Figure 3). Then, DEPCON adds the pair {mi,mq) € M
to My, if mi =P ma A m; =C mg (lines 5-7). DEPCON
computes the parallel and conflict dependencies relying on the
computed method summaries according to Definition 4 and
Definition 5, respectively.

Function GETNEXTMETHODPAIR (line 9) selects the next
pair according to COVCON that prioritizes pairs based on the
frequency of their concurrent executions, to focus the test
generation on infrequently or not at all covered pairs [9].

4Choudhary et al. consider {m1, ma) and {mga, m1) to be the same method
pair because the order is irrelevant for concurrency bug detection [9]. Thus,
there are m - (m + 1)/2 method pairs.

DEPCON generates two concurrent tests with two different
prefixes for a method pair {my,ms), as defined in COV-
CoN. The first prefix is composed of a randomly chosen
constructor (GETRANDOMCONSTRUCTOR, line 12), the second
prefix contains additional method calls after the constructor
(GETSTATECHANGER, line 14) [9]. The rationale is that some
concurrency faults can only be triggered after bringing the
object into a fault-exposing state by invoking a sequence of
method calls, whereas other faults may show only on a freshly
instantiated instance [9, 43, 54]. Function GETSTATECHANGER
of DEPCON relies on the computed method summaries (MS) to
further reduce the search space. It forces at least one additional
method call in the prefix to be in conflict (==C) with either m;
or meo. The rationale is that the prefixes that do not modify the
values of memory locations read by m; or mo are equivalent
to those prefixes that only use the constructor. Intuitively, to
affect (for example, with a new execution path) the behavior of
the concurrent suffixes at least a memory location read by them
has to be modified by the additional calls in the sequential
prefix. Avoiding generating and exploring the interleaving
spaces of concurrent tests with same suffixes but different
albeit redundant prefixes saves precious time-budget.

DEPCON generates the method call suffix; that invokes
m using the object under test instantiated by the prefix as
input parameter (GETSUFFIX(mq) at line 15) [9]. Similarly,
it generates suffixo with my (GETSUFFIX(m3) at line 16).
DEPCON generates a new concurrent test ct by assembling the
obtained method call sequences (line 17). DEPCON explores
the interleaving space of ct relying on the non-determinism
of the JVM scheduler that is likely to induce a different
interleaving every time it executes ct [9, 43]. DEPCON
repetitively executes each generated concurrent test numliter
times (line 19). After every execution, DEPCON checks if the
test thrown an exception, if yes it makes sure that the same
exception does not manifest when executing any linerarizations
of ct (line 20). In affirmative case, it reports the thread-safety
violation. Otherwise, it resumes the generation of concurrent
tests and their interleaving space exploration until the time-
budget expires.

V. EVALUATION

We empirically evaluate DEPCON with a prototype imple-
mentation for Java classes, implementation that we developed
on top of CovCoON [9]. We implemented the algorithm
described in Figure 3 by relying on the bytecode manipulator
framework ASM [3] to scan the bytecode instructions of Java
methods. We evaluated DEPCON with a set of 15 thread-
safe classes and compared DEPCON with COVCON, the most
effective state-of-the-art concurrent test generator [9, 56].

We addressed three research questions:

« RQ1 Effectiveness. Can DEPCON effectively generate
concurrent tests that expose thread-safety violations?

« RQ2 Comparison. Is DEPCON more effective than state-
of-the-art concurrent test generation?

« RQ3 Preprocessing Phase. What is the efficiency, com-
pleteness and precision of the preprocessing phase?



TABLE I
SUBJECTS DESCRIPTION

ID Code Base Version Package Class Name LOC # Methods # Public Fault
Methods Type
Cl1 Apache Math 2.4 org.apache.commons.lang.math IntRange 276 48 26  Atomicity
C2 Apache DBCP 1.4 org.apache.commons.dbcp.datasources  PerUserPoolDataSource 719 84 66  Data race
C3 1.4 org.apache.commons.dbcp.datasources ~ SharedPoolDataSource 546 68 52 Atomicity
C4 HSQLDB 233 org.hsqldb.lib DoublelntIndex 966 55 34 Atomicity
C5 IDK 1.1 java.io BufferedInputStream 239 34 10 Atomicity
C6 14.2 java.util Vector 786 80 45  Atomicity
C7 1.0.13 org.jfree.data.time Day 267 44 26 Data race
C8 0.9.12 org.jfree.chart.axis NumberAxis 1,662 154 111 Atomicity
Cc9 JFreeChart 1.0.1 org.jfree.chart.axis PeriodAxis 1,975 173 126 Data race
C10 0.98 org.jfree.data.time TimeSeries 359 49 41  Data race
Cl1 1.0.9 org.jfree.chart.plot XYPlot 3,080 259 218  Data race
C12 0.9.8 org.jfree.data XYSeries 200 32 25  Data race
C13 Log4J 1.0 org.apache.log4j FileAppender 369 37 21 Atomicity
C14 1.0 org.apache.log4j WriterAppender 317 40 24 Atomicity
C15 | XStream 1.4.1 com.thoughtworks.xstream XStream 926 87 66  Data race
A. Subjects of the choices made by the tools while generating tests, we

We selected a benchmark of 15 classes with known thread-
safety violations that have been used in the evaluation of
previous work [5, 9, 43, 49]. Table I shows the details of
the subjects. Column “ID” assignes a unique identifier that
we use to identify the subject program in the paper. Column
“Code Base” reports the subject program that contains the class
under test. In our experiments, we considered classes in seven
popular code bases. Column “Version” gives information about
the version that contains the faulty class. Column “Package”
and Column “Class Name” indicate the package and name
of the CUT, respectively. Column “LOC” shows the lines of
code of the CUT, which range from 200 to 3,080. Column
“# Methods” gives the number of public, protected or private
methods of the CUT, while Column “# Public Methods” shows
the number of public methods. The number of methods includes
both the class itself and its non-abstract superclasses (excluding
java.lang.Object) because this is the code that DEPCON tests.
Column “Fault Type” indicates the type of concurrency fault
for each subject (atomicity violation [13] and data race [14]).

B. Evaluation Setup

We ran both DEPCON and COVCON on all 15 Java classes®.
Following related work [9, 54, 56] we chose a time-budget of
one hour per class (B = 1 hr). Each experiment terminated
when the technique either successfully exposes the thread-
safety violation or exhausts the time-budget. Both DEPCON
and COVCON relies on the default scheduler of the JVM as
interleaving explorer. The original implementation of COvCON
uses one iteration for the interleaving explorer (numlter = 1
line 18 in Figure 4), which we found not adequate to expose
the failure-inducing interleaving in many cases. The choice
of the number of iterations is important: too few iterations
may miss a fault-revealing interleaving even if the concurrent
test can exhibit one, while too many could waste testing
resources. For both DEPCON and CovCON we used one
hundred iterations (numlIter = 100), which is a good trade-off
between effectiveness and cost. To cope with the randomness

SWe executed our experiment on a server Ubuntu 16.04.2 with 64 octa-core
CPUs Intel® Xeon® E5-4650L @ 2.60GHz and ~529 GB of RAM

repeated each experiment five times using different random
seeds. Both tools generate tests pseudo-deterministically given
a random seed. To guarantee repeatability of the experiments
we used the seeds from 1 to 5. We measure the effectiveness
of each technique with the following three metrics:

« Success Rate (SR), 1 if the technique detects a thread-
safety violation within the time-budget B, 0 otherwise.

o Fault Detection Time (FDT): time taken by the technique
to expose the thread-safety violation, B if the time-budget
expires.

« # Generated Tests (#GT): number of generated concur-
rent tests when 3 expires or when the technique exposes
a thread-safety violation.

C. RQI Effectiveness

Columns 4 to 6 in Table II show the results relative to RQ1.

The Success Rate (SR) of DEPCON is 100% for seven
subjects: C1, C3, C5, C7, C9, CI10 and CI2; for these subjects
DEPCON exposes the thread-safety violations in all five runs.
The average SR of all subjects is 68%. SR is always greater
than 0%, meaning that DEPCON successfully exposes the
thread-safety violations in at least one run for all the subjects.
This result suggests that Theorem 1 is empirically sound:
pruning the search space via parallel and conflict dependencies
does not prevent the generation of failure-inducing tests.

The average Failure Detection Time (FDT) of DEPCON
ranges from 1 minute and 21 seconds for subject C/ to 51
minutes and 11 seconds for C6 (22 minutes and 48 seconds on
average). FDT includes all phases of DEPCON: preprocessing
(Column “Avg. Time MS millisec”), computation of coverage
targets and parallel and conflict dependencies, as well as the
time for generating concurrent tests and for exploring their
interleaving spaces.

The average number of generated tests (#GT) of DEPCON
ranges from 18 concurrent tests for Subject C5 to 5,860 for
C8 (1,642 on average). This indicates that DEPCON explores
a relatively small number of concurrent tests before exposing
the thread-safety violations.



TABLE II
EVALUATION RESULTS

DEPCON (this work) CovCoN [9] Comparison (RQ2)

Avg. Time  Success Avg. FDT  Avg. Success Avg. FDT Avg. My SR FDT #GT
ID pe  MS millisec. Rate (hh:mm:ss) #GT M Rate (hh:mm:ss) #G reduction improv. speedup reduction
Cl 21 970 100% 00:01:21 188 351 40% 00:36:15 6,660 16.71x +60%  26.72x% 35.35%
Cc2 66 1,535 40% 00:43:57 2,810 | 2,211 40% 00:52:36 9,055 33.50% - 1.20x 3.22x
C3 52 1,046 100% 00:11:51 1,221 1,378 20% 00:56:00 8,947 26.50% +80% 4.73x 7.33%
C4 297 1,584 60% 00:34:13 2,617 595 100% 00:10:38 1,055 2.00x -40% 0.31x 0.40x
C5 22 1,011 100% 00:00:07 18 55 100% 00:00:34 161 2.50x - 5.21x 8.77x
C6 51 1,733 20% 00:51:11 1,174 1,035 20% 00:54:52 5,010 20.29 x - 1.07x 4.27x
Cc7 70 1,448 100% 00:01:24 255 351 100% 00:03:03 640 5.01x - 2.17x 2.51x
C8 292 1,156 40% 00:39:50 5,860 | 6,216 0% 01:00:00 12,368 21.29% +40% 1.51x% 2.11x
C9 278 1,353 100% 00:03:15 438 8,001 100% 00:09:52 1,720 28.78 % - 3.04x 3.93x
C10 296 1,335 100% 00:02:19 370 861 100% 00:15:56 2,895 2.91x - 6.88x 7.82x
Cl1 844 2,252 40% 00:43:54 4,113 | 23,871 20% 00:57:56 4,320 28.28 x +20% 1.32x 1.05x
C12 114 1,291 100% 00:00:33 116 325 100% 00:07:47 1,842 2.85x - 14.05% 15.88x
Cl13 53 971 20% 00:48:18 2,622 231 0% 01:00:00 16,264 4.36x +20% 1.24x 6.20x
Cl4 37 1,064 20% 00:48:06 2,609 300 0% 01:00:00 15911 8.11x +20% 1.25x 6.10x
Cl15 427 4,032 80% 00:11:44 222 | 2,211 80% 00:26:54 568 5.18x - 2.29% 2.56x
Avg. | 195 1,519 68 % 00:22:48 1,642 | 3,199 55% 00:34:10 5828 | 13.89x 13% 4.87x 7.1x%

D. RQ2 Comparison

Columns 7 to 10 in Table II show the results of the state-of-
the-art coverage-driven test generator COVCON and Columns
11 to 14 show the comparison results with DEPCON.

The Success Rate (SR) of COVCON is 100% for Subjects
Cc4, C5, C7, C7, C9, CI0 and CI2. CovCON fails to
expose the thread-safety violations in all runs for Subjects
C8, C13 and CI4. The average SR of all subjects is 55%
that is lower than the one of DEPCON (68%). Column “SR
improv.” in Table II gives the improvement in success rate
of DEPCON over COVCON. For six subjects, DEPCON has a
higher success rate. For only Subject C4, DEPCON exposes
the thread-safety violation in fewer runs than COvCON. A
manual investigation of the generated tests suggests that the
failure-inducing interleaving for Subject C4 has a low chance
of manifestation. Adopting more sophisticated interleaving
explorers might overcome this issue [9].

The average Failure Detection Time (FDT) of CovCON
ranges from 3 minutes and 33 seconds for Subject C7 to 1
hour for the three subjects in which COVCON fails to expose
the thread-safety violation before the time-budget expires. The
average FDT across all subjects is 34 minutes and 10 seconds,
which is lower than the one of DEPCON (22 minutes and
48 seconds). Column “FDT speedup” in Table II indicates
the speedup of “Avg. FDT” of DEPCON over COVCON. The
speedup ranges from 0.31x for Subject C4 to 26.72x for
CI (4.87x on average). DEPCON exposes the thread-safety
violations faster than CovCoN for all sibjects but C4.

The average number of Generated Tests (#GT) of CoOvCON
ranges from 161 concurrent tests for Subject C5 to 16,264 for
C13 (5,824 on average). For each subject, the #GT of COvCON
is always higher than the #GT of DEPCON. This explains the
speedup of DEPCON. On average DEPCON needs to generate
and explore the interleaving space of 7.1 x less concurrent tests
before exposing the thread-safety violations (Column “#GT
reduction”). This result demonstrates the effectiveness of the
proposed approach to reduce the search space and to drive test
generation towards failure-inducing concurrent tests.

E. RQ3 Preprocessing Phase

Column “Avg. Time MS millisec” shows the computation
cost of the preprocessing phase (Algorithm in Figure 3), which
ranges from 970 ms for Subject C'1 to 16,264 ms for C'13.
This demonstrates the efficiency of our proposed static analysis.
To put it in perspective, the average computation cost of the
preprocessing step across all subjects is 1,519 ms, which is
only 1.66% of the average FDT (22 minutes and 48 seconds).

Evaluating the exact precision and completeness of the
preprocessing phase is difficult since the ground truth of parallel
and conflict dependencies cannot be easily obtained. However,
we can evaluate them indirectly.

Since DEPCON exposes the thread-safety violation in at least
a run for each subject, the preprocessing phase is complete.

Column “My,. reduction” shows that DEPCON drastically
reduces the number of coverage targets by 13.89x on av-
erage. Therefore, the precision of the preprocessing phase
is good enough to make the computed parallel and conflict
dependencies useful. It is important to clarify that DEPCON
could hardly achieve a perfect precision due to the intrinsic
imprecision and over-approximation of static analysis. DEPCON
consciously makes conservative choices when computing the
method summaries in the Algorithm in Figure 3 to avoid
missing any parallel or conflict dependencies.

F. Threats To Validity

A major threat to external validity is whether our results
generalize to other subjects. We mitigated this threat by
including subjects of seven popular code bases that were used
in the evaluation of related work.

Another threat to the validity of the results is the choice of
the underline interleaving explorer. DEPCON simply relies on
the intrinsic non-determinism of the JVM thread scheduler [43].
More sophisticated interleaving explorers are expected to
explore the interleaving space of the generated tests more
effectively and thus exposing thread-safety violations faster.
We leave the evaluation of DEPCON combined with alternative
interleaving explorers as a future work.



VI. RELATED WORK

In this section, we briefly survey existing test generators
for thread-safe classes, which are closely related to DEPCON,
and various parallel and conflict dependencies analysis for
concurrent object-oriented programs.

Existing concurrent test generators for thread-safe classes can
be divided in random-based, coverage-based and sequential-
test-based techniques [56]. Random-based techniques [39, 43]
generate concurrent tests by combining randomly generated
method call sequences with random input parameters. Coverage-
based techniques [9, 53, 54] drive the generation of concurrent
tests with interleaving coverage criteria [10, 25, 34]. DEPCON
belongs to this category as it relies on concurrent method
pairs [9, 10] as coverage targets. Sequential-test-based tech-
niques [47-50] analyze a given set of sequential tests in input
to identify concurrency faults that may occur when combining
multiple sequential tests into concurrent tests. None of these
techniques performs parallel and conflict dependency analysis
to reduce the search space during test generation. We expect
that the effectiveness of these techniques would improve if
they include the preprocessing phase of DEPCON (see RQ2).

Schimmel et al. proposed in a workshop paper AUTORT
[52] that shares a similar goal with DEPCON, as it proposes
the use of parallel and conflict analysis to reduce the number
of concurrent tests to be generated. However, the scope and
approach of AUTORT and DEPCON differ substantially. First,
AUTORT delegates to the developers the responsibility to re-run
the software under test with method call sequences that cover
all parallel program parts [52]. Instead, DEPCON automatically
generates such method call sequences. In addition, DEPCON
relies on conflict dependency analysis to generate meaningful
prefixes. Second, differently from DEPCON, AUTORT does
not do inter-procedural analysis while statically analyzing a
method, and thus it would likely miss conflict dependencies.
Third, AUTORT identifies method pairs that do not run in
parallel by dynamically executing them on an instrumented
version of the program. This solution could miss real parallel
dependencies if the methods interleave but AUTORT observed
only those executions in which they do not. Conversely,
DEPCON performs the parallel analysis statically, thus avoiding
the cost of generating and running tests and without suffering
from the incompleteness of a dynamic approach.

Recently, we presented CONCRASH [5] to generate concur-
rent tests for reproducing concurrency failures from crash
stack traces. CONCRASH performs search space pruning
strategies to steer the test generation towards concurrency
tests that reproduce the given crash stack trace. Two pruning
strategies of CONCRASH, PS-Interleave and PS-Interfere
share similarities with the parallel and conflict dependencies
analysis of DEPCON, respectively. However, CONCRASH
requires dynamic information obtained by generating and
executing concurrent tests to apply the pruning strategies.
Conversely, DEPCON performs conflict and parallel dependency
analyses prior to test generation, and thus it avoids the cost
of generating and executing those concurrent tests that the

two pruning strategies will prune away. Nevertheless, the
effectiveness of CONCRASH is expected to improve if the static
analysis of DEPCON is added in the pipeline of CONCRASH.

DEPCON builds on top of traditional static analyses for
concurrent object-oriented programs, such as object purity [19,
291, alias [22, 35], may-happen-in-parallel [1, 2, 37, 38],
and conflict [45, 46] analyses. Researchers proposed such
analyses to resolve problems that are more general than the
one considered in this paper. DEPCON adapts and combines
them in a novel way to resolve the specific problem of reducing
the search space during concurrent test generation for thread-
safe classes. For instance, may-happen-in-parallel analysis is
defined at the granularity of statements [37, 38], while we define
the parallel analysis of DEPCON at the granularity of methods.
As another example, differently from the traditional purity
analysis (also called side-effect analysis) [19, 29], DEPCON
purity analysis focuses solely on the side-effects of those
methods that could have shared-memory locations as method
parameters. Moreover, one needs to define static analysis with
a specific trade-off between analysis efficiency and precision
of its result [11, 12]. We reasoned about such trade-off in
the context of the problem we wanted to address, favoring
efficiency over precision. Classic static analysis techniques
often favor precision over efficiency, this can hardly cope with
the problem addressed in this paper.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented DEPCON, a coverage-driven
concurrent test generation technique that relies on conflict and
parallel dependencies among methods to effectively expose
thread-safety violations in a given thread-safe class. Our insight
is that static and dynamic analyses, with their dual strengths
and weaknesses [12, 58, 63], can work well in synergy for
generating concurrent tests. Dynamic analysis guarantees to
report true thread-safety violations [43], while static analysis
mitigates the inherent incompleteness of dynamic analysis by
reducing the search space of possible concurrent tests.

There are several opportunities for future work that can
further improve DEPCON effectiveness and applicability. We
now discuss the two most promising ones.

The static analysis of DEPCON often performs an over-
approximation of program behaviors to reduce the analysis
cost. As a result, some computed dependencies are spurious.
Finding new solutions to improve the precision of the analysis
without degrading its efficiency is a possible future work that
could improve the effectiveness of DEPCON.

Currently, DEPCON does not target deadlocks. A possible
way to extend DEPCON for the deadlock detection problem
would be to consider an additional type of dependency: two
methods acquire in a reverse order at least two common locks.
We leave this as an important and interesting future work.
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