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ABSTRACT
Intermittent test failures (test flakiness) is common during con-
tinuous integration as modern software systems have become in-
herently non-deterministic. Understanding the root cause of test
flakiness is crucial as intermittent test failures might be the result of
real non-deterministic defects in the production code, rather than
mere errors in the test code. Given a flaky test, existing techniques
for root causing test flakiness compare the runtime behavior of its
passing and failing executions. They achieve this by repetitively
executing the flaky test on an instrumented version of the system
under test. This approach has two fundamental limitations: (i) code
instrumentation might prevent the manifestation of test flakiness;
(ii) when test flakiness is rare passively re-executing a test many
times might be inadequate to trigger intermittent test outcomes. To
address these limitations, we propose a new idea for root causing
test flakiness that actively explores the non-deterministic space
without instrumenting code. Our novel idea is to repetitively ex-
ecute a flaky test, under different execution clusters. Each cluster
explores a certain non-deterministic dimension (e.g., concurrency,
I/O, and networking) with dedicated software containers and fuzzy-
driven resource load generators. The execution cluster that mani-
fests the most balanced (or unbalanced) sets of passing and failing
executions is likely to explain the broad type of test flakiness.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Computer systems organization → Cloud comput-
ing; • Hardware→ Testing with distributed and parallel systems.
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1 INTRODUCTION
Software constantly evolves to add and improve features, remove
faults, change the design etc. As software evolves, developers have
to ensure that changes do not modify software behaviors in unin-
tended ways [13]. They often achieve this by automatically run the
existing regression tests with the continuous integration pipeline. If
all tests pass the developers have confidence that the code changes
do not break existing functionalities [13]. If some tests fail, devel-
opers assume that the changes introduced one or more faults and
they will start the debugging process.

However, developers sometimes realize that there is nothing
wrong with the code changes, and tests fail intermittently because
testing became inherently non-deterministic [1, 5]. This kind of
tests are called “flaky” (non-deterministic), that is, a test that passes
or fails intermittently for the same code version, the same inputs,
and the same configuration [9]. Test flakiness has become a se-
rious and acknowledged issue in modern software development,
as the complexity and pervasiveness of non-deterministic com-
ponents (e.g., concurrency, networking an I/O) have increased in
software [7]. In recent years, many developers regard test flakiness
as one of the primary concern for industrial software testing [1, 5].
Large organizations such as Facebook, Google, Huawei, Microsoft,
and Mozilla are increasingly reporting problems with flaky tests [8].
A key issue is that flaky tests lead to unreliable signals that can
erode the trust of developers in their regression testing [1, 5, 8, 10].

To identify and fix flaky tests, the most common approach is to
execute tests many times to see if they fail intermittently. For exam-
ple, using the JUnit @RepeatedTest annotation. In some cases, the
cause of the intermittent test failure is obvious, and a developer can
fix the test easily. Nevertheless, the problem arises when it is not im-
mediately obviouswhy a test is flaky. In this case, developers need to
acquire more information about the failure itself. More specifically,
the developers need to identify the “root cause of test flakiness.”
Root causing flaky tests is both difficult and time-consuming,mainly
because often one has to execute a flaky test many times before
observing a non-deterministic behavior [7]. As such, developers
may decide to simply ignore and disable flaky tests [9] assuming
that the intermittent failures are tests problems [8].

Ignoring flaky test failures is dangerous as they could be symp-
toms of real intermittent bugs in the production code, rather than
mere non-deterministic tests [2]. Sometimes a flaky test is flawless
and it reveals a non-deterministic fault in the production code [7,
10]. For example, a flaky behavior could be caused by concurrency
faults, which often manifest non-deterministically under specific
thread interleavings [12]. Even if developers do not write tests
to intentionally validate concurrency behaviors, tests may invoke
concurrent components that could trigger concurrency faults. As
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such, ignoring flaky tests is dangerous because it may ignore real
non-deterministic faults during the continuous integration [12].

Although root causing flaky tests is a labor and time-consuming
activity, it is crucial to guarantee reliable production code. Given
the prevalence of flaky tests in modern software systems [2, 3, 7],
cost-effective tools and methodologies for automatically identifying
the root cause of test flakiness are highly needed and demanded.

In this paper, we present a new idea to discover test flakiness and
its root causes. It employs software containers to distribute several
multiple executions of the test under analysis, each of them defining
possible configurations and conditions that may lead to flakiness.
In the rest of the paper, we present the state of the art, highlighting
the limitations we believe should be addressed to improve root
causing of flaky tests. Then, we describe our vision, together with
the proposal for a novel infrastructure to cope with the problem.

2 STATE OF THE ART
Understanding the root cause of test flakiness is simple in theory:
given a flaky test, an automated tool could compare the run-time
behaviors of the passing and failing executions of the test. It is
very similar to what techniques for fault localization do, such as
Tarantula [6]. However, achieving this in a cost-effective way for
test flakiness is difficult in practice [7]. Existing techniques, either
rely on code instrumentation [7], which may be disruptive and
incomplete, or passively explore the non-deterministic space by
simply re-executing many times the flaky tests [2], which may be
inadequate to reproduce the intermittent failures.

Limitations of instrumentation-based approaches. Lam et al.
recently proposed RootFinder [7], which identifies the root cause
of flaky tests by finding differences in the logs of passing and failing
executions. It obtains such logs by running the flaky tests with an
instrumented version of the production code. However, relying on
code instrumentation entails three fundamental limitations.

First, the instrumentation may disrupt the test execution and
therefore prevent the manifestation of flaky test failures (e.g., due
to instrumentation runtime overhead). Indeed, Lam et al. observed
that some flaky tests exhibit intermittent failures only when they
run without instrumentation [7].

Second, it is impossible to know in advance all the execution
points that we should instrument and what information should be
collected to be able to understand the runtime differences. There
are different sources of test flakiness [9], for example, concurrency,
test ordering, I/O, and networking. Each source requires collect-
ing different runtime information at different execution points [7].
Collecting all the information is often infeasible, because of the
high runtime overhead [2, 7]. Moreover, the more information we
collect, the more expensive the differential analysis becomes [6, 7].

Third, instrumentation often introduces significant slowdown.
This is a problem because often one has to re-execute flaky tests
many times before observing a test failure [4, 9].

To avoid such limitations and obtain a non-disruptive root cause
analysis we need new methodologies that root cause flaky tests, but
without relying on instrumentation. iDFlakies [8] is an example
of an instrumentation-free approach. However, it can detect and
root-causing only one kind of flaky tests, i.e., those that have non-
deterministic behaviors due to test dependency orders [8].

Limitations of exploring the non-deterministic space pas-
sively. The standard practice to detect [2] and debug [7] a flaky test
is to repetitively re-execute the test, hoping that it would manifest
an intermittent test outcome [1]. This practice may need many re-
executions of the test, when test flakiness occurs rarely [2, 7]. For
example, because of rare non-deterministic execution orders among
threads. Moreover, re-executing a flaky test many times manifests
test flakiness only if the execution environment that causes inter-
mittent test outcomes is properly exercised [8]. For example, a test
flaky may fail only under certain network bandwidth [9].

This practice passively explores the non-deterministic space,
and thus it may repetitively explore the same test execution envi-
ronments and configurations. Thus, it may not be able to expose
intermittent failures or it may lead to unbalanced sets of passing
and failing executions. Having only a few failing executions to
compare with the passing counterparts is known to compromise
the effectiveness of differencing tools [6, 7].

An approach that actively explores the non-deterministic space
increases the chance of exposing test flakiness and at the same
time avoids to repetitively explore the same test execution environ-
ments.

3 METHODOLOGY
To address such challenges, we propose a newmethodology for root
causing flaky tests that explores the non-deterministic execution
space actively, without relying on any form of instrumentation.

Our core idea is to develop a root cause analysis approach that
identifies the root cause of test flakiness by executing a (potential)
flaky test under different “execution clusters”. Each execution
cluster actively explores a specific non-deterministic execution
space by fuzzing the execution environment of the test across a
particular dimension (e.g., concurrency, networking, I/O). A (flaky)
test will be executed a fixed number of times by each of the clusters.
The execution cluster that manifests the most balanced (or unbal-
anced) sets of passing and failing executions likely characterizes
the broad type of non-determinism that explains the test flakiness.
This is because each execution cluster actively explores a particu-
lar non-deterministic dimension. Once our approach identifies the
general type of test flakiness, one could perform a targeted and
fine-grained root-cause analysis (if needed). By knowing the type of
test flakiness, a developer should know which execution points to
instrument and which information to collect. Thus alleviating the
fundamental limitations of code instrumentation discussed earlier.

The execution clusters will rely on both software containers
technology and fuzzy resource load generators to explore the non-
deterministic space. The software containers will be used as a form
of lightweight virtualization to allocate a wide spectrum of available
resources (e.g., the number of cores, network bandwidth, disk size).
Instead, fuzzy load generators will be used to occupy the available
resources with dummy and random operations. Fuzzy load genera-
tors will be carefully designed to both free and occupy resources as
test flakiness might occur either way. For example, data races might
occur because a certain thread runs faster or slower [12]. The syn-
ergistic combination of available resources and dummy operations
would help us to explore a wide spectrum of the non-deterministic
execution space.
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Figure 1 shows the overview of the proposed infrastructure. We
define an execution cluster as a specific combination of a family
of containers and a fuzzy-load generator. Each cluster explores a
specific non-deterministic dimension, which can cause test flak-
iness. Each container runs the test under analysis in a specific
environment, associated to a possible configuration in the non-
deterministic execution space. A Fuzzy Orchestrator would be re-
sponsible to manage the execution clusters, dynamically changing
the software containers and the load of the fuzzy-load generator. It
would select the next container and fuzzy-load either randomly or
adaptively (based on the behavior of the test under analysis).

In the next subsections, we define in more details our envisioned
methodology.

3.1 Execution Clusters
Our envisioned execution clusters are based on software container
technology. We selected such technology because it offers a light-
weight form of virtualization that allows a fast execution of the
environments [11]. The environments themselves can be expressed
in terms of a configuration file, e.g., Dockerfile. Then, the contain-
ers can be easily built in the form of images, which are ready to be
executed. In addition, the existing platforms for software containers
management, e.g., Docker, allow users to define the characteristics
of the virtual machines to be run. In this way, we can define the
hardware conditions on which the (flaky) test should be executed
for exploring a specific non-deterministic dimension. The under-
neath behavior of containers is regulated by the presence of the
fuzzy-load generators who characterize the clusters and perturb
the normal execution of the test.

The study by Luo et al. [9] identified the most common test flaky
root causes to be async wait concurrency, test order dependency, re-
source leak, network, time, I/O, randomness, floating point operations,
and unordered collections. We envision the following five execution
clusters, which are expected to cover the most popular root causes
of test flakiness [9]. Of course, the list is not restricted to the clus-
ters that we are presenting in the following. More clusters can be
defined to cover additional types of flaky tests.
Multi-threaded execution cluster explores the non-deterministic
interleaving space of concurrent executions. This execution cluster
characterizes test flakiness due to internal concurrency, which is
the most common type of test flakiness [9].

The family of containers varies the execution architecture by
allocating different numbers of cores. It considers both few cores
(e.g., 2) and many cores (e.g., 100), as the non-determinism due
to concurrency manifests because thread runs faster or slower.
The fuzzy load generator spawns and runs various concurrent
threads that execute dummy operations to occupy resources. The
number of spawned threads and the number of dummy operations
will constantly change to apply a different degree of multi-core
contention. Because the test under analysis runs in parallel with
the fuzzy load generator, occupying CPU resources with dummy
operations help to explore the interleaving space of the test without
using instrumentation.
Network execution cluster explores the non-deterministic space
of the network latency and response time, characterizing flaky
tests due to sharing resources with other components on the same

Configuration

Fuzzy Loader

Test

Fuzzy Orchestrator

Family of Containers

Figure 1: Overview of the proposed infrastructure

network, or on the web. It includes non-determinism caused by
external concurrency and network connection failures [9].

The family of containers varies the execution architecture by
increasing/decreasing the network bandwidth and by switching
off the network for a certain time (e.g., 1ms to 100ms). A remote
connection failure is one of the major cause of test flakiness [9]. The
load generator occupies the network, causing traffic and congestion.
For example, it can achieve this by downloading files or by randomly
browsing the web using a web crawler. The load generator will
choose from a wide spectrum of types of communication protocols:
(i) basic data communication (TCP/IP and HTTP); (ii) network
security (HTTPS, SSL and SFTP); and (iii) network management
(SNMP and ICMP). Using different communication protocol may
change the network occupancy, introducing congestion because
different protocols communicate on different ports.

I/O execution cluster explores the non-determinism of I/O opera-
tions, which characterizes flaky tests due I/O and resource leaks [9].

The family of containers varies the execution architecture by al-
locating various disk space to explore the scenario that the disk has
no free space or becomes full while a test is writing a large file. The
load generator creates dummy I/O operations, for example, writing
and reading text files. This would create resource contention to
those I/O operations that the test indirectly or directly performs.
The load generator will also activate the garbage collection at ran-
dom intervals. This is because whether a resource was already
garbage collected or not might affect the test outcome [9].

Test order execution cluster explores the non-determinism caused
by test dependencies, as a common type of test flakiness is test de-
pendency order. More specifically, a test execution might modify
the state of the system, and thus the tests executed after this test
might be affected by this new state [8].

The family of containers executes the other available tests in a
different order before executing the test under analysis. The load
generator does not perform operations.

Platform cluster explores the non-determinism caused by differ-
ent execution platforms.

The family of containers executes the test under different op-
erating system platforms and versions, library versions, and tool
configurations. The load generator does not perform operations.
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3.2 Root-Cause Analysis
Our root-cause analysis is based on the test outcomes reported by
each execution cluster after a fixed number of executions (𝑁 > 1).
In addition to the five execution clusters described in Section 3.1
(E1, E2, . . .E5 ), the Fuzzy Orchestrator executes the test 𝑡 with a
baseline execution cluster E0, in which both the fuzzy loader and the
containers do not perturb the normal execution of 𝑡 . Our idea is to
identify the root-cause of test flakiness by identifying the execution
cluster E𝑘 (𝑘 > 0) that most diverge from the baseline (E0).

More formally, let exec𝑖 (E𝑘 , 𝑡) denote the outcome of the 𝑖th

execution of 𝑡 with the execution cluster E𝑘 . The outcome is either
zero (the test passed) or one (the test failed). We now define the
failure rate (_) of the execution cluster E𝑘 after it executes 𝑁 times
the test 𝑡 , as:

_𝑘𝑡 =

∑𝑁

𝑖=1
exec𝑖 (E𝑘 , 𝑡)
𝑁

∈ [0; 1]

The failure rate is one (zero) when 𝑡 failed on all (none) of the 𝑁
test executions that E𝑘 performed. We say that a test is flaky on
the execution cluster E𝑘 , if _𝑘𝑡 is different from both zero and one.
Our envisioned root-cause analysis works as follows.

If _0𝑡 = 0, the test 𝑡 is not flaky on the baseline execution cluster.
In this case, the most plausible root cause for test flakiness is given
by the execution cluster with the highest failure rate (max𝑘_

𝑘
𝑡 ).

For example, if the failure rate of the network execution cluster
is higher than the failure rate of all other execution clusters, it is
likely that 𝑡 is flaky due to network non-determinism.

If _0𝑡 ≠ 0, the test 𝑡 is flaky on the baseline execution cluster. Here
the root cause analysis becomes more tricky because presumably
if a test is flaky on the baseline cluster it will be so also in other
execution clusters. In this case, themost plausible root cause is given
by the execution cluster with the most diverse failure rate with
respect to _0𝑡 , i.e.,max𝑘 |_𝑘𝑡 −_0𝑡 |. Intuitively, the fuzzy perturbation
that belongs to the root cause could either decrease or increase
the flakiness, and thus max𝑘 |_𝑘𝑡 − _0𝑡 | captures both scenarios. For
example, let assume that a test is flaky because a thread always runs
faster than another thread. If it occurs in the baseline cluster often,
the fuzzy perturbations of the multi-threaded execution cluster are
likely to perturb such ordering of threads as well. In this case, the
multi-threaded execution cluster (E1) will be reported as the most
plausible one since |_1𝑡 − _0𝑡 | would have the highest value.

Our root-cause analysis assumes that the each flaky test can
have exactly one source of flakiness, which is the most common
situation [2, 7]. Creating hybrid combinations of multiple clusters
could be an effective approach to handle test flakiness caused by
the interaction of two or more flakiness sources.

Given a (flaky) test 𝑡 , the root-cause analysis reports: (i) the non-
determinism associated with the most plausible execution cluster;
(ii) the association of the configurations of the fuzzy-loader and
container with the test outcome (pass or fail). Such information
help developers to root-cause test flakiness. For instance, if a con-
figuration with a low network bandwidth is often associated with
test failures, this is the most likely reason for test flakiness.

Moreover, the exact configurations of the execution clusters that
trigger test flakiness can also help developers to reproduce the test
flakiness facilitating the debugging.

4 OUR VISION
In this paper, we propose a new idea for root-causing flaky tests. We
envision our approach to be deployed in two scenarios: (i) during
continuous integration for both detecting and root-causing flaky
tests; (ii) after continuous integration for root causing only those
tests that were deemed flaky during continuous integration. Devel-
opers can choose one of these scenarios, depending on their needs
and the available budget.

We envision to use distributed software containers platforms,
e.g., Docker Swarm, and Kubernetes, to implement our approach.
These platforms transform physical hardware into distributed envi-
ronments on which multiple software containers can run in parallel.

Note that, our infrastructure is general enough to allow root-
cause analyses more sophisticated to the one presented in this paper.
For example, machine learning or statistical approaches could be
key tools for achieving precise results.
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