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Abstract—Concurrent programs proliferate as multi-core tech-
nologies advance. The regression testing of concurrent programs
often requires running a failing test for weeks before catching a
faulty interleaving, due to the myriad of possible interleavings of
memory accesses arising from concurrent program executions. As
a result, the conventional approach that selects a sub-set of test
cases for regression testing without considering interleavings is
insufficient. In this paper we present RECONTEST to address the
problem by selecting the new interleavings that arise due to code
changes. These interleavings must be explored in order to uncover
regression bugs. RECONTEST efficiently selects new interleavings
by first identifying shared memory accesses that are affected
by the changes, and then exploring only those problematic
interleavings that contain at least one of these accesses. We have
implemented RECONTEST as an automated tool and evaluated
it using 13 real-world concurrent program subjects. Our results
show that RECONTEST can significantly reduce the regression
testing cost without missing any faulty interleavings induced by
code changes.

I. INTRODUCTION

Regression testing is known to be expensive when the

size of test suites grows over time as software evolves [14],

[33]. For instance, under the incremental maintain-and-test

processes (e.g., nightly-build-and-test), the time required to

execute all test cases can easily exceed the affordable time

budget [8]. The deficiency of regression testing is exacerbated

when testing multi-threaded programs due to the much longer

execution time required to cover a reasonable amount of thread

interleavings (i.e., temporal order of a set of shared memory

accesses). The most widely-adopted testing methodology for

concurrent programs is stress-testing that requires running

the same multi-threaded test many times to explore different

interleavings. Thus, the cost of running a single multi-threaded

test is equivalent to thousands of sequential tests.

To reduce the cost of regression testing, researchers have

proposed to select [14], [34], prioritize [10] or minimize [16]

those sequential tests that might fail after program revisions.

However, it is inadequate for concurrent programs to only

cover the changes of the sequential logic and forego their

ramifications in the interleaving space. As such, a single multi-

threaded test case alone can require weeks of testing before

manifesting faulty interleavings [31].

Like existing regression testing techniques for sequential

software [47], a common approach to reducing regression

testing cost is to avoid re-testing the unmodified portion of

the program by assuming that all existing tests of the origi-

nal program run correctly (P-Correct-for-T assumption [33]).

Adapting to concurrent programs this assumption becomes

that all the interleavings manifested by any existing test suite

T of the original program P are assumed to be benign.

Suppose a test, t, is considered for regression testing after

revising a concurrent program P to P ′. This paper studies

how to select the new interleavings that can only be observed

when t runs with P ′ (denoted by P ′(t)). Exploring only new

interleavings reduces the cost of regression testing because

most interleavings remain unchanged after program revision.

Achieving this goal requires to address the fundamental

challenge of identifying the new interleavings without explor-

ing the unchanged ones. Naively computing the difference set

of the interleaving spaces of P ′(t) and P (t) is apparently not

feasible due to it requires constructing the entire interleaving

space of P ′(t), which is exactly the cost we want to eliminate.

Although there has been some effort in reducing the regression

verification costs for concurrent programs by reapplying model

checking techniques (e.g., [30], [15]) as software evolves [46],

[19]. To the best of our knowledge, there are few prior studies

on how new interleavings can be effectively selected for

regression testing concurrent programs.

In this paper, we present REgression CONcurrency TESTing

(RECONTEST), a regression testing framework for concur-

rency bugs. The framework is inspired by two observations,

which enable us to effectively explore only new interleavings.

Observation 1: New interleavings must contain at least one

shared memory access impacted by the revision. The impact

can happens in two ways. First, the access is observable in

P ′(t) but not in P (t) because is triggered by the added/mod-

ified statements or by a new execution path. An example is

the access generated at line 5 in Figure 1. Second, it is an

access unaffected by the program modifications but there are

changes to its Concurrency Context (CC), characterized by its

lock acquire/release histories and its happens-before relations

with respect to other threads [23], e.g., line 8 in Figure 1.

Intuitively, all accesses of P ′(t) with an affected CC could

interleave in new ways with other accesses.

Observation 2: A very small number of accesses are truly

affected by program revisions. For a test t, a revision of a

program P does not affect the CCs of most of the accesses

appearing in the execution of t, nor does it generate many

new accesses. In our experiments with 13 real-world subjects,
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we only found on average 1% of impacted accesses. As a

result, many accesses repeat and interleave with each other in

the same way at P (t) and P ′(t), the interleavings involving

these accesses can be safely skipped in the regression testing

of P ′(t) under the adapted P-Correct-for-T assumption.

Leveraging these two observations, RECONTEST explores

new interleavings in two phases: Phase I computes the impact-

set of accesses introduced by program revisions, and Phase

II explores only those interleavings that contain at least one

impacted access. The key idea of RECONTEST is to use the

impact-set to infer new interleavings. As a result, new inter-

leavings can be selected without first exploring the entire inter-

leaving space of P ′(t). Since the number of new interleavings

could be enormous, we guide the interleaving exploration by

a concurrency coverage criterion. The criterion considered in

our experiments is the set of problematic interleavings that

match the access patterns violating atomic-set serializability

[43], which subsumes race conditions as well as single and

multiple variable atomicity violations [43], [40].

These two phases addresses two research questions. 1) Is

there an efficient mechanism to identify the truly impacted

accesses? Note that existing change-impact analysis specific

to the concurrency semantics [49], [19] cannot guarantee to

compute a sound or a complete impact-set. 2) Given an impact-

set, is there a way to explore only the problematic interleavings

involving the impacted accesses?

RECONTEST addresses the first question using a change-

impact analysis algorithm in Phase I to compute the impact-

set based on the execution traces of P (t) and P ′(t), collected

by a Predictive Trace Analysis (PTA) [37] technique. The

algorithm considers a memory access to be impacted if it

is observed only in the execution trace of P ′(t), or its CC

obtained from the collected execution traces is altered after

program revision. The algorithm smartly handles two technical

challenges: matching an event in P ′(t) to its equivalence in

P (t), and semantically comparing both the CCs of the pair

of matched events in P ′(t) and P (t). Phase II addresses

the second question by adapting the off-line interleaving ex-

ploration of PTA to searching problematic interleavings only

among those containing at least one impacted access. The

problematic interleavings validated as feasible are outputted

by RECONTEST as warnings of regression concurrency bugs.

We implement RECONTEST as a fully automated prototype

tool and evaluated it using 13 real-world Java concurrency

bugs. The experiments show that our approach successfully

detected all these bugs with four orders of magnitude reduction

over stress-testing and PTA. RECONTEST achieves reduction

because the manifestation of most concurrency bugs are caused

by problematic interleavings arising from a small set of

accesses (at most four [28], [43]). There is a low probability

that these small set of accesses contain one of the few impacted

ones. It is confirmed by our experiments that many (99%)

problematic interleavings do not contain impacted accesses.

RECONTEST selects under two generally valid assumptions

the interleavings of all regression concurrency bugs exhibited

by P ′(t). We highlight our contributions as follows:

● We present a dynamic Change-Impact Analysis (CIA)

with a run time complexity linear to the length of

execution traces (Section III).

● We propose heap abstractions for comparing CC across

the two program executions before and after revision

(Section III-B).

● We present the first algorithm to select problematic in-

terleavings for the regression testing of concurrency bugs

without constructing interleaving spaces (Section IV).

● We implemented a prototype tool of our approach and

evaluated it on 13 real-world Java subjects (Section V).

II. PRELIMINARIES: CONCURRENCY CONTEXT (CC)

RECONTEST leverages the execution trace collected by PTA

to compute the impact-set and to explore new interleavings.

In the following, we introduce PTA, its execution trace model,

CC definition and how it is encoded by RECONTEST.

Predictive Trace Analysis (PTA) is a popular testing

technique for concurrent programs (e.g., [37], [22], [17], [39]).

PTA detects problematic interleavings in three steps: moni-

toring, prediction and validation. In the monitoring step, PTA

observes an arbitrary concurrent program execution generating

an execution trace of memory accesses, locking, messaging

and object creation operations. During the trace collection

PTA computes the CC of each memory access by leveraging

the concurrency operations collected. This is because PTA

needs CC information during the validation step for pruning

infeasible interleavings. In the prediction step, PTA analyses

the trace to explore problematic interleavings that could be

manifested in alternative executions by re-shuffling the order

of occurrences of the memory accesses to match problematic

access patterns (e.g., [43]). Since the interleaving exploration

is performed off-line, many problematic interleavings so iden-

tified can be infeasible. In the validation step, PTA, therefore,

validates these interleavings with a static lockset/happens-

before checker based on the CC computed. Most PTAs also

re-execute the program to exercise the retained interleavings.

An execution trace E =<ei> captures a multi-threaded

program execution as a sequence of events. Let the events be

uniquely labelled by indices in an ascending order according

to their order of occurrences. A program changes its states via

statement execution and generates one of the following events.

● MEM(th,loc,a): thread th accesses a shared memory lo-

cation loc, a ∈ {Write,Read} is the access type

● ACQ(th,l): thread th acquires a lock l

● REL(th,l): thread th releases a lock l

● SND(th,m): thread th sends a unique message m

● RCV(th,m): thread th receives a unique message m

● OBJALLOC(th,o): thread th creates an object o

In our presentation, we use th(x) to denote the thread that

executed event ex, and s(x) to denote the statement that

generated ex. EM denotes the ordered subsequence of E

containing only MEM events. The set of objects created by

OBJALLOC events is denoted as O. A unique ID (denoted

as id(o)) is generated each time when an object o ∈ O is

created. An ACQ event is generated when a synchronized
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block or method is entered, and a REL event is generated

when exiting the block or method. In Java, the SND/RCV

events are generated at the call of: join(), start(), wait(),

notify() and notifyAll(). For example, if o1.notify() on thread

th1 signals o1.wait() on thread th2, then events SND(th1,m)

and RCV(th2,m) are generated where m is a unique message.

Definition 1. Given ex ∈ EM , the Concurrency Context (CC)

of ex, denoted by CCx, specifies how other events in EM

can interleave with e. It is defined by 1) lockset of ex, 2) the

happens-before relations between ex and other events in EM ,

and 3) the lock release history of th(x) prior to ex. Formally,

CCx is defined as a tuple < LSx,HBx,LRx >.

LSx is the LockSet of ex that contains the locks held

by th(x) while executing ex [35]. LSx= {l ∈ O ∣ ∃ej =
ACQ(th(j), l) ∈ E, /∃ ek = REL(th(k), l) ∈ E, j < k <
x, th(x) = th(j) = th(k)}.

HBx denotes the Happens-Before relations ≺ of ex. The

SND/RCV events together with the total order of events of

the same thread defines ≺ [23] that is the smallest relation

satisfying the following conditions [36].

● If ei and ej are events from the same thread and ei comes

before ej in the trace, then ei ≺ ej .

● If ei is the sending (SND) and ej is the receiving (RCV)

of the message m, respectively, ei ≺ ej .

● ≺ is transitively closed.

LRx denotes the Lock Release history of ex containing

the REL events executed by th(x) prior the execution of ex.

LRx = {ek = REL(th(k), l) ∈ E ∣ k < x, th(x) = th(k)}.
CC encoding. We adopt the following encoding in order

to compare CCs across executions. The inter-thread ≺ relation

is often computed using a vector clock [29] whose values are

not comparable across executions. Thus, HBx is encoded as

the ordered sequence of SND/RCV events generated by th(x)
from its creation at the time when the event ex is generated

in the trace [18]. SND/RCV events are presented as a couple

(o,type) where o ∈ O is the message object and type ∈ {notify,

notifyAll, wait, start, join} (e.g., o1.notify() is encoded by (o1,

notify())). A lock in LSx is encoded as a o ∈ O for lock

objects or a static reference for static locks (e.g., A.class). For

encoding LRx we leverage that events triggered by the same

thread are totally ordered. Each lock in LSx is tagged by a

boolean value whose value is true if it exists a REL event

between ex and the previous MEM event performed th(x),
and false otherwise. LRx is obtained by combining the LRx of

all events generated by th(x) prior ex. Section III-B presents

the heap abstractions for comparing object’s semantics.

III. PHASE I: CHANGE-IMPACT ANALYSIS (CIA)

A key regression testing’s step is to determine the effects

of source code modifications using software Change-Impact

Analysis (CIA) [25]. Since there are few studies on the regres-

sion testing of concurrent programs, most CIAs are oblivious

to the concurrency semantics [25]. The only exceptions are

presented in CAPP [19] and SimRT [49], they analyze the

source code reporting statements that are potentially impacted

by code changes. They are inadequate for two reasons.

1) Limitations of static CIAs. The impact sets derived by

static CIAs are not sufficiently precise for regression testing [1]

due to the inclusion of many infeasible behaviors arising from

inaccurate pointer aliasing analysis [1], [25]. It was reported

that 90% of the events in the impact sets derived by static

CIAs can be spurious [1].

2) Limitations of dependency-based CIAs [4]. Existing

techniques [19], [49] first identify the changes that affect

the CCs of program entities (e.g., statements), denoted by

CC-change, and then identify the entities affected by those

changes. This approach is not practical because it requires

to enumerate a priori all possible CC-changes that could be

manifested in a program. As a result, existing techniques

[19], [49] cannot guarantee to detect all affected entities

because they have not considered the changes of happens-

before relations (e.g., line 12 Figure 1) and the changes that

indirectly affect lock operations (e.g., line 18 Figure 1).

RECONTEST’s CIA is a dynamic CIA at memory access

level and it does not require to identify CC-changes. Initially,

it treats each change as a CC-change by assuming all accesses

in P ′(t) are potentially impacted. Thus, it does not miss any

changes that affect synchronization operations or happens-

before relations. Then, it checks if the CC of each access in

P ′(t) is truly affected by comparing it with the CC occurred

when executing the original version of the program. The check

takes three pieces of input information.

● A change-set that contains the set of new statements

introduced in the process of revising P to P ′. Let ∼
denote an equivalence relation defined on P ′×P such

that s′∼s if s′ denotes the statement s that has not

been modified in the process of revising P to P ′. We

assume that ∼ relates each statement in P ′ to at most one

statement in P . Given a ∼ relation, change-set is defined

as {s′ ∈ P ′ ∣/∃ s ∈ P, s′ ∼ s} ⊆ P ′.
● A regression test suite T of re-testable multi-threaded

tests. In subsequent discussion, t denotes a test case in T

and P (t) denotes the execution of t on program P .

● For each test t ∈ T , a pair of execution traces E and E′

exhibited by P (t) and by P ′(t), respectively.

The output of Phase I is an impact-set containing MEM

events of E′ that could constitute new interleavings. Consider

the binary and symmetric execution correspondence relation

[44] (denoted by ≡) on E′M×EM , for aligning execution points

across executions. Without loss of generality, we assume that

if a statement s is executed in both EM and E′M , ∃e′y ∈ E
′

M

and ∃ex ∈ EM such that e′y ≡ ex and s(y) = s(x) = s.

Definition 2. Given E′M and EM , the impact-set contains

events in E′M that satisfy either of the following conditions:

● a new event that is observable in E′M but not in EM ;

● an old event with a CC altered by code changes;

More formally, impact-set = {In ∪ Ic} ⊆ E
′

M , where:

● In = {e
′

y ∈ E
′

M ∣ s
′(y) ∈ change-set ∨ /∃ ex ∈ EM , e′y ≡ ex}

● Ic = {e
′

y ∈ E
′

M ∣ ∃ex ∈ EM , e′y ≡ ex, CCx ≠ CCy}
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public class A{

int x = 0, y = 0, z = 0; Object lock;

public void m0(int val1, int val2){  

y= val1; 

x = val2;

z = val1*val2;}

public void m1(){

public synchronized void m1 (){

x= get (..);

synchronized (this) {

m0(5,5); }}

1

2

3

4

5

6

7

8

9

10

public synchronized void m2(){

boolean cond = true;

boolean cond = false;

if(cond)

o.notify();

x++; }

public int m3(Object lock){

this.lock = new Object();  

this.lock = lock;

synchronized (this.lock) {

if(x>5)

return x; 

return 0;

}}

11
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Ic In
Concurrency Context (CC)

e1

e2

e3

e4    

e5

e6    

e7 

e8

{ }   

{}   

{ }   

A obj = new A();

Thread1 Thread2

…..
…..
…..

obj.m3(new  B());

obj.m4();

…..

test case t E′ = P′(t) Output

public void m4(){

public synchronized void m4(){

synchronized (this) {

x = 0;

}

synchronized (this) { 

y =0; 

} 

} 

Fig. 1. Phase I of RECONTEST. Given P and P
′, a change-set={5,6,9,12,18,25,27,29,30,32} and a test t, the output is the impact-set = {In ∪ Ic}

A. Running Example

We illustrate our approach with a running example. Figure 1

shows a Java class. Inserted lines are denoted as “++”, while

deleted lines as “−−”. Modified lines are characterized by

inserted lines followed by deleted lines. Figure 1 also shows

the execution traces obtained from executing the test case t.

“W(x)” denotes the memory access event of type Write on

variable x. Similarly, “R(x)” for type Read. The changes have

introduced a regression bug in P ′(t), an atomicity violation

is triggered if the interleaving <e′
9
, e′

2
, e′

3
, e′

10
> is manifested.

Computing In is relatively simple. In represents two kinds

of impacted MEM events. The first kind are events that

correspond to a new operation because they are triggered by

a new statement. For example, e′
4
, which is triggered by the

changed statement at line 5, belongs to In. The second kind are

events executed only in P ′. For instance, e′
8

(an execution of

line 22) is new because there is no event in E corresponding to

the execution of line 22. After code changes, the test evaluates

the branch condition at line 21 to a different result, and hence

traverses a different path executing line 22. Note that different

from standard CIA techniques [25], the impact-set excludes

MEM events that access different data values. The triggering

of concurrency bugs depends on the exposure of erroneous

inter-thread memory dependencies, which are irrelevant to the

data values of the shared memories involved [43], [48].

The challenge here is how to compute Ic, the set of MEM

events with an affected CC. To achieve that, we need to align

execution points in two traces E and E′. RECONTEST estab-

lishes that e1≡e
′

1
because the statement at line 8 is executed

only once in E. Thus, e′
1

is aligned to e1. RECONTEST infers

that e′
1
∈ Ic because its lockset is empty while the lockset of

e1 is not. The events e′
2

and e′
3

are not impacted because their

locksets remain unaltered. Event e′
5

is impacted because the

SND event (o.notify() in line 15) occurs only in P ′(t). Hence,

e′
5

has a different happens-before relation with other events in

the two traces E and E′. Similarly, e′
6

is also impacted.

The maintenance of lock release history is important. An

event with an unchanged lockset and happens-before relation

can induce new interleavings if it has an affected LR. For

example, e′
10

is impacted (even if its lockset is the same as

e8) due to there is a new release lock event generated at line

29. After the lock has been released at line 29 in P ′, events

of other threads could acquire the lock and interleave between

e′
9

and e′
10

. Such event interleaving is not possible in P .

Different from dependency-based CIAs, RECONTEST does

not rely on the dependency between changes and other pro-

gram entities for computing the impact-set, it uses the change-

set only for identifying new events (see Def. 2). For this

reason, deleted statements can be safely excluded from the

change-set. If deleting (or adding) statements affects subse-

quent memory accesses (e.g., deleting line 7 affects the lockset

of e′
1
), it will be captured by our CIA that scans all MEM

events in E′ identifying those new or with an altered CC.

Existing dependency-based CIA techniques [19], [49] spe-

cific to concurrency semantic are inadequate. First, they con-

sider only explicit changes of synchronization blocks as CC-

changes. As a result, they miss the impacted event e′
7

because

the change contains no “synchronized” keyword. Second,

they miss e′
5

and e′
6

due to ignoring changes that affects

wait()/notify(). Third, they incorrectly include e′
2
, e′

3
and e′

9
in

the impact-set as they consider all statements inside a modified

synchronized block are impacted.

B. Comparing CCs across Executions

We have shown the simple case of CC comparison where

Phase I identifies that two CCs are different when the have

different cardinality. For example, e′
1

has an affected CC

because LS′
1

is empty while LS1 contains one lock. In the case

where both locksets to be compared have the same cardinality

such as the situation of event e′
7

and e6, RECONTEST requires

heap abstractions to compare CC’s lock and message objects

across executions. A heap abstraction is a function abs that

map a concrete object o ∈ O to an abstract object [26]. The

heap abstraction problem is challenging even for executions

generated by the same program version [21], [5]. Dynamic

references of objects do not provide a useful abstraction

because the memory addresses (or unique IDs) of objects have

no relation across executions. Static references are not useful

either. Yet, existing solutions (e.g., [21], [5]) are inadequate

because they rely on program’s structural properties, which

may not preserve across revisions. To address this challenge,

we propose two change-resilient heap abstractions.
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Object identity abstraction. This abstraction is motivated

by the following observation. A common practice in object-

oriented programming is to use the object instance as the

intrinsic lock of synchronized methods or blocks. In Java,

it is also common to use this as the message object of

wait()/notify(). In these cases the object accessed by a MEM

event ex is exactly the same object that characterizes CCx,

which needs to be abstracted. The equivalence between the

object accessed by ex and that in CCx provides a useful means

of heap abstraction. For example, consider the events e′
2

and e2
in Figure 1. e′

2
does not belong to the impact-set. The lockset

of e′
2

is the same as that of e2. Both contain a lock applied

to the current object accessed by e′
2

and e2. Note that we are

able to take advantage of this property for heap abstraction

because RECONTEST only requires to match the CCs of MEM

events generated by unaltered statements and that access the

same type of object. More formally, we define the object

identity abstraction as follows: Given ex ∈ EM , e′y ∈ E′M
with sx ∼ sy that access two objects of the same type ox
and oy , respectively. Given o1 ∈ CCx and o2 ∈ CCy . If

id(ox) = id(o1) and id(oy) = id(o2) then abs(o1) = abs(o2).
When this abstraction is not applicable because the lock or

message objects to be abstracted are not the object instances

(e.g., for the CC of e′
7
), we propose a variant of k-CFA [38].

Change resilient k-CFA (CS k-CFA). The k-CFA of an

object o, denoted by k-CFA(o), is the sequence of statements

<s> containing the allocation site of o and the chain of the k

most recent call sites on the stack of the thread creating o [38].

We formulate CS k-CFA as follows. Given ex ∈ EM , e′y ∈ E
′

M

and o1 and o2 ∈ O such that o1 ∈ CCx and o2 ∈ CCy if the i-th

element of k-CFA(o1) is in ∼ relation with the i-th element of

k-CFA(o2) then abs(o1) = abs(o2). The formulation enables

us to compare the locksets of e′
7

and e6. The two locks in

LS′
7

and LS6 have a distinct CS k-CFA abstraction: they are

allocated in diverse locations. As a result, e′
7

is impacted.

C. Aligning Execution Points

In Figure 1, each statement is executed only once. Thus,

we can trivially compute the ≡ relation as follows. e′y ≡ ex if

s(y) ∼ s(x) and they access the same type of object. However,

in practice the same statement could be executed many times

during the same execution. As a result, an event e′y ∈ E
′ could

have more than one corresponding event in E triggered by

the equivalent statement of s(y). Although, we can precisely

compute the equivalence relation ∼ by aligning unmodified

source code lines, computing the execution correspondence

relation ≡ is a machine undecidable problem [44], [41].

Our key observation: The derivation of impact-set does not

require precise computation of the ≡ relation. The objective

of Phase I is to identify those events in E′M whose CC differs

from that of their potentially matching counterparts in EM .

Note that there is no need to find exactly which two pairs

of matching events in E′M and EM have different CCs. This

observation enables impact-set to be computed efficiently and

without suffering from an imprecise ≡ relation. RECONTEST

performs the computation in two consecutive steps. Figure 2

Step 2

CC(s1)
eA

eB

eC

eD

eE
..

e′F
e′G
e′H
e′I
e′L
..

A = F 

B = G 

C
D = H L

E

I

CC(s2)

s1~ sʹ1

s2~ sʹ2

? ~ sʹ3

s1 A 

s1 B 

s2 C 

s2 D 

s2 E 

sʹ1 F 

sʹ1 G 

sʹ2 H 

sʹ3 I

sʹ2 L 

stmt CC stmt CCE

e′L e′I impact-set

Eʹ
STEP 1 STEP 2

Step 1

Fig. 2. The event e′
L

is impacted because has a new CC that is different from
all the CCs of the events in E generated by the equivalent statement of s(L).
The event e′

I
is impacted because it is generated by a changed statement.

shows an illustrative example. Step 1 scans EM to cluster

all the CCs of MEM events generated by the same statement.

For example, CC(s1) = {A,B} contains all the unique CCs of

events in EM triggered by s1. Step 2 scans E′M for computing

the impact-set. It infers that e′F , e
′

G and e′H are not impacted

because their CCs are the same as those of their potentially

matches in EM . e′L is impacted because it has a new CC. We

can use the clusters computed in Step 1 also for identifying

new events. e′I is impacted since CC(s(I)) does not exist,

thus s(I) ∈ change-set. Figure 3 shows the CIA algorithm.

Step1: Traversing EM. For each statement s that triggers at

least one event in EM , we define the set CC(s) that contains

all the unique CCs of the events associated with statement s.

Formally, CC(s) = {CCx ∣ ex ∈ E, s(x) = s, where CCx is

the CC of ex}. For each MEM event ey in EM , CCy is added

to CC(s(y)) (Lines 1 to 2).

Step 2: Traversing E
′

M
. The algorithm scans all MEM

events e′x in E′M (Line 3 to 10) and it retrieves s∗ the

equivalent statement of s(x) that access the shared variables

of the same type of object. If s∗ is null, e′x is a new event (Line

6), otherwise the Algorithm checks if CC(s∗) is empty or not.

If CC(s∗) is empty e′x is a new event (In) because no MEM

events in EM have been generated by s. Otherwise, Line 9

checks if CCx is not in CC(s∗). If this is the case, e′x has a

CC that has not been witnessed in any event in E generated

by s∗. Thus, e′x is added to Ic. We also update the CC(s∗)

Algorithm 1: Change Impact Analysis (CIA)

Input: E, E′ and ∼ relation

1 for each ey ∈ EM do // STEP 1 scannig EM

2 add CCy to CC(s(y));

3 for each e
′

x ∈ E
′

M do // STEP 2 scannig E
′

M

4 s
∗ ← s ∈ P ∣ s(x) ∼ s;

5 if s
∗ = null then

6 add e
′

x to In;

7 else if CC(s∗) = ∅ then

8 add e
′

x to In;

9 else if CCx /∈ CC(s∗) then // Comparing CCs

10 add e
′

x to Ic; update(CC(s∗));

11 return impact-set = In ∪ Ic

Fig. 3. RECONTEST’ Phase I. It has a time complexity of O(∣EM ∣+∣E
′

M
∣)
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since the current new CCx of statement s(x) has been already

considered, we consider each new CC at most two times [18].

The time complexity of the algorithm is linear to the size of

E′M and EM , and it is polynomial in the maximum size of

CC(s) and the size of the largest CC of E′M and EM .

D. What Can Our CIA Guarantee?

RECONTEST ’s CIA guarantees that the impact-set derived

is precise and minimal under the two following assumptions.

The computation of the ∼ relation is perfect. This is

a reasonable assumption because it can be easily computed

based on the syntactically modified statements using a text

diff utility that aligns unmodified source code lines. Not that

this assumption also implies that the change-set is perfect.

CS k-CFA is precise. k-CFA does not guarantee precision

even by setting k =∞ [26]. However, for our purposes it works

in practice because it is very unlikely that developers replace

an object with another object that has an identical CS k-CFA.

IV. PHASE II:INTERLEAVING SELECTION

RECONTEST ’s Phase II reduces the regression testing cost

by limiting the search of problematic interleavings only among

those containing at least one impacted event. This is because

the inclusion of impacted events is a necessary property of a

new interleaving (see Theorem 1). For example, the atomicity

violation <e′
9
, e′

2
, e′

3
, e′

10
> in Figure 1, can only be manifested

in P ′(t) but not in P (t), in fact e′
10

is an impacted event.

A. Characterizing the Delta of the Interleaving Space

We use M to denote the set of all MEM events in an execu-

tion trace E. An interleaving σ of E, is a total order relation

on a set of M . The interleaving space of E, denoted as IS(E)
is the set of all interleavings that maintain the sequential order

within each thread [27]. σ is feasible if it can be manifested

during an actual execution, infeasible otherwise. IS(E) is the

subset of IS(E) containing only feasible interleavings. Two

interleavings σ1 and σ2 are equivalent (denoted by σ1 ≈ σ2)

iff each statement that generated the i-th event in σ1 is in ∼
relation with the statement that generated the i-th event in σ2.

Definition 3. Given E=P (t) and E′=P ′(t), the delta of the

interleaving space, denoted by ∆IS(E′,E), contains the new

interleavings that can be observed in P ′(t) but not in P (t).
∆IS(E′,E) = {σ1 ∈ IS(E

′) ∣/∃ σ2 ∈ IS(E), σ1 ≈ σ2}

Theorem 1. An interleaving σ of E′ includes at least one

impacted event if σ ∈ ∆IS(E′,E).

Proof. It will be proved by contradiction. Let assume that σ ∈
∆IS(E′,E) and σ does not include events in the impact-set.

By the definition, the following two conditions hold: (A) σ

does not include new events (σ ∩ In = ∅) and (B) σ does

not include events that changed their CC (σ ∩ Ic = ∅). (A)

implies that every event in σ has been also observed in E. (B)

implies that these events did not changed their CC. Thus, if

σ is feasible under P ′ it must be also feasible under P . This

is a contradiction because we assumed that σ is only feasible

under P ′ by assuming that σ is in ∆IS(E′,E).

Algorithm 2: Detecting Violations in ∆IS(E′,E)

Input: the impact-set I , a memory location loc, units of work.

L
′ ⊆ E′ ∣ L′ contains MEM events that access loc

for each threads th1, th2 ∣ th1 ≠ th2 do

for each ei ∈ {L
′ ∩ I} ∣ th(i) = th1 do

for each ej ∈ L
′ ∣ u(j) = u(i) do

if i < j then

for each ek ∈ L
′∣th(k) = th2 do isV(ei, ek, ej);

else if i > j, ej ∉ I then

for each ek ∈ L
′∣th(k) = th2 do isV(ej , ek, ei);

else if i == j then // true one time per i

for each ek ∈ {L
′ ∖ I}∣th(k) = th2 do

for each ew ∈{L
′ ∖ I}∣u(w)=u(k), w>k do

isV(ek, ei, ew);

Fig. 4. Phase II : PTA algorithm for detecting atomic-set serializability
violations only within the delta of the interleaving space. O(∣I ∣∣E′

M
∣2)

Theorem 1 implies that including at least one impacted

event is a necessary property of a new interleaving. However,

the inclusion of impacted events is not a sufficient condition,

because even if a σ includes events with an altered CC, σ could

still be infeasible in P ′(t). Intuitively, the ramification of an

event in the interleaving space can depend on other events, and

therefore it has to be checked case by case. For example, the

atomicity violation <e′
5
, e′

9
, e′

6
> in Figure 1 remains infeasible

in P ′(t) even if e′
5

and e′
6

are impacted. This is not an issue

because we leverage Theorem 1 before pruning infeasible

interleavings. As a result, under the assumption that the

impact-set is precise (see Section III-D), Theorem 1 enables

us to safely select all new interleavings using impacted events.

B. Covering Atomic-Set Serializability Violations

Characterizing the delta of the interleaving space with the

impacted events is still insufficient for reducing regression

testing costs significantly. This is because the number of

new interleavings could still grow exponentially with the

execution length. RECONTEST relies on concurrency coverage

criteria for covering representative interleavings and exposing

concurrency bugs. We consider those interleavings that match

problematic access patterns violating atomic-set serializability

[43]. Atomic-set are groups of memory locations sharing a

consistency property. Code fragments expected to preserve

the consistency of an atomic-set are called units of work.

Atomic-set serializability requires that units of work must be

serializable for all the atomic-sets that they operate on [43].

Due to atomic-set serializability violations involve a small

set of accesses (at most four [43]). There is a small chance

that these small set of accesses contain one of the impacted

ones. As a result, the number of violations in the delta of the

interleaving space is often small (see RQ1).

C. Exploring the Delta of the Interleaving Space

A naive solution that detects violations in E′ and then

selects those that include impacted events does not help reduce
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Fig. 5. Overview of RECONTEST

the cost of detecting violations in E′ because pruning is

made only after a violation is detected. Recall that Phase II’s

objective is to explore and detect only those violations that

contain impacted events. Therefore, RECONTEST commences

the interleaving exploration using the impacted event informa-

tion. Note that this can be achieved because we are adopting

an off-line interleaving exploration. For each impacted event,

it creates an incomplete interleaving that partially matches a

problematic access pattern. After that, it searches for com-

patible events in the trace for completing the pattern. Figure

4 shows the proposed algorithm for violations constituted by

three events [43], the algorithm for violations of four events

is omitted because has a similar flavour. u(x) denotes the unit

of work of ex, the function isV checks if the type of memory

accesses match a problematic pattern [43]. The feasibility of

the violations detected is verified with the PTA validation step.

The time complexity of detecting violations with PTA is

in the worst case O(∣E′M ∣
k) [18], where k is the size of the

largest access pattern (k = 4 in our case [43]). Algorithm 2

and its variant for patterns of four events has a worst time

complexity of O(∣I ∣∣E′M ∣
k−1), where I⊆E′M is the impact-set.

V. EVALUATION

A. Implementation

To evaluate our framework, we have implemented a proto-

type of RECONTEST in Java 1. Figure 5 shows an overview

of the prototype. The change-set is obtained using ChangeDis-

tiller [13], an AST-based differencing tool for fine-grain source

code change extraction. We made the following two modifi-

cations. First, we unified the output granularity at statement

levels. Second, we implemented a component that maintains

the equivalence mapping of statements across two program

versions because this feature is not available in the original

tool, which only reports the changed parts. The execution

traces E′ and E are collected with the monitoring step of

AssetFuzzer [22] built upon the SOOT-based instrumentation

phase of the CalFuzzer framework [20]. The memory locations

shared among multiple threads are identified by a precise

dynamic thread escape analysis [20]. RECONTEST computes

the impact-set using the presented CIA in Algorithm 1. It

implements the CS k-CFA abstraction with k=∞. Subse-

quently, it explores the delta of interleaving space by analyzing

E′ using Algorithm 2. Atomic-sets and units of work are

1The tool is available at http:// sccpu2.cse.ust.hk/recontest/ index.html

TABLE I
SUBJECTS DESCRIPTION, SIZE OF THE TRACES AND OVERHEAD FOR

TRACE COLLECTION AND FOR COMPUTING CC

Subjects PTA monitoring step

ID Name SLOC ref. ∣change-set∣ ∣E′
M
∣ time overhead

1 Groovy 361 GROOVY-1890 89 49 2.93s 1.88x

2 Airline 136 [9] 10 55 2.44s 1.91x

3 Log4j 2,598 CONF-1603 23 130 2.79s 1.86x

4 Pool 745 POOL-120 970 274 3.95s 1.76x

5 Lang 486 LANG-481 9 310 4.82s 1.41x

6 Vector1 835 JDK-4420686 7,836 381 2.50s 1.83x

7 SBuffer1 1,265 JDK-4810210 15 1,909 6.81s 1.34x

8 SBuffer2 1,249 JDK-4790882 69 2,527 6.08s 1.15x

9 Vector2 292 JDK-4334376 2 3,447 7.26s 3.14x

10 Garage 554 [9] 20 17 K 39.08s 15.88x

11 Logger 39 K JDK-4779253 1,661 39 K 34.22s 14.77x

12 Xtango 2,097 2 26 150 K 20.22s 3.17x

13 Cache4j 3,897 3 128 570 K 90.55s 50.72x

automatically inferred using existing heuristics that have a

false positive rate between 2-4% [40]. The heuristics assume

that all instance fields of an object are members of an atomic-

set, and that all public or protected methods are units of works

declared on this atomic-set. The output of RECONTEST is a

report containing atomic-set serializability violations, whose

feasibility is verified with the traditional PTA validation step.

B. Subjects Description

We evaluated RECONTEST on 13 real concurrency bugs

(Table I). For each bug, we collected the following: 1) a correct

and a buggy version of the program, and 2) one third-party

multi-threaded test (likely a stress test) that can potentially

manifest a failure-inducing interleaving only on the buggy

version. We cut the scale of interleaving exploration in the test

by reducing the number of running threads and iterations. This

is because RECONTEST only needs to observe one possible

multi-threaded execution. The interleaving space is explored

in Phase II by generalizing the observed execution.

Table I describes the concurrency bug subjects. The “ref.”

column gives the reference of their bug reports (if available).

Groovy, Lang, Log4j and Pool are four popular programs.

The buggy/correct versions and the tests were obtained at

SIR4. Logger, SBuffer1, SBuffer2, Vector1 and Vector2 are

programs from the JDK library. The buggy/correct versions

were collected from the JDK repository, while the tests were

2Xtango: https://www.cs.drexel.edu/∼umpeysak/Xtango/
3Cache4j: http://cache4j.sourceforge.net/
4SIR: http:// sir.unl.edu/portal/ index.php
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TABLE II
EXPERIMENTAL RESULTS. COMPARISON OF RECONTEST WITH STRESS-TESTING AND ASSETFUZZER WITH A TIME BUDGET OF 24 HOURS.

Phase I Phase II AssetFuzzer [22] RQ1 RECONTEST stress-testing RQ2 speed-up RQ3

ID impacted% time # violations time # violations time reduction total time time stress-testing AssetFuzzer # f. viol

1 53.06% 9ms 162 8ms 295 24ms 1.82x 2.95s 11.90s 4.06x 1.41x 16

2 16.36% 10ms 157 18ms 325 12ms 2.07x 2.47s 2.70s 1.09x 0.43x 3

3 6.15% 16ms 12 3ms 224 145ms 18.67x 2.81s 10.20s 36.31x 7.63x 7

4 73.57% 42ms 328 85ms 3,040 122ms 9.27x 3.51s 8.15s 2.28x 0.96 x 3

5 10.97% 27ms 5,322 47ms 23,038 214ms 4.33x 4.90s 5.83s 1.19x 2.89x 16

6 1.31% 19ms 74 150ms 45,656 1.72s 617x 2.67s 840s 314.72x 10.20x 2

7 0.20% 104ms 1,102 55ms 396,256 1.24s 360x 6.97s 31s 4.45x 7.81x 1

8 1.50% 106ms 151,214 434ms 1,437,972 3.53s 9.51x 6.62s 27s 4.08x 6.54x 4,876

9 0.10% 122ms 1,053 55ms 144,354,356 961s 137,088x 7.44s 1.5hr 760.24x 5,429x 3

10 0.03% 409ms 32,846 13.10s 16,086,708 2.39hr 490x 52.59s 352s 6.69x 638x 38

11 0.19% 15.10s 7,430 4.65s 110,337 0.83hr 14.85x 53.97s time-out >1,601x 152x 1

12 0.14% 3.07s 326,603 1.93s >236,340,709 time-out >724x 25.23s time-out >3,425x >17,245x 104

13 0.02% 7.99s 64,670 27.38s >116,616,808 time-out >1,803x 126s time-out >686x >2,442x 14

adapted from the test harnesses used by CalFuzzer [20].

The remaining four programs Airline, Cache4j, Garage and

Xtango are benchmarks used in the evaluation of existing

works. For each of these four bugs, following the evaluation

methodology adopted by CAPP [19], we generated the correct

version. Column “SLOC” shows the size of P ′. The sizes range

from 136 to 39K lines. The fifth column gives the number

of changed source code statements between the revisions. It

ranges from 2 to 7,836. Column “∣E′M ∣” shows the number

of MEM events obtained by running the test with the buggy

version. It ranges from 49 to 570K. The seventh column

gives the time required to collect E′ by the monitoring step

of AssetFuzzer, which includes the time to compute the CC

for each memory access. Recall that PTA computes CCs for

pruning infeasible interleavings. The eight column indicates

the overhead of the trace collection. It ranges from 1.15× to

50.72×. The size of EM has been omitted since it has a similar

size to E′M . For fair comparisons we saved the execution traces

on disk to conduct experiments on the same traces.

C. Research Questions

In this paper, we propose the use of RECONTEST to reduce

the regression testing cost of concurrent programs by searching

problematic interleavings within the new interleavings induced

by code changes. Since we found no previous works with the

same goal, we compare RECONTEST with stress-testing as

baseline. We also compare with traditional PTA that directly

detects atomic-set serializability violations in P ′(t) using the

original AssetFuzzer. We do not compare our approach with

orthogonal techniques that select test cases (e.g., [49]) because

we assume that all the tests considered in our experiments are

given. In fact, all the test cases have interleavings that exhibit

regression concurrency bugs. Moreover, we compare the test

efficiency of RECONTEST with CAPP [19] that uses program

changes to prioritize schedules. We set a time-budget of 24

hours when analyzing each test, which is in line with real

world settings (e.g., nightly-build-and-test). Our evaluation

aims to answer the following four research questions:

● RQ1. Effectiveness - How much interleaving space re-

duction can be achieved by RECONTEST?

● RQ2. Efficiency - How efficient is RECONTEST? Does

the overhead of pre-computing the impact-set out-weights

the reduction in test effort?

● RQ3. Correctness - Does our regression technique prac-

tically achieve safety when selecting interleavings?

● RQ4. Comparison with CAPP [19] - Which technique

detect regression concurrency bugs faster?

D. RQ1 - Effectiveness

The goal of this research question is to quantify the reduc-

tion in interleaving space search. We compared the number

of potential violations in E′ with those in ∆IS(E′,E) (i.e.,

those containing at least one impacted event). In other words,

we compared the violations detected by the prediction step

of AssetFuzzer (sixth column of Table II) with those by

Algorithm 2 (fourth column). Note that the feasibility of these

violations need to be verified by the validation step of PTA.

Column “RQ1” shows the results, the reduction ranges from

1.82× to more than 137,000×, with a geometric mean of 82×.

RECONTEST achieves high reduction because the proportion

of impacted memory accesses is generally very small. The

second column gives the proportion of impacted events in E′M .

The proportion ranges from 0.02% for Cache4j to 73.57% for

Pool, with a geometric mean of 1%.

E. RQ2 - Efficiency

RQ2 studies if RECONTEST can effectively reduce the

interleaving exploration cost for regression testing. The third

column of Table II gives the computation time for Phase I.

It ranges from 9ms to 15s. As expected, Phase I has a linear

time complexity with respect to the execution traces length.

The fifth column reports the time to detect the violations that

contain at least one impacted event (PTA prediction step) and

to prune infeasible ones using the lockset/happens-before anal-

ysis (PTA validation step). It ranges from 3ms to 27s. Around

3% of this time was spent on the validation step. Similarly,

the seventh column gives time required by AssetFuzzer for
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Fig. 6. Efficiency comparison. Subjects ordered by length of execution trace
and the corresponding interleaving exploration time in log scale.

the prediction and validation steps. The ninth column shows

the total testing time of RECONTEST (Phase I + Phase II)

including the overhead of collecting E′ and computing CCs

(PTA monitoring step Table I). We consider that E is already

available, since we assume that it has been used for testing

P (t). The tenth column reports the time for executing the

given test repeatedly in a multi-core environment until either

a runtime exception or an assertion violation occurs. Since

the interleaving exploration relies on the non-determinism of

the scheduler, we ran stress-testing ten times and we took the

average.

Stress-testing failed to complete in 24 hours for the three

subjects with the longest traces, while AssetFuzzer for the

two subjects with the longest traces. RECONTEST successfully

detected and validated the concurrency faults of all the 13

subjects in less than five minutes (ninth column). The eleventh

and twelfth columns show in details the comparison results.

Stress-testing (eleventh column). For fair comparisons we

included the overhead of collecting E′ and computing CCs,

which is not required by stress-testing. Stress-testing is known

to be ineffective since it might repeatedly explore the same

interleavings, while atomicity violations are hard to manifest

because they have a low probability of occurrence [31].

AssetFuzzer (twelve column). We did not included the

overhead of collecting E′ and computing CCs (PTA moni-

toring step Table I) since it is required by both AssetFuzzer

and RECONTEST. Since PTA suffers from scalability issues

when analyzing long execution traces [18], [11], AssetFuzzer

efficiency degrades for the five subjects with the longest

traces. By exploring a smaller interleaving space (see RQ1),

RECONTEST reduces the cost of detecting and validating

violations, by 35× on average (geometric mean). Figure 6 plots

in base-10 log scale the interleaving exploration times. For

only two subjects with short traces the overhead of Phase I

out-weights the reduction in test effort, Airline and Pool. As

shown in Figure 6, RECONTEST provides an advantage with

long execution traces where, due to the interleaving explosion

problem, concurrency testing becomes an expensive activity.

F. RQ3 - Correctness

Since it is difficult to evaluate the correctness of the

impact-set, we evaluate the correctness based on the violations

reported by RECONTEST. We compared the violations in the

fourth and sixth columns of Table II that are retained after

the validation step. We removed any latent violations that

TABLE III
RQ4 : EFFICIENCY COMPARISON WITH CAPP [19]

Subjects Stateless CAPP [19] RECONTEST

SIR #re-schedules × time t = total total speed-up

Airline 3282 1.27s > 4,181s 2.47s > 1,693×

Groovy 19 1.56s > 29.71s 2.95s > 10×

Lang 4 3.40s > 13.60s 4.90s > 2.77×

Pool 10 2.68s > 26.86s 3.51s > 7.65×

were present also in P (t), and we removed redundant bug

reports. RECONTEST did not miss any regression concurrency

bugs, it reported the same feasible violations reported by

AssetFuzzer (column “RQ3” of Table II). This indicates that

the impact set derived by RECONTEST’s CIA is sufficiently

precise to guarantee a safe selection of interleavings. All the

violations that have been detected by only AssetFuzzer are

infeasible in P (t) (under P-Correct-for-T assumption) and,

as expected, they remain infeasible in P ′(t) (they are pruned

by the validation step of PTA) because the CCs of the accesses

involved in these interleavings have not changed.

G. RQ4 - Comparison with CAPP

CAPP [19] uses evolution information to prioritize enu-

meration of schedules that perform preemption at changed

code. Although RECONTEST addresses a different regression

testing problem (interleaving selection), we want to evaluate

which technique finds regression concurrency bugs faster.

We compared RECONTEST’s performance with the published

results of CAPP [19]. We obtained the same subjects, program

revisions and tests from the SIR repository. Table III shows

the common subjects with a serializability violation. CAPP has

not been evaluated using real time. We recovered an under-

approximated measure by multiplying the execution time of

the test case with how many re-executions the best CAPP

heuristic (LOA [19]) has to explore before finding the bug.

This measure ignores the unknown overheads of CAPP’s

analysis and the underline model checker. We compare it with

the real execution time of RECONTEST including Phase I,

Phase II and the overhead of collecting the execution trace.

Table III shows the results. In average RECONTEST is more

than 25× faster. The speed-up is attributed to a more precise

and smaller impact-set as well as CAPP enumerates schedules

while RECONTEST selectively explores the interleaving space.

H. Threats to Validity

1) Could the experimental results be generalized? We

reduced these threats by considering real world subjects and

real and complex test cases, we included executions of half

million accesses. 2) Might RECONTEST have different results

if it was implemented upon other PTA techniques? This threat

is not significant. First, the violations that match an execution

trace are independent from the algorithm used for detecting

them. Second, the complexity of predicting the same type of

violations does not change across different techniques [18],

[11]. Moreover, RECONTEST is orthogonal to the reduction

or bounding techniques applied during PTA analysis.
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I. Limitations and Future Works

Ad-hoc synchronizations. Our current implementation (as

well as most PTAs) is not able to identify SND/RCV events

generated by application level synchronization mechanisms,

such as barrier and flag operations [45]. This limitation is

inherited from the underlying tool used to obtain the execution

trace [22]. In future work, we consider to adopt existing

techniques [42], [45] for detecting ad-hoc synchronizations

and generating SND/RCV accordingly. However, ad-hoc syn-

chronizations are relatively uncommon as compared with their

standard counterparts [45].

Sensitivity of the trace. PTA generally assumes that all

MEM events are observed by executing P ′(t) once. However,

executing a concurrent program using the same input by more

number of times could occasionally exercise different parts of

the code, but the marginal benefit is usually too small to justify

the extra overhead [31], [6]. Recent work has reported that

the fluctuation in atomicity violation detection among multiple

runs with the same input is at most 0.4% [6]. In future work,

we plan to analyse multiple executions traces and then filtering

equivalent portions of traces for minimizing the analysis cost.

VI. RELATED WORK

Regression testing. Few studies have been made to reduce

the regression testing cost of concurrent programs [47]. Re-

cently, Yu et al. presented the first test case selection and

prioritization framework, SimRT [49], specific for concurrent

programs and data races. However, selection only at test case

levels is insufficient since it does not reduce the interleaving

exploration cost of selected or prioritized test cases. RECON-

TEST could be used in conjunction with SimRT, by exploring

the interleaving space of the tests given by SimRT.

Regression verification. Researchers have presented solu-

tions to reduce regression verification costs by applying model

checking (e.g., CHESS [30], JPF [15]) incrementally. These

techniques re-use verification results [24], [46], [3], [2] or

prioritize the state-space exploration [19]. Formal verification

of concurrent programs remains too expensive for being used

in practice [21], even with the partial order reduction [12] or

context bounding [30]. Model checking exhaustively enumer-

ates the interleaving space of a multi-threaded execution, thus

it fails to scale for even small size programs (see RQ4).

Concurrency testing. Many techniques have been proposed

for detecting atomicity violations (e.g., [37], [22], [17], [39]).

However, applying them after each program revision is ex-

pensive because the number of interleavings that could cause

atomicity violations is often huge [18], [6]. Researchers have

recently proposed to avoid redundant analysis by detecting

interleaving space overlap across inputs [48], [6]. MAPLE [48]

aims to reduce validation costs of PTA. It detects problematic

interleavings in a given run and avoids to validate those that

were earlier tested with different inputs. This approach cannot

be applied across revisions because the interleavings that are

infeasible in the original program could become feasible after

revisions. Moreover, MAPLE does not reduce the detection

costs because pruning is only made after a problematic in-

terleaving is detected. Deng et al. presented a technique that

guides atomicity detection only towards unique interleavings

across inputs [6], [7]. In their preliminary position paper

[7] they discuss, but do not evaluate, the opportunity of

applying their technique also across software versions. They

characterize the delta of interleaving space with the set of pair

of functions that are concurrent [6], [7]. However, a function

level approach is too coarse grained for precisely identifying

fine differences in the interleaving space. Note that all cases

in Figure 1 are at memory access level. Computing the pair of

memory accesses that are concurrent would be too expensive

[6]. In contrast, RECONTEST efficiently characterizes the delta

of interleaving space at memory access level.

Change-Impact-Analysis. Since concurrency-related mod-

ifications such as adding and removing locks are unlikely

dataflow changes, most dataflow-based CIAs [25] are not

effective for concurrent programs. In Section III we have

already discussed the limitations of existing concurrency-

related CIAs [49], [19]. By being static they fail to compute

minimal sets [1]. The reasons are twofold. First, static CIAs

consider all possible behaviors of the software. This can be

much optimized for regression testing concurrent programs

whereas we are interested only in the behaviors of the program

under a specific test execution. Second, they consider some

impossible behaviors, due to the imprecision of the static

analysis [1]. In contrast, our dynamic CIA does not suffer

from these limitations. Moreover, existing concurrency-related

CIAs [49], [19] cannot guarantee to detect all impacted events,

due to they only consider changes of synchronization blocks.

By ignoring changes that affect happens-before relations, they

would likely miss many impacted events. From our experimen-

tal results, if we consider the impacted events of all subjects

as a whole, shared memory accesses with affected happens-

before relations represent a considerable portion (55%).

VII. CONCLUSION

In this paper we presented RECONTEST to reduce the

regression testing cost of concurrent programs by selecting

interleavings only within the delta of the interleaving space.

We characterized the delta with an impact-set of memory

accesses obtained by comparing execution traces. Our experi-

mental results showed that RECONTEST significantly reduces

the cost of interleaving exploration during regression testing

without missing faulty interleavings.

In the future, we plan to evaluate RECONTEST on other

types of concurrency bugs, such as deadlocks and order

violations. We also intend to extend RECONTEST to address

the test suite augmentation problem of concurrent programs.
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