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ABSTRACT
Comprehending the degree to which software components sup-
port their own testing is important to accurately schedule testing
activities, educate programmers and plan effective refactoring ac-
tions. Software testability estimates such a property by relating
code characteristics with test effort.

The testability studies reported in the literature investigate the
relation between class metrics and test effort, measured as the size
and complexity of the associated test suites. They found that some
class metrics have a moderate correlation with test-effort metrics.
However, previous studies suffer from twomain limitations: (i) their
results hardly generalise because they investigated at most eight
software projects; and (ii) they mostly ignore the quality of the
tests. Considering the quality of the tests is important. Indeed, a
class may have a low test effort because the associated tests are of
poor quality and not because the class is easier to test.

In this paper, we propose an approach to measure testability that
normalizes it with respect to the tests quality, which we quantified
in terms of code coverage andmutation score.We present the results
of a set of experiments on a dataset of 9,861 Java classes, belonging
to 1,186 open source projects, with around 1.5 millions of lines of
code overall. The results confirm that normalizing test effort with
respect to test quality largely improves the correlation between
class metrics and test effort. Better correlations would result in
better prediction power, and thus better prediction of test effort.

CCS CONCEPTS
• Software and its engineering → Designing software; Soft-
ware testing and debugging; Software libraries and repositories;
Software design tradeoffs.
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1 INTRODUCTION
Software testing is an essential, labor intensive and time-consuming
activity of the software life cycle. Making testing easier is important
for many software companies, as it would reduce development costs
and it would increase the number of detected faults.

It is well understood that the effort of testing software systems de-
pends on the artifacts under test, that is, some software systems are
easier to test than others [20, 28, 62]. Comprehending the relation
between software artifacts and test effort is extremely important to
control the cost of testing and improve the accuracy of test plans.
Software Testability [28] captures the impact of software artifacts
on testing by estimating the degree to which a software system or
component under test supports its own testing1.

In their recent comprehensive literature review of 208 papers on
software testability, Garousi et al. [28] observe that measuring and
predicting testability is the topic that received themost attention [7–
9, 19, 20, 59]. The general idea is to measure (predict) the test effort
of software systems from structural metrics of the software that
are available before designing the test cases [59]. Early predicting
the test effort can help developers to (i) early identify software
components that require more test effort, on which developers
have to focus to ensure software quality; (ii) plan testing activities
and optimally allocate resources; and (iii) recognize refactoring
opportunities to reduce the test effort.

Most studies on measuring and predicting testability focus on
object oriented systems, and investigate the relation between class-
level metrics, e.g., Chidamber and Kemerer (C&K) [21], and the
cost of writing test cases (test effort) [7–9, 19, 20, 59]. These studies
approximate the cost of writing test cases with the size and com-
plexity of test suites, e.g., the number of tests and of assertions
in the test class associated to the class under test. They provide
some evidence of the existence of a correlation between class-level
metrics and test effort, but suffer from two limitations: data sets of
small size, and mostly ignore the quality of the test suites.
Small sample size. The previous studies involve at most eight soft-
ware projects [28]. Such a small number of analyzed projects does
not guarantee the generalizability of the results: specific develop-
ment styles, frameworks and practices can influence the correlation
results and produce different results for different projects [8].
Ignoring the test quality. The previous studies measure the test
effort in terms of the size of the test classes, while mostly ignoring
the quality of the tests. Lacking a quality assessment of the tests
1The literature proposes many definitions of software testability [28]. In this paper,
we refer to the IEEE 610.12-1990 and and ISO/IEC 9126 standards [62] that define
testability in a similar way: IEEE: “the degree to which a system or a component facilitates
the establishment of test criteria and the performance of tests to determine whether those
criteria have been met”. ISO :“attributes of software that bear on the effort needed to
validate the software product”
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leads to imprecise correlation results: classes with comparable test
effort but different test quality should not have the same degree of
testability. A class may have a low test effort because the associated
tests are of poor quality, e.g., low line coverage, and not because the
class is easier to test. Bruntink and Van Deursen’s correlation study
is the only work that acknowledges test quality when comparing
test effort [20]. They ensured that the analysed software systems
had test suites of similar quality (line coverage). However, their
correlation study involves five software systems only [20].

In this paper, we propose a new approach to measure the testa-
bility of OO classes. Our approach normalizes the test effort of a class
with respect to the quality of its tests, which we quantify with code
coverage and mutation score. This enables correlation analyses and
prediction models of an arbitrary large number of heterogeneous
software systems implemented with different test quality criteria.

We empirically investigated our approach with 28 metrics to
characterize the class properties, six metrics to measure the test
effort, and three metrics to quantify the test quality. We analyzed
9,861 pairs of Java classes and corresponding JUnit test classes
collected from 1,186 open source projects onGitHub. We computed
the Spearman’s correlation coefficient (ρ) [33] for all 168 pair-wise
combinations of class and test-effort metrics, before and after the
normalization with the test-quality metrics.

The results confirm that some class metrics correlates with test-
effort metrics, and indicate that the normalization with test-quality
metrics drastically improves the correlation (up to 74 %). Better cor-
relation leads to better prediction power, and thus better prediction
of test effort [59]. On the one hand, we used the test-quality metrics
to normalize the test effort for the correlation analysis, allowing to
fairly compare classes belonging to projects of different test quali-
ties. On the other hand, the test-quality metrics can also be used
as a target variable for prediction purposes. Indeed, if the purpose
is to predict the test effort before writing the tests, a target value
for test quality can be used in a preprocessing step to normalize
the dataset used for training a prediction model. For instance, one
might want to predict the test effort required to write tests having a
target mutation score of 80 %. Thus, the data used to train the model
would be normalized according to that value, building a model that
predicts the test effort for the targeted mutation score of 80 %.

Moreover, the study indicates that (i) among the three test-quality
metrics considered (line coverage, branch coverage and mutations
score), normalizing by mutation score achieves the best correlation
improvement, and (ii) the OO design properties that most influence
testability are: size, complexity, coupling and cohesion.

This paper contributes to comprehend software testability by:

• presenting the by-far largest study on the correlation of class
and test-effort metrics in terms of analyzed metrics, classes
and projects;

• extending testability measurements by normalizing the test
effort with respect to the quality of the test suites;

• showing that the proposed normalization improves the corre-
lation between class metrics and test effort, leading to more
accurate models for predicting test effort;

• giving important insights on software testability that con-
firm some of the findings of previous studies as well as un-
cover previously unknown correlations between OO design
properties and test effort;

• publicly releasing our dataset for further studies2.
The paper is organized as follows. Section 2 presents the objec-

tive of this study, and introduces the metrics considered. It also
motivates and explains our normalization procedure. Section 3
presents the results of a series of research questions that validate
the hypothesis that normalizing by test quality achieves better cor-
relation than without normalization. Section 4 discusses the related
work. Section 5 concludes the paper

.

2 OBJECTIVE AND METHODOLOGY
This paper investigates the relationships between object-oriented
metrics of classes and the test effort of designing unit test cases for
such classes. To achieve statistical significance and obtain general
results for Java software systems, we conducted an experimental
study on a large set of heterogeneous Java software systems of
different size and category. Because different projects are likely
to have different test quality criteria, in this paper we introduce a
normalization procedure that homogenizes the values of test-effort
metrics according to the values of test-quality metrics.

This section contextualizes the scope of the study (Section 2.1),
presents the considered metrics of class, test effort and test quality
(Section 2.2, Section 2.3, and Section 2.4, respectively), and intro-
duces the new normalization procedure (Section 2.5).

2.1 Testability of Object-Oriented Programs
We target systems written in the Object Oriented (OO) program-
ming paradigm [53], which is based on the concept of “objects”
(instances of classes) that can contain both data (object fields) and
code (methods). In particular, we consider systems written in the
Java language.

Testing OO programs is often performed at three different lev-
els [17]: unit, integration and system. Unit testing tests in isolation
small portions of programs called units (e.g., methods or classes).
The goal of unit testing is to isolate each part of the program and
show that individual parts are correct. Integration testing tests the
interaction of multiple units. System testing tests a complete and
integrated software system.

When dealing with software testability, unit testing is the most
useful testing level because one can apply testability analysis earlier
in the development life-cycle [20]. Conversely, a testability analysis
at system level requires a fully developed system. In line with the
work presented in the literature [28], we study software testability
at unit level, and more specifically at class level.

Considering class level testing has two practical advantages. First,
we can leverage several OOmetrics defined at class level [10, 21, 56].
Second, we can take advantage of popular naming conventions to
identify the test class associated with a given class [20]. In fact,
a common software development practice in OO programming

2The dataset and source code for the analysis we performed in this paper are shared
at the address http://bit.ly/30uQoCk.
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Table 1: Class metrics

Design Property Name Description Reference

Size Lines of Code (LOC) Number of non-blank lines including comments and JavaDoc –
Number of Bytecode Instructions (NBI) Number of bytecode instructions in the compiled .class file –
Lines of Comment (LOCCOM) Number of lines of comment, excluding any end-of-line comments –
Number of Public Methods (NPM) Number of methods in a class that are declared public Goyal and Joshi [29]
Number of STAtic Method (NSTAM) Number of methods in a class that are declared static –
Number of Fields (NOF) Number of fields (attributes) in the class –
Number of STAtic Fields (NSTAF) Number of static fields (attributes) in the class –
Number of Method Calls (NMC) Number of method invocations –
Number of Method Calls Internal (NMCI) Number of method invocations of methods defined in the class –
Number of Method Calls External (NMCE) Number of method invocations of methods defined in other classes –

Complexity Weighted Methods per Class (WMC) Sum of the Cyclomatic Complexity [44] of all methods in the class Chidamber and Kemerer [21]
Average Method Complexity (AMC) Average of the Cyclomatic Complexity [44] of all methods in the class Tang, Kao and Chen [56]
Response For a Class (RFC) Number of methods that response to a message from the class itself Chidamber and Kemerer [21]

Inheritance Depth of Inheritance Tree (DIT) Number of super classes Chidamber and Kemerer [21]
Number of Children (NOC) Number of immediate sub-classes subordinated to a class in the class hierarchy Chidamber and Kemerer [21]
Measure of Functional Abstraction (MFA) Ratio of the number of methods inherited by the class to the number of methods Goyal and Joshi [29]

Coupling Coupling Between Object classes (CBO) Number of other classes that a class is coupled to Chidamber and Kemerer [21]
Inheritance Coupling (IC) Number of parent classes to which a given class is coupled Tang, Kao and Chen [56]
Coupling Between Methods (CBM) Number of redefined methods to which all the inherited methods are coupled Tang, Kao and Chen [56]
Afferent Coupling (Ca) Measure of how many other classes use the specific class Martin [42]
Efferent Coupling (Ce) Measure of how many other classes is used by the specific class Martin [42]

Cohesion Lack of Cohesion in Methods (LCOM) Diff. between the number of method pairs without and with common variables Chidamber and Kemerer [21]
Lack of Cohesion Of Methods (LCOM3) Revised version of LCOM Henderson-Sellers [34]
Cohesion Among Methods in class (CAM) Represents the relatedness among methods of a class Goyal and Joshi [29]

Encapsulation Data Access Metrics (DAM) Ratio of the number of private fields to the total number of fields Goyal and Joshi [29]
Number of PRIvate Fields (NPRIF) Number of private fields (attributes) of the class –
Number of PRIvate Methods (NPRIM) Number of private methods of the class –
Number of PROtected Methods (NPROM) Number of protected methods of the class –

languages, such as Java, is to create a dedicated class for each
tested class following well-defined naming conventions [27, 48].

2.2 Class Metrics
Table 1 shows the 28 class metrics that we considered in this study.
We decided to be as inclusive as possible when selecting the metrics,
by avoiding to select only those metrics known to be correlated
with testability [28]. We also wanted to see if unknown correlations
arise with a large study. We considered well-known metrics that
strongly correlate to the object oriented design: Chidamber and
Kemerer (C&K) [21] and the Tang, Kao and Chen (TKC) [56] metrics.
We enriched this already large set of metrics with additional metrics
that may correlate with testability. Table 1 groups the 28 metrics
based on the design property that each metric characterizes: size,
complexity, inheritance, coupling, cohesion. and encapsulation.
Size. Size metrics includes standard ones such as Lines Of Code
(LOC), metrics about the number of (static) methods and fields in the
class (Number of Public Methods (NPM), Number of STAtic Method
(NSTAM), Number of Fields (NOF), and Number of STAtic Fields
(NSTAF)) and metrics about the number of internal and external
method calls (Number of Method Calls (NMC), Number of Method
Calls Internal (NMCI), Number of Method Calls External (NMCE)).
In this paper we propose Number of Bytecode Instructions (NBI)
as a new metric defined as the number of bytecode instructions in
the compiled .class file. NBI can be more informative than the
classic LOC metric, because single lines of code in Java can corre-
spond to simple statements (e.g., variable assignment) or complex
statements (e.g., lambda expressions), which correspond to few or

many numbers of bytecode instructions, respectively. Thus, the
NBI metrics distinguishes classes with similar number of LOCs but
with different types of statements (complex and simple).
Complexity. Complexity metrics include Weighted Methods per
Class (WMC) and Average Method Complexity (AMC). Both met-
rics depend on the cyclomatic complexity metric [44], which is its
number of the linearly-independent paths of a method [44]. Because
the cyclomatic complexity is defined at method level, WMC [21]
and AMC [56] convert it to class-level by summing and averaging
the cyclomatic complexities of all methods in the class, respectively.
Inheritance. Inheritance metrics capture the different aspects of
inheritance of a class. Depth of Inheritance Tree (DIT) is the num-
ber of super-classes, Number of Children (NOC) is the number of
immediate sub-classes in the class hierarchy, and Measure of Func-
tional Abstraction (MFA) is the ratio of the number of methods
inherited by the class to the total number of methods in the class.
Coupling. Coupling metrics characterize the degree of interde-
pendence between classes and methods. Classes that have a high
(outgoing) efferent coupling use other parts of the system, increas-
ing the possible execution paths [51]. Low coupling is often a sign
of a well-structured software system and a good design.
Cohesion. Cohesion metrics capture an important concept in OO
programming. Cohesion describes the binding of the elements
within one method and within one object class, respectively. Low
cohesion means that the class does a great variety of actions.
Encapsulation. Encapsulationmetrics capture the degree of encap-
sulation of the classes. For instance, the number of private methods
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Table 2: Test effort metrics

Name Description Reference

TEST – Lines Of Code (T-LOC) Number of non-blank lines including comments and JavaDoc of the test class Bruntink and Van Deursen [20]
TEST – Number Of Tests (T-NOT) Number of test cases in the test class (methods with the @Test annotation) Bruntink and Van Deursen [20]
TEST – Number Of Assertions (T-NOA) Number of test assertions in the test class (invocations to org.junit.Assert) Bruntink and Van Deursen [20]
TEST – Number of Method Calls (T-NMC) Number of method invocations in the test class Toure et al. [57, 58]
TEST – Weighted Methods per Class (T-WMC) Sum of the Cyclomatic Complexity [44] of all methods in the test class Chidamber and Kemerer [21]
TEST – Average Method Complexity (T-AMC) Average of the Cyclomatic Complexity [44] of all methods in the test class Tang, Kao and Chen [56]

Table 3: Test quality metrics of TC with respect to its associated class C

Name Description Reference

Line coverage (L) Ratio of source code lines in C that are executed by at least one test in TC –
Branch coverage (B) Ratio of branches in C that are executed by at least one test in TC –
Mutation score (M) Mutation score of a test suite TC with respect to a class C is the ratio of mutants that are killed by TC De Millo et al. [26]

and fields (NPRIM and NPRIF), the ratio of the number of private
fields to the total number of fields (DAM).

2.3 Test-Effort Metrics
Test-effort metrics measure the effort of testing classes in terms
of the size and complexity of the associated test cases. We refer to
test classes written in JUnit, the most popular testing framework
for Java [27, 48]. Let TC denote the JUnit test class of a class C .
Each test method in TC includes zero or more assertion oracles
(boolean conditions) that predicate on the behavior of the class
under test, and whose runtime values determine the pass or fail
status of the test case. A test class may declare additional methods
and inner classes to support the test executions, and such test code
is called test scaffolding. Examples of scaffolding methods are those
annotated with @Before and @After.

The effort of testing a class C is best quantified using the man-
hours required to design and implement TC [43]. However, collect-
ing such a information for few software projects is difficult [43],
and becomes unrealistic for many software projects. As such, re-
searchers often approximate the test effort with the size and com-
plexity of the test class (test-effort metrics) [7, 8, 19, 20, 59]. Relying
on the assumption that the size and complexity of a test class reflect
the effort for writing and designing it.

Table 2 shows the six test-effort metrics that we use to character-
ized test effort. The first four metrics TEST - Lines Of Code (T-LOC),
TEST – Number Of Tests (T-NOT), TEST – Number Of Assertions
(T-NOA), and TEST – Number of Method Calls (T-NMC) measure
the size of the test class under different perspectives. T-LOC consid-
ers the size of the entire test class, and thus it includes scaffolding
methods and inner classes. T-LOC also considers comment lines,
since adding comments to the test code contributes to the cost of
designing test cases [7]. T-NOT indicates the number of test cases
regardless of their size. T-NOA captures the amount of assertions
contained in the test class, which might not be the same as T-NOT,
because a test may have multiple assertions. T-NMC (called TIN-
VOKE in Toure et al.’s paper [59]) measures the number of method
calls in the test class, which is a proxy for the degree of dependency
of the test cases [59]. According to Toure et al., this metric is impor-
tant to characterize the test effort of classes [58]. Intuitively, a test

class with few dependencies is easier to execute than a test class
with many dependences, because a test class with few dependencies
can invoke the methods under test directly [59]. TEST – Weighted
Methods per Class (T-WMC) and TEST – Average Method Com-
plexity (T-AMC) measure the cyclomatic complexity [44] of the test
class, which well quantifies the test effort. A test class may contain
test or scaffolding methods with many linearly independent execu-
tion paths. We can expect that the higher the complexity of the test
class the higher the effort required for writing and designing it.

2.4 Test-Quality Metrics
In this paper, we propose the use of test-quality metrics to normalize
test-effort metrics. Table 3 shows the three test-quality metrics that
we considered: line coverage, branch coverage and mutation score.
These metrics are commonly used to approximate the quality of a
test suite defined as the ability to reveal faults [62].

Coverage analysis [49] executes the test class TC on an in-
strumented version of the class under test C to collect coverage
information, and computes the percentage of structural code that
TC executes. Intuitively, executing the faulty statements is a neces-
sary (but not sufficient) condition to expose software faults. As such,
test coverage is a test quality metric because the higher the cover-
age ofTC , the higher the chance thatTC executes faulty statements
(if they exist) [36]. In our experiments we compute statement and
branch coverage, the two most popular code coverage metrics [36].

Even if a test suite covers faulty statements, it may not reveal
the faults. An effective test suite needs test oracles (test assertions)
that are able to distinguish correct from incorrect program be-
haviors. DeMillo et al. introduced mutation analysis in the late
seventies [26] offering an alternative approach to evaluate the effec-
tiveness of a test suite. It seeds artificial faults in the class under test,
producing faulty versions (called mutants). Each of these mutant
contains a single seeded fault. Then, mutation analysis executes the
test suite on each mutant and counts how many mutants the test
suite “kills”, i.e., at least one test fails because of the seeded fault. It
then computes the mutation score of the test suite as the percentage
of mutants killed when executing the test suite. The mutation score
evaluates not only the ability of tests to cover the seeded faults but
also the ability of test oracles to expose such faults.
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The values of the test-effort metrics range from zero to one. For
example, a line coverage of 0.5, means that a test suite TC covered
half (50 %) of the source code lines in the class under test C .

2.5 Normalization
In this paper we investigate the use of test-quality metrics as nor-
malization factors when measuring test effort. Current testability
approaches measure the test effort by referring only on the size and
complexity of the test cases (see Table 2) [19, 20, 55, 59], mostly ig-
noring the adequacy of the tests (test quality). Focusing only on the
size and complexity of test suites without considering their quality
may be misleading. A small test suite may be due to the easiness
of writing a high quality test suite, indeed, and thus indicate high
code testability, but may also be due to a bad quality test suite, and
be completely unrelated to the code testability.

Ignoring the quality of the test suite produces imprecise corre-
lation results, and thus imprecise prediction models if test suites
of different quality are considered. For instance, let us consider
two classes C1 and C2, and the corresponding test classes TC1 and
TC2. Let us assume that C1 has 1,000 lines of code (LOC = 1,000),
TC1 has ten test cases (T-NOT = 10), and TC1 covers 10 % of the
source code lines of C1 (line coverage = 0.1). Let us also assume
that C2 has LOC = 50, TC2 has T-NOT = 30, and line coverage is
90 %. Approaches based solely on the size and complexity of the
test cases would indicate higher testability (i.e., lower test effort) for
C1, which requires only 10 test cases for 1,000 lines of code, than
C2, which requires 30 test cases for 50 lines of code. However, the
small size of TC1 comes with a very low coverage, which indicates
a very low quality of the test suite, while the relatively large size
of TC2 comes with a very high coverage, which indicates a very
high quality of the test suite. The issue is that TC1 and TC2 have
a considerably different test quality (10 % and 90 % line coverage),
and thus it is meaningless to compare the number of tests of TC1
and TC2 for studying their correlations with class metrics.

Bruntink and Van Deursen’s study is the only work that ac-
knowledges test quality when measuring test effort [20]. Their
study suggests the importance of the quality of test suites when
investigating software testability, but removes the issue by selecting
subjects with test suites that achieves the same code coverage. This
approach is possible when dealing with as small and homogeneous
set of subjects, but becomes impractical when dealing with many
heterogeneous subjects implemented with different test adequacy
criteria (as in our case).

We address this issue by normalizing the test-effort with the
test-quality. In our approach, we compute both test-effort and test-
quality metrics for each test class TC , and then “normalize” the
test-effort of TC with the actual test-quality of TC .

Our procedure normalizes the values of each test-effort metrics
for all the analyzed systems proportionally to a fixed target test-
quality. Our normalization is grounded on the intuition that test
effort grows with an increased test quality. We normalize test effort
over test quality as:

normalized test-effort value
target test-quality value

=
actual test-effort value
actual test-quality value

The target test-quality value is a fixed decimal number between
zero (excluded) and one. Intuitively, both code coverage and muta-
tion score is a decimal number within such a range. In our exper-
iment, for simplicity we consider target test-quality value to be 1
(but we could have chosen any possible value in the range (0;1]).

For the example discussed above, with a target test-quality value
of 1, the normalized value of T-NOT with respect to line coverage
is 10

0.10 = 100 forTC1 and 30
0.90 = 33.33 forTC2. After the normaliza-

tion, 1,000 LOCs of C1 relates with T-NOT = 100 and 50 LOCs of
C2 relates with T-NOT = 33.33, resulting in comparable values.

In the next section, we present our experiments to investigate
if such normalization procedure improves the correlation of class
metrics with respect to test effort.

3 EXPERIMENTAL RESULTS
This section describes the results of a set of experiments that evalu-
ate our proposed approach for measuring software testability. We
addressed two research questions:
RQ1 What is the correlation between class and test-effort metrics?
RQ2 Does the normalization with test-quality metrics increase cor-

relation?
We released the dataset and the source code of the analysis that we
performed in this paper at the address http://bit.ly/30uQoCk.

3.1 Data Collection
We selected 1,186 Java open-source projects fromGitHub, the most
popular platform for code hosting. We excluded low quality and
toy projects, by considering only those Java projects with at least
50 stars and at least one fork. We queried GitHub to obtain the
list of public repositories that match our criteria. We implemented
an automated script that clones the latest version of the master
branch for each repository in the list, and selects all the repositories
that (i) contain at least one JUnit test class, which we identify
from an import declaration with package org.junit, and (ii) use
either Gradle orMaven as build automation systems (which we
identify from the presence of the file build.gradle or pom.xml).
(iii) build successfully with no failing tests. This is because mutation
analysis needs a “green” test suite [26]. We require eitherGradle or
Maven because we need build automation systems to automatically
build the projects, collect and resolve the runtime dependencies
and run test cases. Indeed, we need compiled code to compute most
class and test-effort metrics (see Table 1 and Table 2), and we need
to execute the test cases to compute the test quality metrics (see
Table 3). Gradle and Maven are among the most popular build
automation systems for Java. We found 1,186 GitHub projects that
satisfy these three conditions.
Extracting pairs of class and test class. We automatically ex-
plored the content of each of the 1,186 projects to extract the pairs
⟨C,TC ⟩, where C is a Java class and TC is the JUnit test class asso-
ciated to C . This is in line with the typical usage of JUnit for unit
testing [59], test a classC by means of a dedicated classTC . Follow-
ing previous work that study the correlation between class and test
effort metrics [19, 20, 30], we identified such pairs by relying on the
JUnit naming conventions for test classes [27, 48]. The name of the
test class TC should be the name of the associated class C plus the
word “Test” or “TestCase” as prefix or suffix [48]. For example, if a
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Table 4: Descriptive statistics of class metrics

Metric Mean SD Min Q1 Q2 Q3 Max

LOC 161.68 226.61 8.00 60.00 99.00 177.00 6,758.00
NBI 368.64 917.82 5.00 84.00 183.00 397.00 60,250.00
LOCCOM 149.97 218.04 0.00 52.00 91.00 170.00 6,267.00
NPM 7.98 11.95 0.00 2.00 5.00 9.00 247.00
NSTAM 2.33 6.35 0.00 0.00 1.00 2.00 141.00
NOF 4.50 31.73 0.00 1.00 2.00 4.00 2,083.00
NSTAF 2.21 31.45 0.00 0.00 0.00 1.00 2,083.00
NMC 46.52 111.41 1.00 10.00 22.00 50.00 6,638.00
NMCI 16.10 46.40 0.00 2.00 6.00 16.00 2,533.00
NMCE 30.42 79.16 0.00 5.00 14.00 34.00 4,165.00
WMC 10.50 13.56 1.00 4.00 6.00 12.00 2,560.00
AMC 23.34 43.34 0.11 9.67 16.29 27.00 1,734.50
RFC 29.73 30.36 2.00 12.00 20.00 37.00 520.00
DIT 1.49 0.84 1.00 1.00 1.00 2.00 8.00

Metric Mean SD Min Q1 Q2 Q3 Max

NOC 0.03 0.33 0.00 0.00 0.00 0.00 19.00
MFA 0.21 0.33 0.00 0.00 0.00 0.48 1.00
CBO 6.72 8.17 0.00 2.00 4.00 8.00 156.00
IC 0.33 0.59 0.00 0.00 0.00 1.00 5.00
CBM 0.65 2.04 0.00 0.00 0.00 1.00 48.00
CA 0.71 4.00 0.00 0.00 0.00 1.00 151.00
CE 6.04 7.22 0.00 2.00 4.00 8.00 108.00
LCOM 104.01 755.86 0.00 1.00 6.00 30.00 31,688.00
LCOM3 0.90 0.65 0.00 0.50 0.75 1.10 2.00
CAM 0.43 0.19 0.02 0.29 0.40 0.56 1.00
DAM 0.68 0.44 0.00 0.00 1.00 1.00 1.00
NPRIF 2.74 4.32 0.00 0.00 2.00 3.00 117.00
NPRIM 1.41 3.56 0.00 0.00 0.00 1.00 95.00
NPROM 0.43 1.75 0.00 0.00 0.00 0.00 82.00

Table 5: Descriptive statistics of test-effort metrics

Metric Mean SD Min Q1 Q2 Q3 Max

T-LOC 112.83 126.18 10.00 50.00 77.00 127.00 3,013.00
T-NOT 5.01 6.98 1.00 1.00 3.00 6.00 191.00
T-NOA 9.26 23.56 0.00 0.00 3.00 9.00 784.00
T-NMC 69.91 116.68 1.00 17.00 36.00 76.00 2,377.00
T-WMC 7.27 8.90 2.00 3.00 5.00 8.00 196.00
T-AMC 34.46 43.69 1.06 15.00 24.25 40.00 1,605.69

Table 6: Descriptive statistics of test-quality metrics

Metric Mean SD Min Q1 Q2 Q3 Max

Line coverage (L) 0.78 0.26 0.00 0.67 0.88 1.00 1.00
Branch coverage (B) 0.67 0.31 0.00 0.50 0.75 1.00 1.00
Mutation score (M) 0.65 0.32 0.00 0.40 0.71 1.00 1.00

class name is Connector, the name of the JUnit test class should
be either ConnectorTest or ConnectorTestCase. As shown by
previous studies [19, 20, 30], Java developers often respect such a
convention. As a result, this approach precisely identifies the pairs
⟨C,TC ⟩ of class and associated test class [19, 20, 30].
Collecting class metrics. For each of the analyzed Java classes,
we collected the class metrics with a static analyzer that we imple-
mented on top of CKJM-extended [2] by Jureczko and Spinellis [38],
currently the most comprehensive open-source tool to compute
OO metrics for Java [38]. CKJM-extended computes 18 [4] of the
class metrics in Table 1. We implemented additional static analyzers
to compute the remaining 11 class metrics. The static analyzers
compute the 28 class metrics (Table 1) taking in input the source
code of C and the JARs outputted by the build automation system,
which contain the compiled classes of C’s project and its runtime
dependencies. This is because the computation of some metrics
require the source code of the class C , while others require the
compiled binary code of the class C .
Collecting test-effort metrics. Table 2 presents the test-effort
metrics from TC that we collected with our static analyzer that

already computes LOC, WMC, AMC and NMC. We implemented
additional static analyzers for computing the remaining test-effort
metrics, i.e., T-NOT, and T-NOA. The static analyzer computes the
six test-effort metrics by taking in input the source code of TC and
the JARs outputted by the the build automation system.

Collecting test-quality metrics. We collected the test-quality
metrics (Table 3) relying on the latest versions of JaCoCo [3] for
code coverage and on PIT [5] for the mutation score. We built an au-
tomated script that modifies the build.gradle and pom.xml build
configuration files of each project by adding JaCoCo and PIT de-
pendencies. The scripts automatically invokes JaCoCo and PIT (via
Gradle orMaven), which execute each test class TC individually
to compute its line and branch coverage and mutation score.

Dataset.We ran the tools and scripts on all the 1,186 project cloned
from GitHub. We aggregated the results by automatically parse
the report files of the static analyzer, JaCoCo and PIT. In total,
we computed all the metrics for 9,861 pairs ⟨C,TC ⟩ of class C and
associated test classTC . We counted an average of 8.31 pairs ⟨C,TC ⟩
per project. The 9,861 C and TC classes have a cumulative LOC of
1,594,309 and 1,112,652, respectively. TC classes have 49,413 test
cases overall and 5.01 on average.

Table 4, Table 5 and Table 6 show the descriptive statistics of the
values of the class, test-effort, and test-quality metrics in our dataset,
respectively. The tables show for each metric the average (column
“Mean”), standard deviation (column “SD”), minimum value (column
“Min”), first quartile (column “Q1”), second quartile (column “Q2”),
third quartile (column “Q3”) and maximum value (column “Max”).

Our dataset contains classes with a wide range of structural
and OO design properties (Table 4) and test classes with different
size and complexity (Table 5). Table 6 indicates that the 9,861 test
classes have a considerable amount of variation of the three test-
quality metrics (Standard Deviation (SD) ∼ 0.30). This confirms our
hypothesis that test quality criteria vary largely among open-source
projects, and motivates the need of our normalization adjustment,
as discussed in Section 2.5.

The median (Q2) and mean of the test-quality metrics are rela-
tively high, which indicate that the projects are well-tested. Line
coverage, branch coverage and mutation score have a median of
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0.88, 0.75 and 0.71, respectively. This may be related to the fact
that we only selected popular, projects with at least 50 stars and at
least one fork. Few test classes have zero coverage and mutations
score (Column “Min” of Table 6). In such cases, the JUnit naming
convention was not effective in identifying the pairs of C and TC .
We excluded these pairs from our analysis.

3.2 RQ1 – Correlation Study
To answer RQ1, we computed the “Spearman’s correlation coeffi-
cient” (ρ) [33] for all 168 (28 × 6) pair-wise combinations of class
and test-effort metrics. Spearman’s coefficient is a popular non-
parametric measure of correlation used by related studies [20, 59].

We opted for a non-parametric statistical measure because none
of the metric’s observations (see Table 4, Table 5 and Table 6) follow
a normal (“Gaussian”) distribution. And thus, parametric measures
of correlation (e.g., “Pearson”), cannot be used [33]. We checked
for normality with the “D’Agostino’s K2” test [25]. Other normality
tests (e.g., “Shapiro-Wilk Test”), are inadequate because each distri-
bution has more than 5,000 data points [52]. The K2 test calculates
the kurtosis and skewness to determine if a data distribution departs
from the normal distribution [25]. For each of the metrics’s value
distributions, the normality test leads to p-value ≤ α (α = 0.05),
and thus we reject the hypothesis that are normal distributions.

Spearman’s coefficient (ρ) quantifies the degree to which two
variables are associated with a monotonic function, i.e., an increas-
ing or decreasing relationship [23]. The coefficient ρ ranges from
−1 to +1. A positive ρ means that both variables increase together.
Instead, a negative ρ means that both variables decrease together.
A ρ close to zero means that the two variables have no correlation.

Figure 1 shows the heatmap of the Spearman’s coefficients for
each of the 168 pair-wise combinations of class and test-effort met-
rics. For this research question we are not interested in distin-
guishing positive and negative correlations, and thus Fig. 1 reports
absolute values |ρ |. The colors range from green (max correlation
|ρ | = 1.0) to red (min correlation |ρ | = 0.0).

We interpret |ρ | as weak (≤ 0.3), moderate (0.3 − 0.5), or
strong (≥ 0.5), following the widely accepted classification of
Cohen [22]. The column “Without Normalization (N)” in Table 7
shows the number of class metrics that have weak, moderate and
strong correlations for each test-effort metrics.

The p-value (probability value) computed for each moderate and
strong correlations is always less than 0.0001, and thus we can
reject the null hypothesis that the metrics are uncorrelated. This
result confirms those of previous studies [19, 20, 59]. Some class and
test-effort metrics have moderate correlations (39 in our dataset).

3.3 RQ2 – Normalization Effect on Correlation
To answer RQ2, we normalized each value of the test-effort metrics
with the corresponding value of a test-quality metric, using the
formula described in Section 2.5 using 1 as target test quality value.
For example, when considering line coverage, a target test-quality
value of 1 means normalizing by 100 % line coverage. Because we
considered three test-quality metrics (see Table 3), we obtained
three variants of our original dataset. Each variant consider a dis-
tinct test-quality metric: Line coverage (L), Branch coverage (B)

andMutation score (M). For each variant, we recomputed the Spear-
man’s coefficient (|ρ |) for the 168 pair-wise combinations of class
and (normalized) test-effort metrics.

Figure 2, Fig. 3 and Fig. 4 show the heatmaps of |ρ | after each
normalization. Compared with Fig. 1, the values of |ρ | coefficients
drastically increase. Table 7 shows the number of weak, moderate
and strong correlations after each normalization. Normalizing by
Line of coverage (L) decreases the number of weak correlations
from 128 to 98 and increases the number of moderate and strong
correlations from 39 to 52 and from 1 to 18, respectively. Normaliz-
ing by Branch of coverage (B) achieves similar results. Normalizing
by Mutations score (M) leads to the best correlation improvement.
The number of weak correlations decreases from 128 to 83, while
the number of moderate and strong correlations increases from 39
to 51 and from 1 to 34, respectively.

To better quantify the correlation improvement we compared
the |ρ | coefficients before and after normalization. We started by
removing all combinations of class and test-effort metrics that char-
acterize negligible or not-existing correlations. Removing them is
important because their |ρ | values are “statistical fluke” [22], which
is a result that you get simply by chance, not because there is a
correlation [22]. Recognize negligible or not-existing correlations
is nontrivial because several |ρ | values that are close to zero (weak)
before normalization become higher (moderate) after (see Table 7).

As such, we removed all combinations of class and test-effort
metrics that correspond to |ρ | < 0.1 both before and after normal-
ization, which likely represents statistical flukes [22]. Line coverage
normalization has 51 of such combinations, Branch normalization
50 and Mutation normalization 42. The p-value for such combi-
nations confirms that the little visible correlation is a statistical
fluke. Indeed, 91 (63.63 %) of the 143 removed combinations have a
p-value > 0.0001, whereas the p-values of all retained combinations
is < 0.0001. Therefore, we can reject the null hypothesis that the
retained combinations are uncorrelated.

For each type of normalization, we computed ∆ |ρ | as the dif-
ference between the |ρ | values after and before normalization. For
example, if we consider the combination LOC and T-NOT, |ρ | before
normalization (|ρ |N ) is 0.35 and after normalization by mutation
score (|ρ |M ) is 0.58. Then, ∆ |ρ | = |ρ |M − |ρ |N = 0.58− 0.35 = 0.23.
The Line normalization retains 117 combinations. Their ∆ |ρ | is
0.09 on average (max 0.17 and min −0.02). Only in four cases the
Spearman’s correlation decreases after normalization (i.e., ∆ |ρ | =
|ρ |L − |ρ |N < 0). Instead, the Branch normalization retains 118
combinations. Their ∆ |ρ | is 0.08 on average (max 0.18 and min
−0.04). Only in nine cases the Spearman’s correlation decreases
after normalization. Finally, the Mutation normalization retains
126 combinations. Their ∆ |ρ | is 0.13 on average (max 0.26 and min
−0.008). Only for the combination CA and T-NOA the correlation
decreases after normalization (i.e., ∆ |ρ | = |ρ |M − |ρ |N = −0.008).
Among the three normalizations, the Mutation normalization leads
to the best correlation improvement. This could be due to mutation
score is better than code coverage in evaluating a test suite [26].
It evaluates both the ability of tests to cover the faulty statements
and the ability of test oracles to detect the faults.
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Figure 1: Spearman rank correlation coefficient (absolute values) – without Normalization (N)
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Figure 2: Spearman rank correlation coefficient (absolute values) – test effort metrics are normalized by Line coverage (L)
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Figure 3: Spearman rank correlation coefficient (absolute values) – test effort metrics are normalized by Branch coverage (B)
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Figure 4: Spearman rank correlation coefficient (absolute values) – test effort metrics are normalized by Mutation score (M)

3.4 Discussion of the Results
Table 8 shows the Spearman’s coefficients of the 12 class metrics
that most correlate with test effort, i.e., they have at least one |ρ |
value ≥ 0.4 (either before or after normalization). We chose 0.4 as
the threshold because it includes strong correlations and the highest
half of moderate correlations [22]. Table 8 highlights in bold the
highest |ρ | value for each column. All selected class metrics have a
positive correlation, except CAM that has a negative one (ρ < 0).

These 12 class metrics belong to four OO design properties: size,
complexity, coupling and cohesion (see Column “Design Property”
Table 1). More specifically, seven metrics characterize the size of
the class (LOC, LOCCOM, NBI, NMC, NMCI, NMCE, NPM), two the
complexity (RFC and WMC), two the coupling (CBO and CE), and

one the cohesion (CAM). These results confirm some of the findings
of related studies [7, 8, 20, 59] as well as report new correlations.

We now discuss the similarities and differences of our findings
with the ones of two representative studies: one by Bruntink and
Van Deursen [20] and one by Toure et al. [59]. We chose these
studies from the literature because they analyze the highest number
of projects and class/test-effort metrics. Referring to the published
results, we consider a class metrics to be highly correlated to test
effort if (i) the |ρ | value ≥ 0.4 with respect to any test-effort metric;
(ii) the correlation results are statistical significant.

Bruntink and Van Deursen [20] studied five open-source Java
programs to compute the Spearman’s correlation between nine Chi-
damber and Kemerer (C&K) metrics (DIT, NMC, LCOM, LOC, NOC,



Measuring Software Testability Modulo Test Quality ICPC ’20, October 5–6, 2020, Seoul, Republic of Korea

Table 7: Counting the Spearman’s coeff. absolute values |ρ | as weak (|ρ | ≤ 0.3), moderate (0.3 < |ρ | < 0.5), or strong (|ρ | ≥ 0.5)

Test effort
Without Normalization (N) Normalized by Line coverage (L) Normalized by Branch coverage (B) Normalized by Mutation score (M)

Weak Moderate Strong Weak Moderate Strong Weak Moderate Strong Weak Moderate Strong

T-LOC 17 10 1 15 6 7 14 7 7 11 8 9
T-NOT 23 5 0 17 11 0 17 11 0 15 7 6
T-NOA 28 0 0 21 7 0 23 5 0 19 9 0
T-NMC 17 11 0 14 7 7 14 7 7 11 8 9
T-WMC 21 7 0 15 9 4 14 9 5 13 8 7
T-AMC 22 6 0 16 12 0 17 11 0 14 11 3
Total 128 39 1 98 52 18 99 50 19 83 51 34

Table 8: (Best) class metrics with at least one |ρ | greater than 0.4

Class
metric

T-LOC T-NOT T-NOA T_NMC T-WMC T-AMC

N L B M N L B M N L B M N L B M N L B M N L B M

LOC 0.53 0.66 0.66 0.72 0.35 0.50 0.49 0.58 0.30 0.36 0.36 0.39 0.47 0.59 0.59 0.67 0.37 0.53 0.53 0.60 0.33 0.47 0.45 0.53
LOCCOM 0.49 0.60 0.61 0.65 0.29 0.42 0.43 0.49 0.26 0.31 0.32 0.35 0.41 0.51 0.53 0.59 0.31 0.45 0.46 0.52 0.31 0.42 0.42 0.48
NBI 0.45 0.59 0.61 0.67 0.33 0.48 0.47 0.58 0.30 0.36 0.35 0.40 0.46 0.58 0.59 0.67 0.35 0.51 0.52 0.60 0.34 0.48 0.47 0.56
NMC 0.44 0.57 0.59 0.63 0.32 0.45 0.45 0.54 0.24 0.30 0.29 0.33 0.46 0.57 0.58 0.65 0.34 0.49 0.50 0.57 0.31 0.43 0.42 0.50
NMCI 0.43 0.52 0.53 0.55 0.29 0.39 0.39 0.45 0.23 0.28 0.28 0.30 0.44 0.52 0.53 0.57 0.32 0.43 0.43 0.48 0.33 0.42 0.41 0.45
NMCE 0.34 0.46 0.48 0.53 0.26 0.39 0.38 0.47 0.19 0.24 0.22 0.27 0.36 0.46 0.47 0.54 0.28 0.42 0.43 0.50 0.22 0.33 0.32 0.40
NPM 0.25 0.41 0.40 0.47 0.26 0.40 0.38 0.47 0.26 0.32 0.31 0.34 0.28 0.40 0.39 0.47 0.23 0.40 0.39 0.46 0.13 0.29 0.27 0.35
RFC 0.45 0.61 0.62 0.68 0.33 0.49 0.47 0.58 0.24 0.31 0.29 0.34 0.48 0.61 0.61 0.69 0.35 0.53 0.53 0.62 0.31 0.46 0.43 0.53
WMC 0.39 0.55 0.54 0.61 0.35 0.49 0.48 0.57 0.28 0.34 0.33 0.37 0.42 0.54 0.53 0.62 0.35 0.51 0.51 0.59 0.22 0.37 0.35 0.44
CBO 0.36 0.42 0.44 0.45 0.17 0.25 0.27 0.31 0.04 0.08 0.09 0.10 0.35 0.41 0.43 0.45 0.23 0.31 0.33 0.36 0.25 0.31 0.32 0.34
CE 0.35 0.41 0.43 0.44 0.14 0.23 0.24 0.28 0.01 0.05 0.06 0.07 0.33 0.40 0.42 0.44 0.21 0.29 0.31 0.34 0.27 0.33 0.33 0.35
CAM −0.32 −0.48 −0.47 −0.54 −0.28 −0.43 −0.41 −0.51 −0.21 −0.27 −0.26 −0.30 −0.36 −0.48 −0.47 −0.55 −0.29 −0.45 −0.45 −0.53 −0.18 −0.33 −0.30 −0.40

NOF, NPM, RFC and WMC) and two test-effort metrics (T-LOC
and T-NOT). Our and their results agree that NMC (which they
call FOUT), LOC (which they call LOCC), RFC and WMC highly
correlate with both T-LOC and T-NOT. Their results also report
that NPM is highly correlated with T-NOT for 4 out of 5 subjects,
and that LCOM and NOF are highly correlated with T-LOC for one
subject. Our results disagree with such a finding.

Recently, Toure et al. [59] performed a similar study considering
seven C&K metrics (CBO, LCOM, WMC, RFC, DIT, NOC, LOC)
and three of the test effort metrics considered in our study: T-LOC,
T-NOA and T-NMC (which they called TINVOKE). Our and their
results agree that LOC, RFC and WMC and CBO highly correlate
with test effort. However, they report that also LCOM manifests
high correlation. Our results disagree with such a finding.

In a nutshell, our experimental results indicate that the OO de-
sign properties size, complexity and coupling most affect the unit
testability of Java classes, confirming the results and conclusions of
previous studies [28]. Such correlations can be explained as follows:

Testability decreases with the increasing of class size, as the higher
the number of lines of code and methods, the more test cases a
developer needs to write. Testability decreases with the increasing
complexity, as effective testing has to cover as many execution paths
as possible, and the number of paths increases with the increase
of complexity. Testability decreases with the increasing of coupling,
because classes that have a high coupling are using other parts of
the system, increasing the possible execution paths [51].

In addition, this paper indicates that also the OO design property
Cohesion highly correlates with test effort: testability decreases with
the decreasing of cohesion. This could be due to cohesion refers to
the degree to which the elements of a class belong together [53].
Smaller behaviors are easier to test than larger behaviors.

3.5 Threats to Validity
A possible threat to external validity is that our results do not
generalize to other subjects and OO programming languages. We
mitigated this threat by considering thousands of Java projects.
The size of our study is several order of magnitude larger than
similar studies [19, 20, 59]. Repeat our experiments considering a
different OO programming language is an important future work.

A possible threat to internal validity is that there might be errors
in our tool or scripts that led to wrong results or metric values. We
mitigated this threat by (i) building our static analyzer on top of
a fully-fledge tool [2]; (ii) selecting a small samples of classes to
manually validate the correctness of the metric values; (iii) testing
the critical parts of our scripts and tool. Moreover, we released our
data and scripts and we welcome external validation [1].

4 RELATEDWORK
The various definitions of Software Testability [62] can be classified
into two groups [28]: (i) “ease of testing”, measured with test-effort
metrics (e.g., test size) [19, 20, 55, 59], and (ii) “ease of revealing
faults”, measured with test-quality metrics (e.g., mutation score and
coverage) [6, 24, 37, 40, 64].

In this paper, we comply with the first interpretation, which is
the most popular one in literature [28]. However, while we rely on
test-effort metrics to measure the ease of testing, we also consider
test-quality metrics. Indeed, the key contribution of this paper is to
normalize test-effort metrics with test-quality metrics. At the best
of our knowledge, this is new to software testability studies.

We now discuss the work on measuring and predicting test effort
(which is most closely related to this paper) and test quality. We
conclude the section discussing orthogonal testability work.
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Measuring and Predicting the Test Effort. Ourwork is inspired
by the studies of Bruntink and Van Deursen on the correlation
between the Chidamber and Kemerer (C&K) and test-effort met-
rics [19, 20]. These studies provide preliminary evidence that C&K
and test-effort metrics correlates, ad thus the C&K metrics can be
use to predict the test effort [19, 20].

Badri and Toure studied the correlation of cohesion metrics
(LCOM and LCOM*) with test effort [7]. By analyzing two software
projects they concluded that it exists a moderate correlation [7].
However, our results do not confirm such a finding. Subsequently,
Badri and Toure improved their previous study, increasing the
number of software metrics (by adding LOC, CBO, DIT, NOC,WMC
and RFC), and considering three projects instead of two [8]. Badri
et al. also investigated the effect of control flow to the test effort [9].

Recently, Toure et al. investigated the use of a metric called
“Quality Assurance Indicator” to predict test effort on eight open-
source Java projects [59]. Gupta et al. proposed a fuzzy technique
to combine values of OO software metrics into a single value called
testability index [30]. Singh et al. relied on neural networks to
predict testing effort from OO metrics [55].

These studies suffer from three main limitations. First, they in-
volve at most eight software systems. Thus, it is difficult to guar-
antee that the results generalize to other systems. Conversely, in
our study we analyzed classes from 1,186 projects. Notably, a small
number of subject systems is common to all testability studies [28].
Among the 182 testability studies that involve the analysis of soft-
ware systems, Garousi et al. showed 161 (88 %) analyze five or less
systems, while the remaining 21 (12 %) studies involve at most 45
systems [28]. Second, they focus on some subsets of the class met-
rics that our study considered. To the best of our knowledge our
study is the most comprehensive in terms of number of class met-
rics. Third, all of these studies do not consider test-quality metrics
for normalization. Lacking a quality assessment of the tests leads
to imprecise correlation results and prediction models.

Measuring and Predicting the Test Quality. Cruz and Eler ana-
lyzed four open-source systems to study the correlation between the
Chidamber and Kemerer (C&K) metrics and the quality of the tests
(coverage and mutation score) [24]. They concluded that the C&K
metrics CBO, LCOM, RFC and WMC have a moderate influence on
test quality, and thus a design with low coupling, low complexity,
and high cohesion can lead to high coverage and mutation scores.

Khoshgoftaar et al. proposed the use of neural networks to pre-
dict testability based on mutation analysis from source code met-
rics [40]. Jalbert et al. predicted mutation scores by using source
code metrics combined with coverage information [37]. Yu et al.
proposed a new set of metrics for concurrent programs to predict
the mutation score of concurrent tests [64]. Zhang et al. proposed a
machine learning approaches to predict mutation score from easy-
to-access features, e.g., coverage information, oracle information,
and code complexity [65]. Recently, Mao et al. extended the ap-
proach of Zhang et al. by considering a cross-project setting, more
features and more powerful deep learning models [41].

These studies have a different goal from our work as they aim to
predict test quality. Conversely, our work studies the measurement
and prediction of test effort using test-quality metrics (mutation
score and coverage) as normalization factors.

Orthogonal Work. Besides measuring and predicting test effort,
researchers have tackled orthogonal testability goals: design for
testability, improvement of testability, and fault proneness.

Design for testability aims at measuring software testability early
in the development process, for example during the requirement
analysis phase [13, 39, 61], and design [12, 14–16, 50, 60] stages.
Applying testability analyses early in the development process has
the advantage that design refactoring can improve testability before
the implementation starts [50].

Improvement of testability aims at refactoring a program to
increase its testability. For example, by obtaining a version of the
program that is more amenable to test generation [32, 35, 46, 47].

Basili et al. found that several C&K metrics are associated with
fault proneness [11]. Similarly, Gyimothy et al. employed machine
learning methods to predict faults from C&K metrics [31]. Briand
et al. explored the relationship between class metrics and the prob-
ability of fault detection [18]. Yu et al. examined the relationship
between class metrics and the fault proneness [63].

All of these approaches have a different goal with the one of
in this paper. An interesting future work is to investigate if our
idea of normalizing test effort with test quality can also help these
approaches to achieve other testability goals.

5 CONCLUSIONS
This paper proposed a new approach to software testability. The
new approach extends current approaches by introducing the novel
idea of normalizing test effort with respect to test quality. It also
presented the results of an extensive study that involves 9,861 pairs
of Java classes (with a total of 1,594,309 lines of code) and corre-
sponding JUnit test cases taken from 1,186 GitHub projects.

Our results indicate that normalizing test effort with test quality
largely increases the correlation between class metric and test effort.
An improved correlation between class metric and test effort means
a better prediction of test effort. Indeed, the normalization proce-
dure that we presented in this paper enables the construction of
large-scale prediction models from heterogeneous software systems
implemented with different test adequacy criteria. Leveraging our
normalization procedure we could train different machine learning
models considering different versions of our data-set obtained by
normalizing test effort by different target test-quality values, e.g.,
70 %, 80 %, 90 % line coverage. Given in input a class, its class met-
rics values, and a target test-quality value, we could predict the
test effort using the prediction model corresponding to the target
test-quality value in input. We leave the investigation of such an
approach as an important future work.

In this paper, we introduced the normalization process under
the assumption of a proportional growth of test effort with respect
to test quality. For example, if five test cases (T-NOT = 5) achieves
a branch coverage of 50 %, our normalization assumes that we
need ten test cases (T-NOT = 10) to achieve a branch coverage of
100 %. Another important future work is to study the impact of this
assumption on the correlation between class and test-effort metrics.
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