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ABSTRACT

Assertion oracles are executable boolean expressions placed inside
a software program that verify the correctness of test executions. A
perfect assertion oracle passes (returns true) for all correct execu-
tions and fails (returns false) for all incorrect executions. Because
designing perfect assertion oracles is difficult, assertions often fail
to distinguish between correct and incorrect executions. In other
words, they are prone to false positives and false negatives.

GAssert is the first technique to automatically improve assertion
oracles by reducing false positives and false negatives. Given an
assertion oracle and a set of correct and incorrect program states,
GAssert employs a novel co-evolutionary algorithm that explores
the space of possible assertions to identify one with fewer false
positives and false negatives. Our evaluation on 34 Java methods
shows that GAssert effectively improves assertion oracles.
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public static int min(int x, int y) {
int min;
if (x <= y) { 

min = x;
} else {

min = y; // mutant M1 : min = y + 1; 
} 
assert(min < x); // assertion oracle
return min;
}
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Figure 1: Example of assertion oracle with FPs and FNs.

1 INTRODUCTION

Software testing aims to verify the correctness of a piece of software
by executing test cases. The challenge of distinguishing correct from
incorrect test executions is called the (test) oracle problem, and it is
recognised as one of the fundamental challenges in software testing.
A popular form of oracles are executable boolean expressions (called
assertion oracles) that predicate on the values of program variables
at specific program points. If the expression evaluates to true the
test execution is deemed to be correct, incorrect otherwise.

Assertion oracles often fail to distinguish between correct and in-
correct executions [2], that is, they are prone to both false positives
and false negatives. A false positive (FP) is a correct program state
in which the assertion fails (but should pass). A false negative (FN)

is an incorrect program state in which the assertion passes (but
should fail). We obtain correct and incorrect program states by exe-
cuting test cases on instrumented versions of the original and faulty
versions of the method under test, respectively. Faulty versions are
obtained by seeding artificial faults (called mutants).

Figure 1 shows a Javamethod that returns theminimum between
two integers 𝑥 and 𝑦. The comment at Line 5 shows a seeded fault
(mutant)𝑀1 used to produce incorrect program states. Line 7 shows
an assertion oracle (𝑚𝑖𝑛 < 𝑥) that suffers from both FPs and FNs.
An example of FP is the program state {x=3, y=5, min=3} induced
by the test case min(x=3, y=5). This is a correct program state
but the assertion returns false. An example of FN is the program
state {x=9, y=7, min=8} induced by the test case min(x=9, y=7)
and the program mutation𝑀1. This is an incorrect program state
but the assertion returns true. Our goal is to automatically improve
assertion oracles by minimizing their FPs and FNs.
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2 GASSERT

We recently proposed GAssert [4, 5], the first technique to auto-
matically improve assertion oracles. Given an assertion oracle and
a set of correct and incorrect program states, GAssert explores the
space of possible assertions with a co-evolutionary algorithm to
search for an improved assertion with zero FPs and the lowest num-
ber of FNs. GAssert favors assertions with zero false positives, as
false alarms are known to trigger an expensive debugging process.
For the example in Figure 1,GAssert returns an improved assertion
((min == 𝑥) OR (min == 𝑦)) AND ((min ≤ 𝑥) AND (min ≤ 𝑦))
that intuitively captures the expected behavior of a “min” function.

GAssert explores the huge space of candidate assertions with a
co-evolutionary algorithm that formulates the oracle improve-
ment problem as a multi-objective optimization problem (MOOP)
with three competing objectives: (i) minimizing the number of FPs,
(ii) minimizing the number of FNs, (iii) minimizing the size of the
assertion (to improve the readability of assertions).

Classic multi-objective evolutionary approaches (e.g., NSGA-II)
often rely on Pareto optimality to produce solutions that offer the
best trade-off between competing objectives. However, in our case
not all assertions with an optimal trade-off between FPs and FNs
are acceptable solutions. Indeed, GAssert aims to obtain assertions
with zero FPs and the lowest number of FNs. Alternatively, primarily
focusing on reducing FPs may also be inadequate, as there may not
be enough evolution pressure to also reduce the FNs.

To address the challenge, GAssert proposes a co-evolutionary
approach that evolves in parallel two distinct populations of as-
sertions (PFP and PFN) with two competing fitness functions that
reward less false positives and less false negatives, respectively.
Both fitness functions consider the remaining objectives only in tie
cases. These populations periodically migrate their best individuals
to exchange genetic material useful to improve the secondary ob-
jectives. Eventually, PFP will be more likely to produce assertions
with zero FPs and fewer FNs. In fact, migrating the best individuals
of PFN adds in PFP assertions with a decreasing number of FNs.

GAssert includes canonical tree-based evolutionary operators. It
also implements novel operators specifically designed for the oracle
improvement problem. For instance, GAssert proposes the best-
match selection criterion that exploits semantic information about
the correct and incorrect states that each assertion covers. It selects
the first parent randomly and the second one usingweighted random
selection, where assertions with a higher weight are more likely to
be selected. The weight is defined as the number of correct (or
incorrect) states in which the second parent correctly returns true
(or false), while the first parent does not. Intuitively, the criterion
increases the chances of crossover between two complementary
individuals that are likely to yield a fitter offspring.

3 EVALUATION RESULTS

We evaluated GAssert on 34 methods from 7 Java code bases [4].
We evaluated the ability of GAssert to improve an initial set of
assertion oracles generated by Daikon [1], the most popular invari-
ant generator for Java. For each method, we ran GAssert ten times
with a time budget of 90 minutes. We compared GAssert with a
Random variant of GAssert where the guidance provided by our
fitness functions is replaced by a random choice.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

GASSERT RANDOM

median Mv%(𝛼)   

m
ed

ia
n

M
v%

(𝛼
') 

Figure 2: Mutation score (i.e., percentage of detected seeded

faults) improvement of the 34 methods.

When executed with unseen tests and mutants, the GAssert-
improved assertions (𝛼 ′) increase the mutation score (i.e., percent-
age of detected seeded faults) by 34% (on average) with respect to
the mutation score obtained with the initial assertions (𝛼).

Figure 2 plots the median mutation score for each pair of initial
and improved assertions w.r.t. GAssert and Random. If a point
is on the diagonal it means that the corresponding approach did
not improve the mutation score wrt the initial assertion. Most of
GAssert points are above the diagonal, which means that GAssert
produced improved assertion with a higher mutation score.

We also compared GAssert with a set of human-improved as-
sertions collected from 102 developers [3] obtainingu comparable
results.. Remarkably, 10% of the human-improved assertions achieve
a lower mutation score than the assertions improved by GAssert.

4 CONCLUSION

Automatically improving assertion oracles is crucial to increase
the fault-detection capabilities of test cases. The evolutionary al-
gorithm of GAssert is effective at exploring the search space of
possible assertion oracles. Moreover, the evolutionary operators of
GAssert defined specifically for the oracle improvement process
show promising results that are worth exploring further.
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