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ABSTRACT
A paradigm shift is underway in Software Engineering, with AI

systems such as LLMs gaining increasing importance for improv-

ing software development productivity. This trend is anticipated

to persist. In the next five years, we will likely see an increasing

symbiotic partnership between human developers and AI. The Soft-

ware Engineering research community cannot afford to overlook

this trend; we must address the key research challenges posed by

the integration of AI into the software development process. In

this paper, we present our vision of the future of software devel-

opment in an AI-driven world and explore the key challenges that

our research community should address to realize this vision.
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1 INTRODUCTION
In the dawn of computing (1940s), programmers wrote machine

code, consisting of binary instructions to directly program com-

puter’s hardware. It was quickly understood that programming

needed a higher level of abstraction from the hardware [4].
This allowed programmers to write code that is more readable, un-

derstandable, and portable across different hardware. From assem-

bly language (a more human-readable representation of machine

code) to scripting languages (e.g., Python and JavaScript), the past

70 years of programming languages and practices have witnessed a

continuous pursuit of a higher level of abstraction [15]. This is to

increase the developers’ efficiency and at the same time cope with

the demand of increasingly complex software systems.
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While the introduction of high-level programming languages has

played a major role in allowing developers to write concise and ex-

pressive code, a paradigm shift occurred in the early 2000s with the

widespread use of APIs (Application Programming Interfaces)
and libraries. Before that, programmers had to write extensive

amounts of code to perform even basic tasks. The shift towards us-

ing APIs and libraries had a profound impact on the efficiency and

capabilities of software development [28, 63]. Programming can

now be informally summarised as chaining the inputs and outputs
of API calls, allowing an even higher level of abstraction.

The intuitive, informative, and concise nature of variable and

API names is bringing our programs closer to resembling human
language. Additionally, the ongoing evolution of higher-level pro-

gramming languages unmistakably demonstrates a trend towards

making language constructs more closely aligned with human

speech [15]. Can this trend continue and eventually programming
will reach the pinnacle of abstraction: natural language? This is very
unlikely. Human speech lacks the basic criteria of programming

languages (e.g., lack of ambiguity). However, this does not mean

that software engineers could not write programs specifying their

intent in natural languages. Developers have been using Stack-
Overflow.com (SO), to search for solutions of programming tasks

using natural language as queries. Indeed, SO and similar Q&A

websites for developers [48] have become crucial tools to boost

developer productivity [35, 35, 39, 42, 46, 47, 51].

The recent rise of Large Language Models (LLMs) [62], es-
pecially following the global launch of GPT3.5 and GPT4.0 by
OpenAI, have brought another revolution of programming, rapidly

overshadowing platforms like SO [10]. While program synthesis

from natural language queries has been a subject of research for

many years [18], the performance of recent LLMs has shown results

that were unthinkable just a few years ago [6, 11, 19]. Now, develop-

ers no longer need to search on SO for code snippets; instead, they

can directly ask GPT (or other LLMs), and even have conversational

interactions to better understand and improve the generated code.

Recently, SO removed statistics on its daily visit counts and offi-

cially addressed concerns about declining website traffic in a blog

post
1
. The post acknowledges the decline in visits and attributes the

trend to the release of GPT-4. We are witnessing a paradigm shift

in software development where software engineers use LLMs or

other AI systems to boost their productivity [12, 40]. We can confi-

dently say that LLMs, alongside high-level programming languages,

libraries, and developer Q&A websites, have become essential tools

for modern software development [12].

LLMs are here to stay. Indeed, their capabilities and performance

in source code generation are set to improve in the future. This is

due to the increasing availability of open-source code for training

1
https://stackoverflow.blog/2023/08/08/insights-into-stack-overflows-traffic/
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Figure 1: Logical architecture of the envisioned future symbiosis of Software Engineers and AI

purposes, alongside the ongoing efforts of the AI community to

enhance LLM performance. As such, over the next five years, we

anticipate that software engineers will continue to use LLMs (or

similar AI systems) in code development.

Our research community must acknowledge and address the

opportunities and challenges that arise from the use of AI in soft-

ware development. Concerns persist regarding the quality of AI-

generated code [30], with notable issues regarding security and

privacy [58]. Yet, there are numerous opportunities presented by

the versatile capabilities of LLMs, especially when fine-tuned for

specific tasks, code bases or company practices. Indeed, LLMs have

proven highly effective in various software engineering tasks be-

yond code generation, including documentation generation [16, 33],

testing [43, 59], and program repair [26, 55]. Our research commu-

nity stands at the forefront of this revolution, we need to tem-

pestively address the challenges of the symbiotic partnership
between human developers and AI.

In this paper, we present our vision of the potential future of an

AI-driven software engineering, alongside the key research chal-

lenges and opportunities associated with the increasing integration

of AI into the software development process.

2 AI-DRIVEN SOFTWARE DEVELOPMENT
Figure 1 overviews our envisioned AI-driven software develop-
ment framework. While certain aspects of this framework may

appear overly optimistic about the capabilities of future AI systems,

it presents an interesting thought process for understanding the

potential symbiotic synergy between AI and software developers.

Moreover, it sheds light on the research challenges that our com-

munity must address to realize this vision someday. Indeed, such

a vision is not completely unrealistic. We know that current AI

systems can accomplish most of the specified tasks, albeit with

limited quality [16, 20, 26, 33, 43, 55, 59].

The framework touches all main phases of the Software Devel-
opment Life Cycle: Requirement Engineering, Software Design,

Implementation, Testing, and Maintenance. Note that we are not

assuming a waterfall model, the cycles may overlap, especially in

agile development methodologies where development cycles are

shorter and more flexible.

The Actors in our framework are software engineers (e.g., devel-

opers, architects, and tester) and a generic AI system (e.g., an LLM).

It is important to mention that we believe we are still very far from

completely replacing software engineers with prompt engineers.

Capable software engineers (with prompt engineering training)

will remain indispensable for understanding, reviewing, improving,

combining, validating, and maintaining the source code generated

by AI. In the short and medium term future, AI is merely a tool to

enhance developers’ productivity. While it can automate certain

tasks, we assume the presence of humans in the loop.

With our proposed framework, engineers can either directly

create or update the artifacts (i.e., requirements, design, production

and test code) or instruct the AI (e.g., through prompt engineering)

on how to do that. We envision a bi-directional communication
between humans and AI, where humans can ask questions or pro-

vide instructions, and the AI can notify engineers of any detected

issues or opportunities for improvement. Software engineers will

communicate with AI through conversational interactions fa-
cilitated by the conversational capabilities of LLMs. This interface

empowers engineers to seek clarifications and explanations about

the artifacts as well as the AI system’s output.

Another important clarification is that, for simplicity, Figure 1

represents a single AI system. Clearly, the AI system would not be

the same for every task. It is reasonable to assume that a dedicated

AI system, fine-tuned for the specific task, will be in place.

AI System: The primary research challenge in integrating AI

into the software development process will be orchestrating

the various AI subsystems that focus on specific development

tasks and seamlessly integrating them using a single human-AI

interface.

In particular, the AI subsystems must effectively communicate

with each other andwith various software analysis tools responsible

for gathering information on the software artifacts in development.

As the number of available AI systems continues to grow, to prevent

information overload, humans will interact with a single unified in-
terface. Similar to mediator bots [41], an orchestrator of AIs can
efficiently manage all interactions with the AI subsystems behind

the scenes. We envision that the AI’s orchestrator will constantly

monitor changes in the artifacts (after every update from engineers)

and invoke the dedicated AI subsystem to check for consistency

and integrity of the artifacts.

This paper was accepted at the "International Workshop on Software Engineering in 2030," co-located with FSE 2024. It was also invited to
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2.1 Requirements Engineering

Requirement Engineering: The main research challenge

will be to enable AI agents that can understand user needs.

Understanding stakeholder needs is a complex activity due

to, for example, ambiguities in natural language, stakeholders not

always knowing what they truly need, and changing needs. Yet, AI,

and LLMs in particular, can still assist in requirements engineering

activities. They are capable of analyzing, organizing, and summa-

rizing large amounts of data. Thus, they can play a crucial role

in the preliminary phase of requirements elicitation. Stakeholders

can provide any form of documentation, and LLMs can summarise

large documents or translate them into formal requirement specifi-

cations. Additionally, Chatbots powered by LLMs can also aid in

the elicitation of requirements by engaging in conversations with

stakeholders. They can generate questions and suggestions to help

stakeholders articulate their needs more clearly. Moreover, they

can propose relevant examples or scenarios to facilitate discussions

and clarify ambiguities. For example, AI agents could produce mock

ups of interfaces or rapid prototypes to confirm understanding of

user needs. Stakeholders often describe their envisioned solutions

to a problem, rather than the problem itself. The AI systems will

need to ensure stakeholders proposed solutions do not limit the

possibilities of innovative designs.

AI will also check for inconsistencies, conflicts, and missing re-

quirements. Figure 1 illustrates the interaction solely between the

Software Engineer and the AI. However, the AI could also engage

in conversations with stakeholders (e.g., clients, product owners)

to elicit, analyse, specify, and validate requirements. Nonetheless,

humans will remain in the loop. Software Engineers should over-

see these conversations, refine and validate the requirements, and

intervene if issues arise.

We will also need define a new prompt-friendly requirement
language that can enhance collaboration between humans and

AI systems in transitioning from requirement engineering tasks

to development tasks. We call this language "prompt-friendly" in

the sense that it should be easily understood by LLMs so that

they could generate the associated source code. For example, the

language might need to unambiguously separate functional and

non-functional requirements to help the LLM generate code. More

research on fine-tuning and prompt engineering is needed to un-

derstand what are good prompts to specify requirements and at the

same time to generate the corresponding source code.

2.2 Software Design
Starting from the requirements, AI will work alongside the software

engineer to automatically propose initial design suggestions. These

suggestions can serve as starting points for further refinement and

validation by the engineers. LLMs should be fine-tuned with best

practices, design patterns, and knowledge from previous similar

projects. We believe that human input will be needed for this step.

In particular, the AI should explain to developers the specific

trade-offs that alternative design solutions entail, aiding them in

decision-making. Explainable AI is an important an active research

topic in the AI community [57]. More research is needed to leverage

explainability techniques in the context of software design.

Software Design: An important research challenge will be to

understand how software engineers can effectively integrate

AI into their design workflows, communicate with them, and

interpret their suggestions. In particular, AI must provide ex-

planations for their design suggestions to increase trust and

facilitate human understanding.

2.3 Software Development and Testing
We envision that software development and testing will be inter-

twined, as automated testing should be conducted to verify the

correctness of the components generated by AI, as well as their

seamless integration into the code base. Given a set of unimple-

mented requirements, AI will automatically generate and test the

production code, after which humans and AI will collaborate to

improve and verify it.

SoftwareDevelopment:The key research challengewill be to
understand how effective prompt engineering can guide code

generation, particularly when aiming for seamless integration

into the code base while matching the design and technologies.

Indeed, requirements might be too high level, and it remains

a challenge how to decompose high-level requirements into

low-level implementation details.

An important opportunity arises from the potential sharing

of low-level implementations generated by AI within the open-
source community. Low-level implementations could be gener-

ated as stateless, and immutable APIs. The advantage is that these

APIs undergo human and automated verification and testing. This

enables other software project to reuse them rather than attempting

to re-generate them from scratch. By accessing existing databases

of AI-generated APIs, AI systems can explore alternatives before

resorting to generating code from scratch. This concept parallels

the notion of "APIzation" recently explored for Stack Overflow code

snippets [51, 52].

Testing will play a crucial role, as we need to ensure the cor-

rectness of the LLM-generated code and its integration with the

codebase. Test cases can, of course, be created by developers, but

they can also be generated automatically. The latter type of test

cases will be crucial for verifying AI-generated code. While LLMs

can generate test cases, we envision that automated test genera-

tors (e.g., Randoop [37], EvoSuite [14], and Pynguin [32]) will

work in combination with LLMs to improve the quality and fault

detection effectiveness of the generated tests. We are already wit-

nessing the first attempt of this combination, yielding promising

results [29]. While LLMs can be somewhat effective in generat-

ing test cases [43, 59], current LLMs do not guarantee compilable

or runnable test cases [59]. Therefore, an integration with tradi-

tional test generators that compile and run test cases is neces-

sary. Additionally, the feedback from compiling and running test

cases is known to be extremely useful in improving LLM-generated

tests [43, 59], or automatically generate test cases in general (e.g.,

This paper was accepted at the "International Workshop on Software Engineering in 2030," co-located with FSE 2024. It was also invited to
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feedback-directed approach [38]). More research is needed to better

exploit the synergy and complementarity of LLMs and traditional

test case generators [29].

Software Testing: The key research challenge will be to au-

tomatically generate test cases with effective oracles to verify

AI-generated code.

Indeed, generating effective oracles that correctly distinguish

between correct and incorrect executions is crucial. We cannot

expect humans to write oracles for (many) AI-generated test cases;

we need automatically generated oracles. Unit test generators (e.g.,

Randoop [37] and Evosuite [14]) generate (regression) oracles

based on the implemented behavior, not the intended one. They

capture the implemented behavior of the program with assertions

that predicate on the values returned by method calls and fail if a

future version leads to behavioral differences. Thus, they are only

useful in a regression testing scenario, and their effectiveness is usu-

ally evaluated in such a scenario [23, 45]. Regarding AI-generated

code, the regression scenario is not useful as we want to expose

faults the current version of AI-generated code.

Metamorphic Testing (MT) [7] could be the key to address

this challenge. MT alleviates the oracle problem by using relations

among the expected outputs of related inputs as oracles [8]. Re-

search shows that such relations, calledMetamorphic Relations (MRs),

exist in virtually any software system [44]. MT proves highly benefi-

cial when integrated into automated test generation, as a single MR

can be applied to all test automatically generated inputs that satisfy

the input relation. However, MT’s automation and effectiveness

depend on the availability of MRs. The automated generation or

discovery of MRs presents a challenging and largely understudied

problem [1, 8, 9, 44]. Only recently has the research community

begun addressing metamorphic relation generation from different

angles [2, 3, 5, 56, 60, 61]. More research is needed on MR genera-

tion [2, 3, 56] and oracle/generation improvement [21, 22, 36, 49, 50]

to facilitate effective testing of AI-generated code.

2.4 Software Maintenance
We envision an AI-powered maintenance phase that remains con-

stantly active in the background. The AI monitors external infor-

mation about the software product and its ecosystem to gather

potential issues or opportunities for improvement.

Software Maintenance: The primary research challenge will

be to enable AI to autonomously process and utilize a vast

amount of external information effectively to identify poten-

tial issues or opportunities for improvement. The AI should

achieve this while ensuring fairness in its decision-making

process and adherance to strategic direction.

Indeed, issues or maintenance opportunities are often buried in

a large amount of sources, such as bug reports, discussions on

developer forums, and feedback from app stores [53, 54]. The AI

must be capable of extracting relevant insights, identifying potential

issues or opportunities for improvement, and proposing appropriate

fixes or changes to the software artifacts. In particular, there are

ethical considerations when new product improvements and feature

requests can be gathered from the crowd. The AI system should

not solely focus on the most popular feature requests and issues

but also those that are less popular but might target minority and

disability groups [13, 34]. Further, the AI cannot simply add every

feature users suggest, some consideration with the product strategy

must be considered [27].

Additionally, software exists within an ecosystem of external
libraries. The libraries uponwhich the project depends may release

new versions to fix vulnerability issues or bugs, thus it is important

to upgrade the project dependencies. However, in certain situations

upgrade a library might not be beneficial (e.g., if the software sys-

tem does not utilise any of the methods that have been updated),

the AI has to automatically recognise the important upgrades. In

particular, most library developers follow the semantic versioning

scheme, where major, minor, and patch releases are specified by the

release number. While for minor and patch releases, the AI should

attempt to automatically update them, for major release versions,

the AI system should discern whether updating the library is neces-

sary for the given software project. Major releases are not backward

compatible, and a new library version might offer different func-

tionalities, which could entail a non-trivial task for adapting the

client to the new library version. More research effort is needed

to help developers in making this choice while at the same time

automatically detect and propose fixes for resolving any static [25]

or behavioral [24] breaking changes. This future research can be

informed by existing studies on automated program repair [17, 31].

3 CONCLUSIONS
This paper presented a vision of a symbiosis partnership be-
tween AI and software developers motivated and inspired by

recent advances in AI. This paper also discussed some key research

challenges that need to be addressed by the software engineering

community. While this paper focuses on specific software engineer-

ing challenges, it is essential to acknowledge broader AI-related

concerns such as security, safety, bias, and privacy. Although not

covered here, these issues are crucial but fall more within the do-

main of the AI community, and hopefully will be addressed soon.

We cannot ignore the opportunities that lie ahead. Nor should

we disregard the concerns associated with them. Specifically, we

must exercise caution against over-reliance on AI. While the

next generations of software engineers should be trained in prompt

engineering and AI, this should not overshadow the necessity of

core software engineering knowledge. Human judgment remains

indispensable for critically assessing AI-generated artifacts. It is

crucial to emphasize again that AI serves as a tool to enhance

developers’ productivity and cannot (in the near future) replace

humans. Putting too much trust on the software artifacts generated

by AI can have serious repercussions on the quality and safety of

our software systems.

This paper serves also as a call to arms for our community.
We need multi-disciplinary collaborations across our community

to address the key challenges and achieve the envisioned symbiotic

partnership between human developers and AI. While our vision is

ambitious, we believe that a five-year time frame is reasonable for

realizing it.
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