
Evolutionary Improvement of Assertion Oracles
Valerio Terragni

Università della Svizzera italiana
Lugano, Switzerland

valerio.terragni@usi.ch

Gunel Jahangirova
Università della Svizzera italiana

Lugano, Switzerland
gunel.jahangirova@usi.ch

Paolo Tonella
Università della Svizzera italiana

Lugano, Switzerland
paolo.tonella@usi.ch

Mauro Pezzè
Università della Svizzera italiana

Lugano, Switzerland
Schaffhausen Institute of Technology

Schaffhausen, Switzerland
mauro.pezze@usi.ch

ABSTRACT

Assertion oracles are executable boolean expressions placed inside
the program that should pass (return true) for all correct execu-
tions and fail (return false) for all incorrect executions. Because
designing perfect assertion oracles is difficult, assertions often fail
to distinguish between correct and incorrect executions. In other
words, they are prone to false positives and false negatives.

In this paper, we propose GAssert (Genetic ASSERTion im-
provement), the first technique to automatically improve assertion
oracles. Given an assertion oracle and evidence of false positives
and false negatives, GAssert implements a novel co-evolutionary
algorithm that explores the space of possible assertions to identify
one with fewer false positives and false negatives.

Our empirical evaluation on 34 Java methods from 7 different
Java code bases shows that GAssert effectively improves assertion
oracles. GAssert outperforms two baselines (random and invariant-
based oracle improvement), and is comparable with and in some
cases even outperformed human-improved assertions.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging; Genetic programming.

KEYWORDS

program assertions, oracle improvement, evolutionary algorithm

ACM Reference Format:

Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè. 2020.
Evolutionary Improvement of Assertion Oracles. In Proceedings of the 28th

ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE ’20), November 8–13, 2020,

Virtual Event, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3368089.3409758

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of

the 28th ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE ’20), November 8–13, 2020, Virtual Event,

USA, https://doi.org/10.1145/3368089.3409758.

1 INTRODUCTION

Recently, we witnessed great advances in test input generation [13,
30]. However, the oracle problem [4] remains a major obstacle that
limits the effectiveness of automatically generated test suites. In-
stead of generating test oracles for each automatically generated
test case, one could rely on assertion oracles to expose software
faults. Assertion oracles (also called program assertions) are exe-
cutable boolean expressions that predicate on the values of variables
at specific program points. A perfect assertion oracle passes (re-
turns true) for all correct executions and fails (returns false) for all
incorrect executions. Perfect oracles are difficult to design, and thus
assertion oracles often fail to distinguish between correct and incor-
rect executions [25], that is, they are prone to both false positives
and false negatives, which are jointly called oracle deficiencies [20].
A false positive is a correct program state in which the assertion
fails (but should pass), and a false negative is an incorrect program
state in which the assertion passes (but should fail).

Oracle deficiencies are a serious problem for both manually
and automatically generated assertion oracles. In fact, invariant
generators are known to generate invariants that are incomplete
and imprecise when used as assertion oracles [6, 29, 40]. They are
incomplete because most dynamic invariant generators, notably
Daikon [10] and InvGen [17], cannot generate assertions that do
not match pre-defined templates of Boolean expressions [6]. Exist-
ing invariant generators are also imprecise, because the generated
invariants often do not generalize well with unseen test cases. In
fact, Nguyen et al.’s and Staats et al.’s studies [29, 40] report high
false positive rates for Daikon invariants.

Improving the quality of program assertions by removing or-
acle deficiencies is of paramount importance. It would improve
the fault detection capability and reduce the false alarms of both
automatically generated and manually written test cases.

Recently, Jahangirova et al. proposed OASIs [20, 21] to automat-
ically identify oracle deficiencies. Given an assertion oracle, OASIs
generates test cases and mutations that gives evidence of false pos-
itives and false negatives, respectively. This evidence is meant to
support the developers in assessing and improving the oracles.

A recent study by OASIs’s authors shows that the manual im-
provement of assertion oracles is difficult [22]. Given the oracle
deficiencies detected by OASIs, for only 67% of the given assertions
humans successfully removed all oracle deficiencies.

https://doi.org/10.1145/3368089.3409758
https://doi.org/10.1145/3368089.3409758
https://doi.org/10.1145/3368089.3409758

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè

The difficulty of manually improving assertion oracles motivated
us to study how to automatically improve assertions. Given an
assertion oracle α and some evidence of false positives and false
negatives provided by an oracle assessor (such as OASIs), we aim
to automatically generate an improved assertion α ′ with fewer
oracle deficiencies than α . While there are many techniques to
automatically generate program assertions, for example, program
invariants [2, 9, 15–17, 27, 35, 37, 46], automatically improving
assertion oracles is an unexplored problem.

In this paper, we propose GAssert, Genetic ASSERTion im-

provement, the first technique to automatically improve asser-
tion oracles. Given an assertion oracle and its oracle deficiencies,
GAssert explores the space of possible assertions to identify those
with zero false positives and the lowest number of false negatives.
GAssert favors assertions with zero false positives, as false alarms
are known to trigger an expensive debugging process [29].

GAssert addresses the challenge of navigating a huge search
space with an evolutionary approach that evolves populations of as-
sertions by rewarding assertions with fewer deficiencies. GAssert
formulates the oracle improvement problem as a multi-objective op-
timization problem (MOOP) [41] with three competing objectives:
(i) minimizing the number of false positives, (ii) minimizing the
number of false negatives, (iii) minimizing the size of the assertion.

The key challenge of defining a multi-objective fitness function
is that these three objectives are competing with each other. Simply
merging the objectives into the same fitness function is not an
effective solution, as in MOOPs it is difficult to simultaneously
reduce all competing objectives [31, 34, 41]. For an evolutionary
algorithm, a possible strategy to improve a given program assertion
might be either by first removing all false negatives (accepting more
program behaviors, i.e., generalizing the assertion) or by removing
false positives (accepting less program behaviors, i.e., specializing
the assertion), or by an interleaving of these two strategies.

GAssert addresses this challenge with a co-evolutionary ap-
proach that evolves two populations in parallel with different fitness
functions for each population. The fitness functions of the first and
second population reward solutions with fewer false positives and
false negatives, respectively, considering the remaining objectives
only in tie cases. The two populations exchange their best indi-
viduals (population migration) on a regular basis, to supply both
populations with good genetic material, useful to improve both the
primary and secondary objectives. Moreover, GAssert presents
novel crossover and mutation operators specifically designed for
the oracle improvement problem.

We empirically evaluated GAssert on 34 methods from 7 Java
code bases. We evaluated the ability of GAssert to improve an ini-
tial set of Daikon [9] generated assertions. The improved assertions
eliminate all false positives present in the initial Daikon assertions,
and reduce the false negatives by 40% (on average) with respect
to the initial Daikon assertions. When executed with unseen tests
and mutants, the GAssert assertions increase the mutation score
by 34% (on average) with respect to the mutation score obtained
with the initial assertions.

In summary, this paper makes the following contributions:

• We formulate the problem of automatically improving asser-
tion oracles given a set of false positives and false negatives;

• We propose GAssert, the first technique to automatically
improve assertion oracles;
• We evaluate GAssert on 34 methods from seven Java code
bases, and show that GAssert outperforms both unguided-
random and invariant-based approaches;
• We release our evaluation results (https://doi.org/10.5281/
zenodo.3876638) and tool (https://doi.org/10.5281/zenodo.
3877078) to facilitate future work in this area.

2 PROBLEM FORMULATION

This section provides the preliminaries for this work and formulates
the problem of improving assertion oracles.

In this paper, P is an object-oriented program composed of a
set of classes, each defining a set of methods and fields. Given
a program point ρρ of a method m in P, Sρρ denotes the set of
all program states that can reach ρρ whenm is executed. A state
s ∈ Sρρ defines an assignment of values to memory locations that
are accessible (visible) at the program point ρρ (e.g., instance fields,
method parameters and local variables). Sρρ is partitioned into
two disjoint sets: correct (S+ρρ) and incorrect (S−ρρ) program states.
We say that a state is correct if it satisfies the intended program
behaviour, incorrect otherwise. We drop the subscript ρρ and use
S, S+ and S− when ρρ is clear from the context.

A program point ρρ can be associated with an assertion oracle

α , a quantifier-free first-order logic formula that predicates on
variables and functions of Boolean or numerical types and returns a
Boolean value (T or F). Let Σ denote the set of variables visible at the
assertion point ρρ. Let F denote the set of Boolean and numerical
operators that GAssert uses to synthesize assertions. The content
of Σ depends on ρρ, while F is fixed for any ρρ. Table 1 shows the
17 functions in F grouped by operand and output type.

Assertion oracles aim to distinguish correct and incorrect execu-
tions. We consider assertions inserted into program P, and not into
its test cases. The difference is that assertions in P handle all possi-
ble test case executions, while assertions in the test cases check the
correctness of a single test execution. More specifically, an assertion

oracle α expresses a correctness property that is intended to be true
at ρρ in all correct executions (i.e., ∀s+ ∈ S+,α[s+] = T) and false
in all incorrect executions (i.e., ∀s− ∈ S−,α[s−] = F), where α[s]
denotes the evaluation of the Boolean expression α on state s . We
call perfect oracle an assertion that satisfies such a condition.

Perfect oracles are difficult to design, and assertion oracles often
fail to distinguish correct from incorrect executions, i.e., they have
false positives and false negatives, which we call oracle deficiencies.

Definition 1. A false positive of an assertion α at a program

point ρρ is a reachable program state where α is false, although such

state is correct (according to the intended program behavior). More

formally, it is a state s+ ∈ S+ρρ : α[s+] = F .

Definition 2. A false negative of an assertion α at a program

point ρρ is a reachable program state where α is true, although such

state is incorrect (according to the intended program behavior). More

formally, it is a state s− ∈ S−ρρ : α[s−] = T .

In this paper, we study the problem of automatically improving

assertion oracles, that is, given an assertion α and a set of oracle
deficiencies, generating a new assertion α ′ with fewer deficiencies.

https://doi.org/10.5281/zenodo.3876638
https://doi.org/10.5281/zenodo.3876638
https://doi.org/10.5281/zenodo.3877078
https://doi.org/10.5281/zenodo.3877078

Evolutionary Improvement of Assertion Oracles ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 1: Functions F Considered by GAssert

operand output functions

type type

⟨ number, number ⟩ number +, *, -, /, % (modulo)
⟨ number, number ⟩ boolean ==, <, >, ≤, ≥, ,
⟨ boolean, boolean ⟩ boolean AND, OR, XOR, EXOR,→ (implies), == (equiv.)
⟨ boolean ⟩ boolean NOT

Identifying oracle deficiencies by enumerating all correct and
incorrect states is infeasible, because it requires to enumerate infin-
itely many executions [36]. Thus, we rely on a precise but incom-
plete oracle assessor OA that returns evidence of false positives
and false negatives (if any) for a given assertion. We assume any
OA to be precise (it reports only real oracle deficiencies), but possi-
bly incomplete (it may miss oracle deficiencies) because it cannot
enumerate all possible correct and incorrect executions.

An oracle assessor can be either a human or an automated tech-
nique. To enable full automation, we rely on the automated oracle
assessor OASIs [20, 22]. Given an assertion α , OASIs leverages
search-based test generation and mutation testing to report oracle
deficiencies, if any can be found within the given time budget.

OASIs finds false positives of an assertion α by generating test
cases that make α return false in the reached state. OASIs considers
such states as false positives of α because it targets the implemented

program behavior, which might differ from the intended one. As
such, GAssert needs a manual validation of the improved asser-
tions to ensure that they capture the intended program behavior.

OASIs finds false negatives of an assertion α by seeding artificial
faults (mutations) into program P using mutation testing [13].
OASIs generates a test case and a mutation that produce a corrupted
program state s− ∈ S− at the assertion point ρρ, where α does not
reveal the fault, i.e., α returns true.

We now define the oracle improvement problem given an oracle
assessor OA. Let A denote the universe of possible Boolean ex-
pressions containing variables in Σ and functions in F . To makeA
a finite set, we bound the size of assertions (i.e., the number of vari-
ables and functions in the assertions) to a maximum value (50 in our
experiments). Let FP(α, S+) denote the number of false positives of
α wrt a finite subset S+ of S+. That is, FP(α, S+) is the number of
states s+ ∈ S+ ⊆ S+ : α[s+] = F . Similarly, FN(α, S−) denotes the
number of false negatives of α wrt a finite subset S− of S−. That is,
FN(α, S−) is the number of states s− ∈ S− ⊆ S− : α[s−] = T .

Problem Definition 1. Given an assertion α at a program point

ρρ in P, given a set of false positives S+ ⊆ S+ and a set of false

negatives S− ⊆ S− reported by an oracle assessor OA, and an overall

time budgetB, the oracle improvement of α is the process of finding

within B a new assertion α ′ ∈ A such that FP(α ′, S+) = 0 and either
FP(α ′, S+) < FP(α, S+) or FN(α ′, S−) < FN(α, S−).

In defining the oracle improvement, we give priority to false
positive over false negative reduction, by requiring all false posi-
tives to disappear in the improved oracle α ′. The rationale for this
choice is that false negative reduction can be easily achieved with
assertions that raise many false alarms. However, such assertions
are troublesome for developers, as they trigger an expensive debug-
ging process, in which the root of the assertion failures may likely

Algorithm 1: GAssert: Iterative Oracle Improvement Process
input : initial assertion α at progr. point ρρ in P, time-budget B
output : improved assertion α ′

1 function GAssert

2 P′ ← instrument-method-at-program-point(ρρ , P)
3 ⟨S+, S− ⟩ ← get-initial-correct-and-incorrect-states(P′)
4 while time-budget B is not expired do

5 Σ← get-dictionary-of-variables(S+, S−)
6 α ′ ← oracle-improvement(α , S+, S−, Σ)
7 ⟨S+new, S

−
new ⟩ ← oracle-assessment(a′) // OASIs [20]

8 if S+
new
= ∅ ∧ S−

new
= ∅ then

9 return α ′

10 S+ ← S+ ∪ S+new
11 S− ← S− ∪ S−new
12 α ← α ′

13 return α ′

be the assertion itself. Therefore, we privilege assertions with no
false alarms (no false positives).

Ideally, the improved assertion oracle α ′ has zero oracle deficien-
cies wrt to S+ and S− (i.e., FP(α ′, S+) = FN(α ′, S−) = 0). However,
generating such assertions can be expensive and difficult, and may
be infeasible within a reasonable time budget, as an oracle that
detects all faults could be as complex as the method under test [20].
Therefore, we deem an oracle with zero false positives and the low-
est number of false negatives sufficiently adequate in practice [22].

3 GASSERT

Algorithm 1 overviews the GAssert approach. GAssert’s inputs
are (i) an assertion oracle α , (ii) the program point ρρ in P where
α is placed, and (iii) a time budget B. The output of GAssert is an
improved assertion α ′. GAssert improves assertion oracles with
an iterative process. Before the first iteration, GAssert instruments
P to capture program states at runtime (line 2 of Algorithm 1). It
then produces an initial set of correct and incorrect states S+ and
S− by executing an initial test suite on the instrumented version
P ′ and on its faulty versions (mutants), respectively (line 3). The
while loop at lines 4–13 implements the iterative process. GAssert
gets the dictionary of variables Σ from the states S+ and S− (line 5),
and invokes the oracle improvement of α (line 6). The oracle-
improvement algorithm, which we discuss in Section 3.3, returns
an improved assertion α ′ (line 6). If OASIs cannot find any oracle
deficiencies of α ′, Algorithm 1 returns α ′, and the iterative process
terminates (lines 8 and 9). Otherwise, GAssert adds the newly
identified false positives and false negatives (S+new and S−new) to S+
and S− (lines 10 and 11), respectively. The improved assertion α ′

replaces the initial assertion α (line 12) and a new iteration starts.

3.1 Running Example

We now describe the GAssert oracle improvement process with
a running example. Figure 1 shows a Java method that accepts
two integers x and y as parameters ®p, and returns the minimum
between them. The figure also shows (i) the assertion point ρρ
(line 9), (ii) two instrumented method calls to collect the program
states (lines 1 and 8), and (iii) two mutants M1 and M2 used to
produce false negative program states (lines 6 and 4).

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè

Table 2: Input and Output of the Oracle Assessor (OA) of our Running Example

False Positives (FP) False Negatives (FN)

iter. input assertion α test state test mutant state

0 (min < x) t1=min(x=3,y=5) s+1={x=3,y=5,min=3} t2=min(x=9,y=7) M1 s−2={x=9,y=7,min=8}
1 (min ≤ x) AND (min ≤ y) ∅ ∅ t3=min(x=3,y=7) M2 s−3={x=3,y=7,min=0}
2 ((min == x) OR (min == y)) AND ((min ≤ x) AND (min ≤ y)) ∅ ∅ ∅ ∅ ∅

public static int min(int x, int y) {
serializer(x, y); //	instrumentation
int min;
if (x <= y) {

min = x; // mutant M2 : min = 0;
} else {

min = y; // mutant M1 : min = y + 1;
}
serializer(x, y, min); //	instrumentation
//	 program	point	pp	of	the	assertion	oracle
return min;

}

1
2
3
4
5
6
7
8
9
10

Figure 1: Java source code of the running example.

Table 2 illustrates how GAssert improves a trivially incom-
plete initial assertion (min < x) into a stronger assertion that
intuitively captures the expected behavior of a “min” function:
((min == x) OR (min == y)) AND ((min ≤ x) AND (min ≤ y)).
Column “input assertion α” shows the assertions that the oracle
assessor (OA) receives as input at each iteration. The first assertion
(min < x) is provided to GAssert as an input, while the following
two assertions are automatically generated by its evolutionary algo-
rithm. The initial assertion can be manually generated or inferred
with a tool. Column “False Positives (FP)” shows the false positive
states with the test cases that produce them. On such states α fails
while it should pass. Similarly, Column “False Negatives (FN)” shows
the false negative states with the test cases and the mutants that
produce them. On such states α passes but it should fail.

In the example, OA identifies both FPs and FNs for α : min < x .
Table 2 reports a test case t1 that OA generates for α , and for which
α incorrectly returns false. The execution of test cases t1 produces
the state s+1 that is a false positive for α (see Def. 1). The table also
reports a sample test case t2 and mutantM1 that OA generates for
α and for which α incorrectly returns true (α does not kill mutant
M1). The execution of test cases t2 with mutantM1 produces the
state s+2 that is a false negative for α (see Def. 2).

At the first iteration, GAssert takes as input α , the false pos-
itive s+1 and the false negative s−2 of α , and returns the improved
assertion α ′ : (min ≤ x) AND (min ≤ y). GAssert produces α ′
with an evolutionary algorithm that evolves populations of asser-
tions towards an assertion with zero false positives and the lowest
number of false negatives. The evolutionary algorithm explores
the search space by (i) selecting pairs of assertions (parents) by
means of fitness functions that reward solutions with fewer oracle
deficiencies, (ii) creating new (and possibly fitter) offspring by ex-
changing genetic materials (portions of assertions) of the parents
with crossover operators, and (iii) mutating the offspring (with a
certain probability) using mutation operators.

We now exemplify how the evolutionary algorithm obtains
α ′ : (min ≤ x) AND (min ≤ y) during the first iteration. Let us

assume that the algorithm selects two parents αp1 : min ≤ x and
αp2 : min , y. The assertion αp1 reduces the number of false posi-
tives with respect to the initial assertion (FP(αp1, S+) = 0, where
S+ = {s+1 }), but it does not reduce the number of false negatives,
because αp1 evaluates true under S− = {s−2 } (FN(αp1, S

−) = 1).
Conversely, the assertion αp2 reduces the number of false nega-
tives (FN(αp2, S−) = 0), but it has the same number of false posi-
tives as α (FP(αp2, S+) = FP(α, S+) = 1). The crossover operator
merge crossover applied to αp1 and αp2 produces the offspring αo1 :

(min ≤ x) AND (min , y) and αo2 : (min ≤ x) OR (min , y). If
the mutation operators mutate αo1 into (min ≤ x) AND (min ≤ y),
GAssert obtains an improved assertion with zero oracle deficien-
cies wrt S+ and S−, and the first iteration terminates.

At the second iteration, OA takes in input α : (min ≤ x) AND
(min ≤ y) to find its oracle deficiencies (if any). For this assertion,
OA does not find false positives, but it reports a false negative:
executing test t3 with mutantM2 leads to the state s−3 , which is a
false negative for α (FN(α, S−) = 1, where S− = {s−2 , s

−
3 }). In fact,

α returns true under s−3 , while it should return false.
Given the assertion α : (min ≤ x) AND (min ≤ y), the correct

states S+={s+1 } and the incorrect states S−={s−2 , s
−
3 }, the evolu-

tionary algorithm returns the improved assertion α ′ : ((min ==

x) OR (min == y)) AND ((min ≤ x) AND (min ≤ y)). This assertion
does not have oracle deficiencies wrt S+ and S− (i.e., FP(α ′, S+) =
FN(α ′, S−) = 0). As OA does not find oracle deficiencies for α ′,
the GAssert improvement process terminates.

The following two subsections describe in detail how GAssert
serializes program states and how it improves assertion oracles.

3.2 Program State Serialization

A program state s = {v1, · · · ,vn } is a set of variables that are in
memory at a certain execution point. Each variable vi has a type
type(vi), an identifier id(vi) and a value value(vi). Deciding which
variables compose a program state is a key design choice. It de-
fines both the expressiveness of the assertions that GAssert can
produce (the dictionary Σ) and the size of the search space (A).
GAssert should consider variables that capture useful properties of
the method under test, and ignore irrelevant ones. Indeed, consid-
ering too many variables unnecessarily increases the search space,
which hardens the problem of finding oracle improvements.

Given a methodm(®p) with formal parameters ®p, GAssert con-
structs the program state s at ρρ considering as variables all pa-
rameters pi of ®p and all the local variables created inm that are
visible at ρρ. Note that whenm(®p) is a non-static method, the object
receiver of m (this in Java) is m’s first parameter p0. GAssert
captures the values of the parameters both at the beginning of
the method (adding the prefix “old” to the variable identifiers) and
immediately before ρρ. By considering “old” values, GAssert can
generate assertions that predicate on method preconditions [9].

Evolutionary Improvement of Assertion Oracles ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

When the considered variable has a primitive type, GAssert
simply adds its runtime value to the program state (rounding floats
with a fixed precision) using the variable name as identifier. How-
ever, variables of object-oriented programs can have both primitive
and non-primitive (object) types, introducing the problem of obtain-
ing primitive values from objects. Given a non-primitive variablevi ,
there are two well-established approaches to obtain primitive val-
ues: object serialization and observer abstraction. Object serializa-
tion [42] captures the values of all primitive-type object fields that
are recursively reachable fromvi . Observers abstraction [2] captures
the return values of observer methods invoked withvi as the object
receiver. Observer methods are side-effect free methods that are
declared invi ’s class and return primitive values. Such values often
characterize important properties of objects [1, 2].

Both approaches have advantages and disadvantages. Object se-
rialization can lead to many variables, which unnecessarily increase
the search space. Indeed, many recursively obtained primitive vari-
ables often refer to implementation details that do not capture
interesting properties of objects. Observers abstraction is inher-
ently incomplete because the available observer methods might not
capture all the relevant aspects of the analyzed objects [2].

Hybrid State Serialization. To address the issue, GAssert opts
for a hybrid solution that combines both approaches. We rely on
observer methods for all non-primitive variables considered by
GAssert. In addition, we use the object serialization approach only
for the object receiver (this) of the method under testm, capturing
the values of all primitive fields of this. For non-primitive fields of
this, we do not serialize their recursively reachable primitive fields,
but again we use the observers abstraction approach. The rationale
is that the primitive fields ofm’s object receiver are more likely to
capture important aspects of the behavior ofm than recursively
reachable primitive fields or other method parameters. We now
describe in detail our hybrid approach.

Letvi be a non-primitive variable considered for constructing the
program state s . GAssert finds the observer methods { f1, f2, . . . ,
fn } of the classC ofvi by using a static analyzer that scans the byte-
code instructions of the public methods in C . The analyzer marks
a method fj as observer if (i) fj returns a number or a Boolean,
and (ii) fj cannot directly or indirectly execute putfield or put-
static bytecode instructions (m is side-effect free), and (iii) fj does
not have parameters (besides the object receiver). When collecting
state s at runtime, for each observer method fj with return type τj ,
GAssert adds to state s a variable with identifier “id(vi). fj ”, type
τj and value the result of the invocation of vi . fj .

For non-primitive variables of type array, string or Java collec-
tion (objects that extend java.util.Collection) GAssert con-
siders a smaller set of observer methods that capture the most
important properties of such object types. GAssert adds vi .size
(vi .lenдth for arrays and String) and vi .isEmpty to the state s .

Ifvi is the object receiver (i.e., id(vi) = this), GAssert serializes
it by adding variable this.fieldj to the state s , for each primitive-
type field fieldj of this. It then applies the observer methods ap-
proach described above to each non-primitive fields of this.

Collecting States. Function instrument-method-at-program-
point instruments the methodm that contains ρρ by adding two
method calls (Algorithm 1, line 2). One at the beginning of the

method (to get the “old” values) and the other immediately be-
fore ρρ. When a test execution reaches the instrumented method
calls, GAssert performs the state serialization described above.
Every time GAssert executes a new test, it stores the observed
states so that the fitness functions can compute the number of FP
and FN without requiring expensive program re-executions.
Initial ProgramStates. Function get-initial-correct-and-incor-
rect-states (line 3 Algorithm 1) generates a set of initial correct
(S+) and incorrect (S−) program states by executing an initial test
suite on both the instrumented program P ′ and its faulty versions.
The rationale of considering these initial states (as opposed to im-
mediately relying on the oracle assessor OA) is to minimize the
number of iterations of the while loop (line 4 Algorithm 1). In
this way, GAssert avoids invoking OA to detect obvious oracle
deficiencies, and rather lets OA focus on hard-to-find ones.
Post-processing the States. Function get-initial-correct-and-
incorrect-states post-processes the states with two scans. The
first scan removes redundant states from S+, so that ∄s1, s2 ∈
S+ such that s1 and s2 are equivalent (s1 ≡ s2), i.e., all corre-
sponding variables have identical values: ∀v1 ∈ s1,∀v2 ∈ s2, if
id(v1) = id(v2) then value(v1) = value(v2). The second scan checks
that each state in S− is indeed incorrect, i.e., the seeded fault (the
mutant) has successfully corrupted the program state. For each
incorrect state s− ∈ S−, GAssert retrieves the correct state s+ ∈
S+, obtained when executing the same test that produced s− on
the original version of the program (without the seeded fault). If
s− ≡ s+, GAssert found a likely equivalent state and removes s−
from S−. We call them likely because our collected states encode
only a fragment of the actual program state.
Dictionary ofVariables. Function get-dictionary-of-variables
(line 5 Algorithm 2) builds the dictionary of variables Σ that function
oracle-improvement uses to create new assertions. The function
picks an arbitrary state s in either S+ or S− (by construction all
states have the same variables), and adds all the variables in s to Σ.

3.3 Oracle Improvement

A major challenge to automatically improve assertion oracles is the
huge search space of candidate solutions (A in Section 2), which
grows exponentially with the number of variables and functions.

GAssert addresses this challenge with Genetic Programming
(GP) [3, 45]. We formulate the oracle improvement problem as a
multi-objective optimization problem (MOOP) [31, 34, 41] with
three competing objectives: (i) minimize the number of false posi-
tives (FP); (ii) minimize the number of false negatives (FN); (iii) min-
imize the size of the assertion, that is, the number of variables and
functions in it. The latter objective helps to improve the quality of
assertions, as long assertions are often difficult to understand.

Classic multi-objective evolutionary approaches, for instance
NSGA-II [8, 43], rely on Pareto optimality [18, 39, 41] to produce
solutions that offer the best trade-off between competing objec-
tives [41]. However, in our case not all assertions with an optimal
trade-off between FPs and FNs are acceptable solutions. As dis-
cussed in Section 2, we aim to obtain assertions with zero FPs and
the lowest number of FNs. On the other hand, primarily focusing
on reducing FPs may be inadequate, as there may not be enough
evolution pressure [45] to reduce the FNs at the same time.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè

Hence, we propose a co-evolutionary approach that evolves in
parallel two distinct populations of assertions (PopulFP and PopulFN)
with two competing objectives: reduce the false positives (fitness
function ϕFP) and reduce the false negatives (fitness function ϕFN).
These populations periodically exchange their best individuals (pop-
ulation migration) to add promising genetic material in both popula-
tions. Eventually, PopulFP will more likely produce assertions with
zero FPs and fewer FNs. In fact, the migration of best individuals
adds in Popul

FP assertions with a decreasing number of FNs.
Fitness Functions. Both ϕFP and ϕFN are multi-objective fitness
functions. The former gives priority to reducing false positives,
while the latter to reducing false negatives. Both functions consider
the remaining objectives only in tie cases. In multi-objective opti-
mization, the fitness of a solution is often defined by the concept
of dominance (≺) [8]. While the standard definition of dominance
gives the same importance to all objectives, we need an unbalanced
definition towards FPs and FNs, which we define as follows:

Definition 3. FP-fitness (ϕFP). Given two assertions α1 and α2
and two sets of correct S+ and incorrect S− states, α1 dominatesFP

α2 (α1 ≺FP α2) if any of the following conditions is satisfied:

– FP(α1, S
+) < FP(α2, S

+)

– FP(α1, S
+) = FP(α2, S

+) ∧ FN(α1, S
−) < FN(α2, S

−)

– FP(α1, S
+) = FP(α2, S

+) ∧ FN(α1, S
−) = FN(α2, S

−)

∧ size(α1) < size(α2)

Definition 4. FN-fitness (ϕFN). Given two assertions α1 and α2
and two sets of correct S+ and incorrect S− states, α1 dominatesFN

α2 (α1 ≺FN α2) if any of the following conditions is satisfied:

– FN(α1, S
−) < FN(α2, S

−)

– FN(α1, S
−) = FN(α2, S

−) ∧ FP(α1, S
+) < FP(α2, S

+)

– FN(α1, S
−) = FN(α2, S

−) ∧ FP(α1, S
+) = FP(α2, S

+)

∧ size(α1) < size(α2)

In tie cases, FP(α1, S+) = FP(α2, S
+) and FN(α1, S−) = FN(α2, S

−),
both functions favor smaller assertions. If neither α1 ≺ α2 nor
α2 ≺ α1, the choice between α1 and α2 is random. We now de-
scribe the details of our co-evolutionary algorithm (Algorithm 2).
Building the Initial Populations. Both populations PopulFP and
Popul

FN contain N assertions each. We represent an assertion
α ∈ Popul as a rooted binary tree [7], where leaf nodes are variables
or constants (terminals) and inner nodes are functions. Each node
has a type, either Boolean or numerical. The type of leave nodes is
the type of the associated variable, the type of the inner nodes is
the type of the function outputs. We define the size of an assertion
α , size(α), as the number of nodes in its tree representation.

Function get-initial-population at lines 2 and 3 of Algorithm 2
initializes the two populations, PopulFP and Popul

FN, respectively,
in the same way. Half of the initial population consists of randomly-
generated assertions (to guarantee genetic diversity), the other half
of assertions is obtained by randomly mutating the input asser-
tion α (to have “good” genetic material for evolution). Intuitively,
an improved assertion could include fragments similar to the in-
put assertion, thus initializing the populations with variants of α
increases the chances of introducing “good” genetic material.

GAssert produces the first half of individuals with a tree fac-
tory operator that takes a type τ (either number or Boolean) and

Algorithm 2: Evolutionary Improvement of Assertion Oracles
input :correct S+ and incorrect S− states, assertion oracle α
output : improved assertion oracle α ′

1 function oracle-improvement

2 Popul
FP ← get-initial-population(α , Σ)

3 Popul
FN ← get-initial-population(α , Σ)

4 for gen from 1 to max-number-of-gen do

5 if ∃a′∈{PopulFP∪PopulFN } : FP(a′, S+) = FN(a′, S−) = 0 AND

6 gen ≤ min-number-of-gen then

7 return a′

8 do in parallel

9 Popul
FP←select-and-reproduce(PopulFP, ϕFP,Σ,S+,S−)

10 Popul
FN←select-and-reproduce(PopulFN,ϕFN,Σ,S+,S−)

11 if gen % frequency-migration = 0 then

12 do in parallel

13 Popul
FP ← migrate(PopulFN, ϕFP, ϕFN)

14 Popul
FN ← migrate(PopulFP, ϕFN, ϕFP)

15 return a′ with zero FP and the lowest number of FN

input :population Popul, fitness function ϕ , dictionary of variables Σ,
correct S+ and incorrect S− states, generation count gen

output :new population Populnew

16 function select-and-reproduce

17 Popul← compute-fitness(Popul, S+, S−)
18 Populnew ← ∅
19 if gen % frequency-of-elitism = 0 then

20 Populnew ← get-best-individuals(ϕ)
21 while Populnew is not full do

22 ⟨ap1, ap2 ⟩ ←select-parents(Popul, ϕ)
23 ⟨ao1, ao2 ⟩ ←crossover-and-mutation(ap1, ap2, Σ)
24 add ⟨ao1, ao2 ⟩ to Populnew
25 return Populnew

a depth d , and returns a randomly-generated assertion with root
of type τ and depth of the tree d . Because the root of an assertion
must be of Boolean type, GAssert always sets τ to Boolean, and
invokes tree factory N/2 times with random values of d .
TreeMutations. To obtain the second half of individuals, GAssert
relies on two classic tree-based mutation operators:

Node Mutation changes a single node in the tree [5]. It takes as
input an assertion α and one of its nodes n, and returns an assertion
α1 obtained by replacing the node n in α1 with a new node with
the same type of n (chosen randomly).

Subtree Mutation replaces a subtree in the tree [5]. It takes
as input an assertion α and one of its nodes n, and returns a new
assertion a1 obtained by substituting the subtree rooted at n with
another subtree. Such a subtree is generated by the tree factory

operator with the type of n as τ and a random number as d .
Stopping Criterion. Algorithm 2 evolves the two populations in
parallel until either PopulFP or PopulFN contains a perfect assertion
α ′ with respect to the correct and incorrect states in input (line 6
of Algorithm 2). If GAssert finds the perfect assertion before a
maximumnumber of generations, it continues the evolution process
to see if it can find perfect assertions of smaller size. Algorithm 2
prematurely terminates when the overall time-budget B expires or
when it reaches a maximum number of generations. In both cases,
GAssert returns the best generated assertion, the one with zero
false positives and the lowest number of false negatives, that is, α ′
s.t. ∄α ∈ {PopulFP∪PopulFN} : α ≺FP α ′ (line 15 Algorithm 2).

Evolutionary Improvement of Assertion Oracles ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Lines 9 and 10 of Algorithm 2 evolve in parallel the two popula-
tions by invoking function select-and-reproduce (lines 17-25).
The function implements the classic evolutionary approach [45],
whichworks in three consecutive steps: selection, crossover andmu-
tation. GAssert introduces novel selection and crossover operators
that are specific for the automatic oracle improvement problem.

Fitness Computation. GAssert initializes the selection process
by computing the number of false positives FP(α, S+) and false neg-
atives FN(α, S−) for each α ∈ Popul (function compute-fitness
line 17 Algorithm 2). Both fitness functions need this information
to compute the dominance relation. GAssert optimizes the fitness
computation by (i) loading the S+ and S− states in the primary
memory to avoid costly re-executions of the program, (ii) paralleliz-
ing the computation, (iii) caching the results to avoid recomputing
them upon encountering the same assertion multiple times.

Function select-and-reproduce initializes the new population
Populnew with the empty set (line 18 of Algorithm 2) performing
the elitism if gen % frequency-migration = 0. It then proceeds with
parent selection, parent crossover and offspring mutation, adding
the resulting offspring to Populnew until Populnew reaches size N .

Parent Selection. Function select-parents selects two parents
ap1 and ap2 from Popul (line 22 in Algorithm 2). GAssert imple-
ments two different selection criteria, tournament and best-match
selection, and chooses between them with a given probability.

Tournament Selection [28] is a classic GP selection criterion [45].
It runs “tournaments” among K randomly-chosen individuals and
selects the winner of each tournament (the one with the highest
fitness) [28]. As GAssert needs two parents, it plays two tourna-
ments to obtain αp1 and αp2. We chooseK = 2 (the most commonly
used value [26]) as it mitigates the local optima problem [45].

Best-match Selection is a new criterion presented in this pa-
per, which is specific to the oracle improvement problem. The
criterion exploits semantic information about the correct and in-
correct states that each assertion covers. Let cov+(α ,S+) denote
the subset of S+ on which α evaluates to true, i.e., cov+(α ,S+) =
{s+ ∈ S+ : α[s+] = T } ⊆ S+. Let cov−(α ,S−) denote the subset
of S− on which α evaluates to false, i.e., cov−(α ,S−) = {s− ∈ S−
: α[s−] = F } ⊆ S−. The best-match criterion selects the first par-
ent αp1 randomly from Popul. If Popul is PopulFP, the best-match
selection criterion gets the set of all assertions α1 ∈ PopulFP such
that {cov+(α1,S+)\cov+(α , S+)} , ∅. For each assertion α1 in the
set, the best-match selection criterion considers the cardinality of
{cov+(α1,S+)\cov+(α ,S+)} as the weight of α1. It then selects the
second parent αp2 from the set using a weighted random selection,
where assertions with a higher weight are more likely to be se-
lected. Symmetrically, if Popul is PopulFN, the best-match criterion
considers cov− instead of cov+. Intuitively, the criterion increases
the chances of crossover between two complementary individuals
that are likely to yield a fitter offspring.

Crossover. Function crossover-and-mutation exchanges genetic
material between two parents αp1 and αp2, producing two offspring
αo1 and αo2, which GAssert mutates (with a given probability)
with the mutation operators used to initialize the two populations.
GAssert implements two crossover operators, subtree and merging
crossover, and chooses between them with a given probability.

Subtree Crossover [24] is the canonical tree-based crossover.
Given two parents, it selects a crossover point in each parent, and
creates the offspring αo1 and αo2 by swapping the subtrees rooted
at each point in the corresponding tree [24].

Merging Crossover is an operator that we specifically defined
for the oracle improvement problem. Given two parents αp1 and
αp2, it selects two Boolean subtrees, α1 from αp1 and α2 from αp2,
and creates the offspring αo1 : (α1 AND α2) and αo2 : (α1 OR α2).
This operator works well in synergy with our best-match criterion,
since merging two subtrees with OR and AND functions combines
their semantics without disrupting them.
Node Selectors. A key design choice is the criterion to select the
nodes of the tree α for crossover and mutation. We implemented
two different selection criteria: (i) Random that randomly selects
a node in α , (ii) Mutation-based that selects a node in α such that
the subtree rooted on this node contains at least a variable vi with
the following property: ∃s− ∈ S− in which the value of vi differs
from the value in the corresponding state s+ ∈ S+ obtained when
executing on the original program the same test that yielded s−. As
such, vi can recognize s− as a false negative of α . A such, a new
assertion that predicates on vi could solve such a false negative.
Migration.GAssert periodically exchanges theM best individuals
between the two populations, whereM is a hyper parameter of the
algorithm (see lines 11-14 of Algorithm 2). When selecting the best
individuals GAssert considers both fitness functions so that both
populations can benefit from assertions that have either the lowest
number of false positives or false negatives.

4 EVALUATION

To experimentally evaluate our approach, we developed a prototype
implementation of GAssert for Java classes. We conducted a series
of experiments to answer three research questions:
RQ1 Is GAssert effective at improving assertion oracles?

RQ2 How does GAssert compare with random (unguided) and

invariant-based oracle improvement?

RQ3 How does GAssert compare with human oracle improvement?

RQ1 evaluates the effectiveness of our evolutionary algorithm.
RQ2 checks whether our fitness functions provide useful guidance
to improve assertions. Towards this goal, we compare GAssert
with a version of GAssert (Random) where the guidance provided
by our fitness functions is replaced by a random choice. As a further
baseline, RQ2 compares GAssert with an oracle improvement pro-
cess (Inv-based) that relies on the invariant generator Daikon [9]
to improve assertions. RQ3 compares our automated approach with
oracle improvement performed by humans.

4.1 Subjects

We conducted our experiments on 34 Java methods. We took four
methods from the SimpleExamples (SE) class, used by the recent
Jahangirova et al.’s oracle improvement study [22]. Ten methods
from the Daikon subjects StackAr (SA) and QueueAr (QA), often
used to evaluate Java invariant generators. We selected the remain-
ing 20 methods from four popular Java libraries: Apache Commons
Math (CM), Apache Commons Lang (CL), Google Guava (GG) and
JTS Topology Suite (TS). From each library we randomly selected

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè

five methods with the following characteristics: (i) contain at least
five lines of code, (ii) produce a return value, (iii) are not recursive,
(iv) do not write to files and do not use reflection (as the outcome
of such operations cannot be captured by our assertion oracles).
For each of the 34 methods, we selected as the program point ρρ of
the assertion the last exit point of the method.

4.2 Evaluation Setup

To run GAssert we need an initial test suite and perform muta-
tion analysis to get an initial set of incorrect states, in addition
to the correct states obtained by running the initial test cases on
the original program. We also need some initial assertions to be
improved. We evaluate the improved assertions with the number
of false positives and false negatives on the initial test cases and
mutations. To avoid circularity in the evaluation we collected a new
sets of validation test cases and mutations. The number of false
positives and the mutation score obtained on the latter provide an
external assessment of effectiveness.
Initial Test Cases andMutations.We obtained the initial correct
states (S+0) by executing an initial test suite (T0) on the instrumented
version of P. We generated T0 by running EvoSuite [12, 13] (v.
1.0.6) with the branch coverage criterion and a time budget of one
minute [12]. We performed ten runs with different random seeds
to collect a diverse and large set of initial test cases.

We obtained the initial incorrect states (S−0) by executing the
initial test suite (T0) on a set of initial mutations (M0) of the in-
strumented version of P. We obtained such mutations by running
Major [23] (v. 1.3.4) enabling all types of supported mutants.

Columns “|S+0 |” and “|S−0 |”of Table 4 show the cardinality of
the initial states. Note that for some subjects |S−0 | < |S

+
0 |, which

is counterintuitive. This is because GAssert removes redundant
states from both S+0 and S−0 , and likely equivalent states from S−0 .
Initial Assertion Oracles.We obtained an initial assertion for our
subjects by running the dynamic invariant generator Daikon [9] (v.
5.7.2) with the initial test suite in input. We chose Daikon because
is a fully-fledged tool and is the de-facto invariant generator for
Java methods [9]. Because also Daikon accepts in input a set of
observer methods, we ran Daikon with the same observer methods
that GAssert used to serialize program states.

Daikon generates invariants considering all possible exit points
of a method (e.g., returns and exception throw statements). How-
ever, our oracle improvement process focuses on a single program
point ρρ. To ensure that Daikon generates invariants that consider
only the exit point at ρρ, we automatically remove all the initial
test cases that do not reach ρρ (i.e., do not produce program states).

Daikon outputs invariants as a series of precondition α1, α2,
. . .αn and postcondition assertions β1, β2, . . .βm [9]. GAssert con-
verts them into a single (complete) Java assertion in the form of
(α1 AND α2, . . . AND αn) → (β1 AND β2, . . . AND βn).

GAssert initializes half of the populations by adding the com-
plete assertion, all single α and β , and random mutations of each
of these assertions. GAssert initializes the other half of the popu-
lations with randomly generated assertions.
Validation Test Cases and Mutations. To evaluate if the im-
proved assertions generalize well with unseen correct and incorrect
states, we generated new test cases (Tv) and mutations (Mv). We

Table 3: GAssert Configuration Parameters Values

Parameter Description Value Parameter Description Value

bound on the size of the assertions 50 prob. of crossover 90%
size of each of the populations (N) 1,000 prob. of mutation 20%
minimum number of generations 100 prob. of tournament parent selection 50%
maximum number of generations 10,000 prob. of best-match parent selection 50%
frequency of elitism (every X gen) 1 prob. of merging crossover 50%
frequency of migration (every X gen) 100 prob. of random crossover 50%
number of assertions for elitism 10 prob. of mutate-state-diff node selector 30%
number of assertions to migrate (M) 160 prob. of random node selector 70%

obtained such validation sets using the tools Randoop (v. 4.2.0) and
PIT (v. 1.4.0), respectively. These tools are different from the ones
that provide test cases and mutations to the oracle improvement
process (EvoSuite, Major and OASIs). Different tools are expected
to obtain different test cases and mutations.

For each subject, we ran Randoop ten times with different ran-
dom seeds using at least 100 test cases or three minutes as stop-
ping criterion. We ran PIT enabling all types of supported mutants.
Columns “|Tv |” and “|Mv |” of Table 4 show the cardinality of the
validation test cases and mutations, respectively.
Quality Metrics for Assertions. We evaluate an improved asser-
tion α ′ by comparing the number of FPs and FNs of α ′ with the
number of FPs and FNs of the initial assertion α wrt the initial and
validation sets of test cases (T) and mutations (M).

Before evaluating the assertions, we removed from all the test
cases the test oracle assertions that EvoSuite and Randoop gen-
erated. We then inserted the assertion under evaluation (either α
or α ′) into the method under analysis at the specified ρρ.

To evaluate an assertion with the initial sets, we executed T0 and
count the number of failing tests, which represents the number of
false positives FP(α, S+0), FP0 in short. If FP0 is zero, we compute
FN(α, S−0), FN0 in short, by running mutation testing with muta-
tionsM0 and test cases T0. If FP0 is greater than zero, we cannot
run mutation testing because we need a green test suite. In such a
case, if the evaluated assertion has the form assert(α1 AND α2 AND

α3), we consider each of the smaller assertions assert(α1), assert(α2)
and assert(α3) and remove those that have false positives. We con-
catenate the remaining smaller conditions with ANDs and perform
mutation testing withM0 and T0 for this reduced assertion at ρρ.
If all smaller assertions have false positives then we report FN0 for
the assertion oracle assert(true).

We follow the same procedure to evaluate an assertion with the
validation test cases (Tv) and mutations (Mv). We use FPv to denote
the number of false positives of an assertion wrt Tv. While Major
returns the source code of each mutation, PIT does not. Thus, we
cannot compute the number of false negatives wrt Tv andMv but
only the mutation score (denoted byMv%).
Configuration. Table 3 shows the GAssert configuration param-
eters values used in our experiments. We selected these values after
some trial runs following popular GP guidelines [3, 45]. We ran
GAssert with an overall time budget B of 90 minutes. To ensure
that GAssert will leverage the feedback of OASIs, we set an inter-
nal time budget of the oracle improvement process to 30 minutes.
As such, GAssert must receive the feedback of OASIs at least two
times. To cope with the stochastic nature of GP, we ran GAssert ten
times with the same input assertion and initial correct and incorrect
states. We implemented GAssert to be pseudo-deterministic given

Evolutionary Improvement of Assertion Oracles ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 4: Evaluation Results for RQ1 and RQ2

RQ1 RQ2

subj. evaluation sets initial assertion α GAssert improved α ′ (median) Random improved α ′ (median) Inv-based improved α ′ (median)

ID |S+0 | | S
−
0 | |Tv | |Mv | FP0 FN0 FPv Mv% size # iter. FP0 FN0 FPv Mv% size # iter. FP0 FN0 FPv Mv% size # iter. FP0 FN0 FPv Mv% size

SE1 36 46 1,010 4 0 10 0 75% 7 3 0 0 0 75% 15 3 0 12 0 75% 11 1 0 10 0 75% 7
SE2 20 250 1,062 8 0 0 0 100% 17 3 0 0 0 100% 17 4 0 10 0 88% 9 1 0 0 0 100% 17
SE3 41 250 1,199 15 0 32 0 33% 23 3 0 32 0 33% 3 3 0 32 0 33% 3 1 0 32 0 33% 23
SE4 10 20 54 7 0 10 0 0% 1 4 0 0 0 57% 23 4 0 0 0 0% 10 - - - - - -
SA1 10 30 1,026 10 0 10 0 60% 43 1 0 0 0 50% 5 4 0 0 0 50% 5 1 0 10 0 60% 43
SA2 68 57 1,026 8 0 12 0 100% 51 3 0 48 0 100% 5 3 0 48 0 100% 5 68 0 12 0 100% 51
SA3 22 20 1,062 8 0 20 0 88% 9 3 0 20 0 50% 5 3 0 20 0 50% 5 72 0 20 0 88% 9
SA4 10 70 1,062 12 0 20 0 67% 37 9 0 0 0 67% 7 6 0 0 0 67% 7 88 0 20 0 67% 37
SA5 13 101 1,026 8 0 13 61 100% 135 3 0 11 0 100% 8 3 0 11 0 100% 7 66 12 13 61 100% 135
QA1 10 90 1,004 9 0 0 89 67% 5 5 0 0 0 89% 15 4 0 3 0 89% 13 68 0 0 89 67% 5
QA2 59 184 1,004 16 0 121 0 88% 127 3 0 56 0 100% 13 3 0 66 0 88% 7 1 0 121 0 88% 127
QA3 42 162 1,004 19 0 31 0 74% 87 3 0 30 0 84% 38 3 0 76 0 63% 12 1 0 31 0 74% 87
QA4 21 52 835 19 0 0 0 0% 147 4 0 0 0 84% 25 4 0 20 0 68% 12 1 0 0 0 0% 147
QA5 21 20 1,004 4 0 20 0 100% 45 3 0 20 0 100% 5 3 0 20 0 100% 6 68 0 20 0 100% 45
CM1 34 53 1,900 20 0 45 0 10% 1 3 0 0 0 25% 5 3 0 0 0 25% 5 - - - - - -
CM2 58 359 872 44 0 359 0 5% 1 3 0 347 0 13% 10 3 0 341 0 23% 11 - - - - - -
CM3 41 202 741 28 0 75 0 11% 1 3 0 0 0 18% 13 3 0 69 0 11% 7 - - - - - -
CM4 29 467 860 30 0 459 0 0% 83 3 0 173 0 60% 49 3 0 440 0 13% 7 1 0 459 0 40% 83
CM5 59 415 1,881 27 0 277 0 7% 1 3 0 42 0 63% 9 1 0 42 0 44% 3 - - - - - -
CL1 21 86 380 9 0 36 0 0% 1 3 0 30 0 0% 7 3 0 36 0 0% 7 - - - - - -
CL2 30 128 114 9 0 128 0 0% 11 3 0 128 0 0% 4 3 0 128 0 0% 4 1 0 128 0 0% 11
CL3 19 542 1,736 23 0 70 0 39% 5 3 0 46 0 48% 3 3 0 47 0 39% 3 2 0 70 0 39% 5
CL4 220 1,502 114 81 0 1,282 0 10% 3 3 0 1,282 0 10% 3 3 0 1,282 0 10% 3 1 0 1,282 0 10% 3
CL5 35 306 1,881 36 2 - 0 47% 5 3 0 207 0 47% 37 3 0 272 0 47% 5 1 0 - 0 47% 5
GG1 72 499 190 38 0 499 0 5% 1 3 0 499 0 5% 15 3 0 499 0 5% 3 - - - - - -
GG2 38 281 57 46 0 281 0 22% 7 3 0 60 0 22% 13 3 0 199 0 23% 8 1 0 281 0 22% 7
GG3 30 550 570 12 0 216 0 0% 3 3 0 16 0 58% 31 3 0 68 0 46% 13 2 0 216 0 0% 3
GG4 56 2,962 1,718 56 0 1,750 0 4% 1 3 0 796 0 43% 42 3 0 1,165 0 46% 11 - - - - - -
GG5 30 192 1,900 19 0 55 0 74% 7 4 0 0 0 68% 23 3 0 36 0 68% 9 1 0 55 0 74% 7
TS1 30 269 1,477 16 0 269 0 0% 11 3 0 19 0 94% 38 3 0 161 0 53% 7 1 0 269 0 0% 11
TS2 40 367 1,881 13 0 365 0 0% 1 3 0 153 0 81% 42 3 0 256 0 31% 6 - - - - - -
TS3 47 91 1,881 8 0 91 0 0% 1 5 0 0 0 88% 44 3 0 80 0 50% 10 - - - - - -
TS4 71 520 1,313 31 0 520 0 0% 1 3 0 425 0 71% 44 3 0 259 0 0% 3 3 0 519 0 0% 44
TS5 68 235 1,000 14 0 137 0 64% 35 3 0 121 0 64% 49 3 0 160 0 35% 11 1 0 137 0 64% 35

the same random seed. To avoid biases in selecting the seeds, we
used the numbers from 0 to 9. We executed each run on a dedicated
Amazon®EC2 instance (c5.4xlarge) with 16 Intel®Xeon®3.9GHz
CPUs and 32GB of RAM. The total machine-time of the experiments
was 1,530 hours (34 subjects x 3 tools x 90 minutes x 10 repetitions).

4.3 RQ1: Effectiveness

Columns “initial assertion α” of Table 4 indicate the quality of the
initial assertions generated with Daikon. For eleven subjects (SE4,
CM1, CM2, CM3, CM5, CL1, GG1, GG4, TS2, TS3 and TS4), Daikon
does not generate any invariant, and in this case we consider as-
sert(true) as the initial assertion. The false positives of α on the
initial tests (FP0) are always zero (except for subject CL5). This is
an expected result because Daikon uses the execution traces of the
initial tests to generate α . The size of the initial assertions ranges
from 1 to 147 (28 on average). For six subjects the size is over 50,
confirming that Daikon can generate many (often redundant) pre-
conditions and postconditions [9]. The number of false negatives
on the initial tests (FN0) ranges from 0 to 1,750 (219 on average).
The number of false positives on the validation tests (FPv) is always
zero, except for two subjects (SA5 and QA1), indicating that the
initial assertions perform well with unseen tests. This result may
depend on the high branch coverage of the EvoSuite-generated
initial tests. The mutation score on the validation set ranges from
0% to 100% (38% on average).

Columns “GAssert improved α ′ (median)” indicate the quality
of the GAssert improved assertions. We report the median values
of the ten executions. The number of iterations ranges from 1 to 9
(3 on average). The median FP on the initial tests (FP0) is zero for
all subjects, as GAssert produces by construction assertions with
zero false positives wrt S+0 . The median FN on the initial tests and
mutations (FN0) ranges from 0 to 1,282. The average is 125, which
is 42.92% less than the average FN0 of the initial assertion (= 219).
For 24 subjects the median FN0 of GAssert improved assertion α ′

is less than FN0 of the initial assertion α . Although for nine subjects
is the same (including subjects SE2, QA1 and QA4 with FN0=0),
GAssert often drastically reduced the size of the initial assertions.
These results demonstrate that our evolutionary algorithm is ef-
fective in improving assertion oracles. For only subject SA2, α ′
has more false negatives than α . This is because when generating
invariants Daikon relies on its own set of helper functions that are
not supported by GAssert, and had thus to be excluded from the
initial assertion when being passed to it for improvement.

The median FP on the validation set (FPv) is zero for all subjects.
The median mutation score on the validation set (Mv%) ranges
from 0% to 100% (58% on average)1. TheMv% of α ′ is higher than
the one of α for 16 subjects, with an increase of 34% on average.
1The values ofMv% are in underlined bold if in at least one run the improved assertion
has false positives (even after considering smaller assertions individually), and therefore
we could not measure its mutation score. In such cases the value shown is the median
of the runs with no false positives in the final assertion.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè

5

10

25

50

100

250

500

1000

2000

5 10 25 50 100 250 500 1000 2000

INV-BASED

GASSERT

RANDOM

median FN0(!) [log10 scale]

m
ed

ia
n

FN
0(
!')

[lo

g 1
0

sc
al

e]

0
0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

INV-BASED

GASSERT

RANDOM

median Mv%(!)

m
ed

ia
n

M
v%

(!
')

Figure 2: FN/Mutation score improvement comparison wrt the initial (left) and validation (right) sets.

4.4 RQ2: Comparison with Random and

Invariant-Based Oracle Improvement

In this research question we compare GAssert with two base-
lines: GAssert with no guidance by the fitness functions (Random)
and the invariant inference of Daikon (Inv-based). We set up the
process so that these two baselines are used as part of the same
iterative oracle improvement process of GAssert, described in
Algorithm 1. The only difference among GAssert, Random and
Inv-based is how each of them performs the oracle improvement
process (line 6 of Algorithm 1). When running and evaluating Ran-
dom and Daikon we used the same evaluation setup of RQ1.

Random is a variant of GAssert, in which there is no evolution-
ary pressure in the population because any guidance by the fitness
functions is disabled. We obtained Random by modifying GAssert
as follows: (i) we replaced the tournament and best-match selec-
tion with random selection; (ii) we disabled the Merging crossover
and Mutation-based node selector; (iii) we disabled elitism and
migration. Random terminates the random evolution of the two
populations when either population finds a perfect assertion or the
time budget expires. In the latter case, Random outputs the best
assertion (wrt ϕFP) among all those generated so far.

Although true random search would have been the ideal baseline,
enumerating and (uniformly) sampling the search space is infeasible
because of the huge size of the search space. There are 1.978 × 1027
possible binary trees (assertion oracles) for each program point
(Catalan number [44] with maximum tree size of 50). This is just a
lower-bound of the search space because for each of these trees we
need to consider all possible valid assignments of nodes to variables
and functions. As such, we opted for a variant of GAssert that uses
crossover and mutations operations to explore the search space,
but without any guidance by the fitness functions.

Columns “Random improved α ′ (median)” indicate the quality
of the assertions returned by Random. The results show that the
improved assertion of GAssert dominates the one of Random for
20 (59%) and 17 (50%) subjects considering the initial and validation
sets, respectively. In such cases, GAssert assertions are substan-
tially better than the one of Random. For 6 (18%) and 10 (25%) of
subjects Random assertions outperform GAssert ones, but in this
cases the difference is minimal. For the remaining cases the tools
are showing similar results.

Inv-based is an oracle improvement approach that relies on
dynamic invariant generation to improve oracle assertions. We
chose Daikon (v.5.7.2) to build Inv-based because is the only pub-
licly available tool that meets our requirements: (i) works with Java
programs, (ii) generates executable Java-like assertions, (iii) takes
in input a list of observer methods (for a fair comparison, it should
use the same observer methods used by GAssert).

Daikon does not aim to improve a given assertion α nor relies
on incorrect executions (FN). However, Daikon can rely on the
test cases that OASIs outputs, which represent evidence of false
positives of α . More specifically, the Inv-based oracle improvement
process repeats the following two steps until the time budget ex-
pires, or it is not able to generate any invariant, or OASIs does not
find any false positives for α : (i) execute the current test suite and
compute the invariant α ; (ii) invoke OASIs to get the test cases that
reveal FPs for α and add them to the test suite.

Column “Daikon improved α ′ (median)” indicate the quality of
the assertions returned by Daikon. For ten subjects we did not run
Inv-based because Daikon did not generate an initial assertion,
and thus we compare GAssert and Inv-based with the remain-
ing subjects. Considering the fitness function ϕFP, the improved
assertion of GAssert dominates the one of Inv-based for 19 (59%)
and 15 (63%) subjects considering the initial and evaluation sets,
respectively. In such cases, GAssert assertions are substantially
better than the one of Inv-based. For 2 (8%) and 7 (29%) subjects
Inv-based assertions dominates GAssert ones considering the
initial and evaluation sets, respectively. For the remaining cases
nor GAssert or Inv-based assertions dominate each other.

Figure 2 plots themedian FN0 (left) andMv% (right) for each pair
of initial and improved assertions wrt GAssert, Random and Inv-
based. If a point is on the diagonal it means that the corresponding
approach did not improve the false negatives or mutation score wrt
the initial assertion. For the initial sets (left plot), most of GAssert
points are under the diagonal, which means that GAssert produced
improved assertion with less FNs. For the validation sets (right plot),
most of GAssert points are above the diagonal, which means that
GAssert produced improved assertion with higher mutation score.
The plots also show that in most cases GAssert outperforms both
Random and Inv-based oracle improvement.

Evolutionary Improvement of Assertion Oracles ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Table 5: Evaluation Results for RQ3

subj. Initial α GAssert α ′ Human α ′

ID FPv Mv Size FPv Mv Size type FPv Mv Size Ov. Exc. GPB

SE1 523 - 3 0 75% 15 M 0 75% 7 73 25 12
SE2 0 75% 7 0 100% 17 M 0 100% 7 63 28 1
SE3 0 0% 1 0 33% 3 M 0 33% 7 52 0 5
SE4 0 40% 9 0 57% 30 M 0 57% 9 60 11 0
SA3 0 50% 7 0 50% 5 M 0 50% 7 14 0 3
SA4 0 0% 3 0 67% 7 M 0 67% 9 14 0 4
SA3 0 50% 7 0 50% 5 M + O 0 50% 11 15 0 0
SA4 0 0% 3 0 67% 7 M + O 1 67% 9 15 0 0

4.5 RQ3: Comparison with Human Oracle

Improvement

Jahangirova et al. [22] conducted a human study to assess the ability
of humans to improve assertion oracles. They performed this study
in two settings: (i) the assertion is improved manually by humans
without any tool support (M) (ii) the assertion is improved in an iter-
ative setting with the use of OASIs (M + O). Overall, they recruited
29 humans to participate in the study. The subject methods they
considered were SA3 and SA4 from the StackAr class. Moreover, the
authors also share the data collected from Amazon® Mechanical
Turk, which consists of manually improved assertions for four
simple methods, performed by 74 different crowd-workers. As the
results are publicly available [22], we compare these assertions with
the ones produced by GAssert.

We run GAssert with the input assertions that were provided
to the study participants. Then, as in RQ1 and RQ2, we measure the
oracle deficiencies in the initial and GAssert improved assertions
(wrt the validation set). We then compare these values to the oracle
deficiencies in the assertions improved by humans. Column “type”
of Table 5 indicates whether this improvement was purely manual
(M) or included OASIs (M + O). As for four methods from our set
the oracle improvement was performed by crowd-workers and no
action was taken to ensure that they have a proper background or
experience for such a task, we apply an additional filtering step to
the list of assertions for these methods. We exclude the assertions
that do not improve the initial assertion, i.e., they do not have less
false positives or a higher mutation score. Column “Ov.” shows the
overall number of assertions available and Column “Exc.” shows
the number of assertions that were excluded.

The results show that GAssert is always able to improve the
initial assertion and achieve a higher mutation score. Moreover, the
median values across 10 runs for GAssert and across the number of
human participants for manual improvement are always the same.
Column “GPB” (GAssert Performs Better) reports the number of
manual improvements that achieve a lower mutation score than
GAssert does (10% of cases).

5 RELATEDWORK

GAssert is the first fully-automated technique to improve oracle
assertions. The closest related work is on invariant generation,
oracle quality, and oracle improvement.
Invariant Generation. Dynamic invariant generators produce
Boolean expressions (called program invariants) that evaluate to

true for all the executions of an input test suite [6, 9, 10, 17, 32, 33,
37]. GAssert improves assertion oracles by reducing their false
positives and false negatives, and as such can improve the asser-
tions produced by invariant generators, which are known to be
incomplete and imprecise when used as assertion oracles [6, 29, 40].

Ratcliff et al. proposed an evolutionary approach [35] for invari-
ant generation that leverages negative counterexamples to rank the
invariants. Differently from GAssert, their approach uses negative
counterexamples in a post-processing phase and not as a part of the
fitness function. Moreover, GAssert uses OASIs to actively gener-
ate positive and negative counterexamples. In addition, GAssert
considers both externally (parameters, return values) and internally
observable variables (local variables, private fields).

Oracle Quality Metrics. Research on measuring oracle quality
mostly focuses on assertions in the test cases (test oracles) [19,
25, 38]. For instance, EvoSuite [11, 12] and a parameterized test
case generator proposed by Fraser and Zeller [14] select from an
initial set of possible assertions those that kill the highest number
of mutations. These studies propose metrics to select test oracles
with no guidance on how to improve them. GAssert focuses on
assertions in the program, and not in the tests, evaluates the quality
of oracles in terms of both false positives and false negatives, and
actively improves program oracles by generating new assertions.

Oracle Improvement. Zhang et al.’s iDiscovery approach [46] im-
proves the accuracy and completeness of invariants by iterating
a feedback loop between Daikon and symbolic execution. The
invariants generated by iDiscovery are still limited within the set
of Daikon templates. Therefore they are not as expressive as the
ones generated with GAssert. OASIs [20, 21] relies on humans
to improve a given oracle assertion so that it does not suffer from
the reported oracle deficiencies. Given oracle deficiencies identi-
fied by OASIs, GAssert automates the difficult task of improving
assertions with a novel evolutionary algorithm.

6 CONCLUSION

Improving assertion oracles is important to increase the fault-
detection capabilities of both manually written and automatically
generated test cases [4]. In this paper, we presented GAssert, the
first automated approach to improve assertion oracles.

Our experiments indicate that GAssert improved assertions
has zero false positives, and the number of false negatives in them
is largely reduced with respect to the initial Daikon assertions.
The few sample cases with independently obtained human im-
provements indicate that GAssert is competitive with – and even
sometime better than – human improvements.

We plan in the future to increase the expressiveness of GAssert
assertions by also considering the universal and existential quanti-
fiers. Also, we plan to investigate how difficult is for a developer to
understand the assertions produced by GAssert.

ACKNOWLEDGEMENTS

This work was partially supported by the Swiss SNF project AS-
TERIx (SNF 200021_178742) and the H2020 project PRECRIME,
funded under the ERC Advanced Grant 2017 Program (ERC Grant
Agreement n. 787703).

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè

REFERENCES

[1] Shay Artzi, Michael D. Ernst, Adam Kieżun, Carlos Pacheco, and Jeff H. Perkins.
2006. Finding the Needles in the Haystack: Generating Legal Test Inputs for
Object-Oriented Programs. In Workshop on Model-Based Testing and Object-

Oriented Systems (M-TOOS ’06).
[2] Angello Astorga, P. Madhusudan, Shambwaditya Saha, Shiyu Wang, and Tao Xie.

2019. Learning Stateful Preconditions Modulo a Test Generator. In Proceedings of

the Conference on Programming Language Design and Implementation (PLDI ’19).
ACM, 775–787.

[3] Thomas Back. 1996. Evolutionary Algorithms in Theory and Practice: Evolution

Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University
Press.

[4] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The Oracle Problem in Software Testing: A Survey. IEEE Transactions on

Software Engineering 41, 5 (2015), 507–525.
[5] Markus F Brameier and Wolfgang Banzhaf. 2007. A Comparison with Tree-Based

Genetic Programming. Linear Genetic Programming (2007), 173–192.
[6] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. 2008. DySy:

Dynamic Symbolic Execution for Invariant Inference. In Proceedings of the Inter-

national Conference on Software Engineering (ICSE ’08). ACM, 281–290.
[7] Jason M. Daida, Adam M. Hilss, David J. Ward, and Stephen L. Long. 2003. Visu-

alizing Tree Structures in Genetic Programming. In Proceedings of the conference

on Genetic and Evolutionary Computation (GECCO ’03). Springer, 1652–1664.
[8] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A

Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on

Evolutionary Computation 6, 2 (2002), 182–197.
[9] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 1999.

Dynamically Discovering Likely Program Invariants to Support Program Evo-
lution. In Proceedings of the International Conference on Software Engineering

(ICSE ’99). ACM, 213–224.
[10] Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin. 2001. Dy-

namically Discovering Likely Program Invariants to Support Program Evolution.
IEEE Transactions on Software Engineering 27, 2 (2001), 99–123.

[11] Gordon Fraser and Andrea Arcuri. 2011. Evolutionary Generation of Whole
Test Suites. In Proceedings of the International Conference on Quality Software

(QSIC ’11). IEEE, 31–40.
[12] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-

eration for Object-Oriented Software. In Proceedings of the European Software

Engineering Conference held jointly with the ACM SIGSOFT International Sympo-

sium on Foundations of Software Engineering (ESEC/FSE ’11). ACM, 416–419.
[13] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE

Transactions on Software Engineering 39, 2 (2013), 276–291.
[14] Gordon Fraser and Andreas Zeller. 2011. Generating Parameterized Unit Tests.

In Proceedings of the International Symposium on Software Testing and Analysis

(ISSTA ’11). ACM, 364–374.
[15] Juan Pablo Galeotti, Carlo A. Furia, Eva May, Gordon Fraser, and Andreas Zeller.

2014. DynaMate: Dynamically Inferring Loop Invariants for Automatic Full Func-
tional Verification. In Proceedings of the Haifa Verification Conference (HVC ’14).
Springer, 48–53.

[16] Juan P. Galeotti, Carlo A. Furia, Eva May, Gordon Fraser, and Andreas Zeller. 2015.
Inferring Loop Invariants by Mutation, Dynamic Analysis, and Static Checking.
IEEE Transactions on Software Engineering 41, 10 (2015), 1019–1037.

[17] Ashutosh Gupta and Andrey Rybalchenko. 2009. Invgen: An Efficient Invariant
Generator. In Proceedings of the International Conference on Computer Aided

Verification (CAV ’09). Springer, 634–640.
[18] Mark Harman, William B. Langdon, Yue Jia, David Robert White, Andrea Arcuri,

and John A. Clark. 2012. The GISMOE Challenge: Constructing the Pareto
Program Surface using Genetic Programming to Find Better Programs (keynote
paper). In Proceedings of the International Conference on Automated Software

Engineering (ASE ’14). ACM, 1–14.
[19] Chen Huo and James Clause. 2014. Improving Oracle Quality by Detecting

Brittle Assertions and Unused Inputs in Tests. In Proceedings of the ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE ’14). ACM,
621–631.

[20] Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella. 2016. Test Or-
acle Assessment and Improvement. In Proceedings of the International Symposium

on Software Testing and Analysis (ISSTA ’16). ACM, 247–258.
[21] Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella. 2018. OASIs:

Oracle Assessment and Improvement Tool. In Proceedings of the International

Symposium on Software Testing and Analysis (ISSTA ’18). ACM, 368–371.
[22] Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella. 2019. An

Empirical Validation of Oracle Improvement. IEEE Transactions on Software

Engineering (2019).
[23] René Just. 2014. The Major Mutation Framework: Efficient and Scalable Mutation

Analysis for Java. In Proceedings of the International Symposium on Software

Testing and Analysis (ISSTA ’14). ACM, 433–436.

[24] John R Koza and John R Koza. 1992. Genetic Programming: On the Programming

of Computers by Means of Natural Selection. Vol. 1. MIT press.
[25] William B. Langdon, Shin Yoo, and Mark Harman. 2017. Inferring Automatic Test

Oracles. In Proceedings of the International Workshop on Search-Based Software

Testing (SBST ’17). IEEE, 5–6.
[26] Y. Lavinas, C. Aranha, T. Sakurai, and M. Ladeira. 2018. Experimental Analysis

of the Tournament Size on Genetic Algorithms. In International Conference on

Systems, Man, and Cybernetics (SMC ’18’). IEEE, 3647–3653.
[27] David Lo and Shahar Maoz. 2009. Mining Scenario-Based Specifications with

Value-Based Invariants. In Proceedings of the International Conference on Object

Oriented Programming Systems Languages and Applications (OOPSLA ’09). ACM,
755–756.

[28] Brad L. Miller, Brad L. Miller, David E. Goldberg, and David E. Goldberg. 1995.
Genetic Algorithms, Tournament Selection, and the Effects of Noise. Complex

Systems 9, 3 (1995), 193–212.
[29] Cu D. Nguyen, Alessandro Marchetto, and Paolo Tonella. 2013. Automated

Oracles: An Empirical Study on Cost and Effectiveness. In Proceedings of the

European Software Engineering Conference held jointly with the ACM SIGSOFT

International Symposium on Foundations of Software Engineering (ESEC/FSE ’13).
ACM, 136–146.

[30] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In Proceedings of the International

Conference on Software Engineering (ICSE ’07). ACM, 75–84.
[31] Annibale Panichella, Rocco Oliveto, Massimiliano Di Penta, and Andrea De Lucia.

2015. Improving Multi-Objective Test Case Selection by Injecting Diversity in
Genetic Algorithms. IEEE Transactions on Software Engineering 41, 4 (2015),
358–383.

[32] Corina S. Pasareanu andWillem Visser. 2004. Verification of Java Programs Using
Symbolic Execution and Invariant Generation. In Proceedings of the International

SPIN Workshop on SPIN Model Checking and Software Verification (SPIN ’04).
Springer, 164–181.

[33] Long H. Pham, Jun Sun, Lyly Tran Thi, JingyiWang, and Xin Peng. 2017. Learning
Likely Invariants to Explain Why a Program Fails. In Proocedings of the Inter-

national Conference on Engineering of Complex Computer Systems (ICECCS ’17).
IEEE, 70–79.

[34] Dipesh Pradhan, Shuai Wang, Shaukat Ali, Tao Yue, and Marius Liaaen. 2017.
CBGA-ES: A Cluster-Based Genetic Algorithm with Elitist Selection for Sup-
porting Multi-Objective Test Optimization. In Proceedings of the International

Conference on Software Testing, Verification and Validation (ICST ’17). IEEE, 367–
378.

[35] Sam Ratcliff, David R.White, and John A. Clark. 2011. Searching for Invariants Us-
ing Genetic Programming and Mutation Testing. In Proceedings of the conference

on Genetic and Evolutionary Computation (GECCO ’11). ACM, 1907–1914.
[36] Henry G. Rice. 1953. Classes of Recursively Enumerable Sets and Their Decision

Problems. Transactions of the American Mathematical Society 74, 2 (1953), 358–
366.

[37] Abhik Roychoudhury and I. V. Ramakrishnan. 2004. Inductively Verifying Invari-
ant Properties of Parameterized Systems. Automated Software Engineering 11, 2
(2004), 101–139.

[38] D. Schuler and A. Zeller. 2011. Assessing Oracle Quality with Checked Coverage.
In Proceedings of the International Conference on Software Testing, Verification and

Validation (ICST ’11). 90–99.
[39] Oren Shoval, Hila Sheftel, Guy Shinar, Yuval Hart, Omer Ramote, Avi Mayo, Erez

Dekel, Kathryn Kavanagh, and Uri Alon. 2012. Evolutionary Trade-Offs, Pareto
Optimality, and the Geometry of Phenotype Space. Science 336, 6085 (2012),
1157–1160.

[40] Matt Staats, Shin Hong, Moonzoo Kim, and Gregg Rothermel. 2012. Under-
standing User Understanding: Determining Correctness of Generated Program
Invariants. In Proceedings of the International Symposium on Software Testing and

Analysis (ISSTA ’12). ACM, 188–198.
[41] Hisashi Tamaki, Hajime Kita, and Shigenobu Kobayashi. 1996. Multi-Objective

Optimization by Genetic Algorithms: A Review. In Proceedings of IEEE Interna-

tional Conference on Evolutionary Computation. IEEE, 517–522.
[42] Tao Xie, D. Notkin, and D. Marinov. 2004. Rostra: a Framework for Detecting Re-

dundant Object-Oriented Unit Tests. In Proceedings of the International Conference
on Automated Software Engineering (ASE 04). 196–205.

[43] Shuai Wang, Shaukat Ali, Tao Yue, and Marius Liaaen. 2018. Integrating Weight
Assignment Strategies With NSGA-II for Supporting User Preference Multiob-
jective Optimization. IEEE Transation on Evolutionary Computation 22, 3 (2018),
378–393.

[44] Julian West. 1995. Generating Trees and the Catalan and Schröder Numbers.
Discrete Mathematics 146, 1-3 (1995), 247–262.

[45] Darrell Whitley. 1994. A Genetic Algorithm Tutorial. Statistics and Computing 4,
2 (1994), 65–85.

[46] Lingming Zhang, Guowei Yang, Neha Rungta, Suzette Person, and Sarfraz Khur-
shid. 2014. Feedback-driven dynamic invariant discovery. In Proceedings of the

International Symposium on Software Testing and Analysis (ISSTA ’14). ACM,
362–372.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 GASSERT
	3.1 Running Example
	3.2 Program State Serialization
	3.3 Oracle Improvement

	4 Evaluation
	4.1 Subjects
	4.2 Evaluation Setup
	4.3 RQ1: Effectiveness
	4.4 RQ2: Comparison with Random and Invariant-Based Oracle Improvement
	4.5 RQ3: Comparison with Human Oracle Improvement

	5 Related Work
	6 Conclusion
	References

