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ABSTRACT

Semantic Genetic Programming (SGP) approaches demonstrated
remarkable results in different domains. SGP-DT is one of the latest
of such approaches. Notably, SGP-DT proposes a dynamic-target ap-
proach that combines multiple GP runs without relying on any form
of crossover. On eight well-known datasets SGP-DT achieves small
RMSE, on average 25% smaller than state-of-the-art approaches.
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1 INTRODUCTION

Semantic Genetic Programming (SGP) uses richer feedback during
the evolution that incorporates semantic awareness, which has the
potential to improve the power of genetic programming [7, 8].

Symbolic Regression is characterized by a set of training cases,
defined asm pairs of inputs x̂ and desired output ŷ. Following most
SGP approaches [8], we intend the semantics of an individual I
as a vector sem(I) = ⟨y1,y2, · · · ,ym⟩ of responses to them inputs
of the training cases [4]. Let sem(ŷ) = ⟨ŷ1, ŷ2, · · · , ˆym⟩ denote the
semantic vector of the target (as defined in the training set), where
ŷ1, ŷ2, · · · , ˆym are the desired outputs. SGP defines the semantic
space [8] equipped with a distance between the semantic vectors of
the individuals sem(I) and the target sem(ŷ). The effectiveness of
SGP depends on the availability of GP operators that can move in
the semantic space towards the global optimum. Both classic and
semantic-aware crossovers suffer from several drawbacks [4, 8].
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Figure 1: Overview of SGP-DT

Our recent paper proposes SGP-DT [6], a SGP technique that ef-
fectively navigates the semantic space without relying on any form
of crossover. SGP-DT invokes multiple GP runs, each of which is
guided by a (dynamic) target that focuses on a particular character-
istic of the problem at hand. SGP-DT combines with linear scaling
the models returned by each GP runs into a final model. In this
paper, we summarize the technique and major accomplishments.

2 SGP-DT

Figure 1 gives an overview of our approach. SGP-DT runs a pre-
defined number of GP algorithms GP1,GP2, · · ·GPn . We call these
runs external iterations. As opposed to the internal iterations (i.e.,
GP generations) that the GP algorithm performs at each run.

Each run has associated a dynamic target (dt) that changes at
each external iteration. The dynamic target dictates the fitness of
the individuals, defined as the variance of the difference between
sem(I) and the current target (i.e., σ 2(sem(I) − dt)). Each GP run
performs a fixed number of internal iterations and returns the fittest
solution that we call partial model (PM). For each individual (and
thus for each partial model) we compute the coefficients a and b
of the linear scaling technique [2], which entails a bound on the
worsening of the offspring at each internal and external iteration [6].

The dynamic target of the first external iteration is the desired
output (ŷ) as specified by the training set. The dynamic target of
the i-th iteration is the difference between the previous target and
the semantic of the partial model returned by the previous itera-
tion (i.e, residual error): dti−1 - sem(ai−1 + bi−1 · PMi−1). As such,
SGP-DT leads to dynamic targets that change at each external iter-
ation incorporating the semantic information. Each partial model
focuses on a different characteristic of the problem that the fitness
function recognized to be important (at that iteration). This makes
the search more efficient because the evolution focuses on a single
characteristic at a time leaving unaltered the already optimized
ones (and thus preserving the already discovered functionalities).
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Table 1: Datasets of regression problems.

name # attributes # instances source name # attributes # instances source

airfoil 5 1,503 housing 14 506
concrete 8 1,030 tower 25 3,135
enc 8 768 yacht 6 309

UCI

enh 8 768

UCI

uball5d 5 6,024 [5]

SGP-DT obtains the final solution with a linear combination∑n
i=1 ai + bi · PMi . Notably, SGP-DT does not rely on any form

of crossover, neither semantic nor classic, and thus avoiding their
intrinsic limitations. SGP-DT implicitly recombines different func-
tionalities when it assembles the partial models into the final one.

3 EVALUATION RESULTS

We now summarize a series of experiments that we conducted to
evaluate SGP-DT.
Datasets. We performed our experiments on eight well-known
datasets of regression problems that have been used to evaluate
most of the relate techniques. Table 1 shows their names, number
of attributes, and number of instances.
Techniques under comparison.We compared SGP-DT with two
techniques: lasso [1] and ϵ-lexicase [3].
lasso [1] is a regression analysis method that uses the least square
regression to linearly combine solution components. More specifi-
cally, lasso incorporates a regularization penalty into least-squares
regression using an ℓ1 norm of the model coefficients and uses a
tuning parameter λ to specify the weight of this regularization [1].
ϵ-lexicase [3] is an evolutionary technique that adapts the lexi-
case selection operator for continuous domains. The idea behind
ϵ-lexicase selection is to promote candidate solutions that perform
well on unique subsets of samples in the training set, and thereby
maintain and promote diverse building blocks of solutions [3].

For SGP-DT and ϵ-lexicase we set a population size of 1,000
and a budget of 1,000 generations. For SGP-DT, we divided the
1,000 generations in 20 external iterations (Next = 20), and thus the
number of internal iterations of each GP run is 50. To cope with
the stochastic nature of GP, we ran 50 trials for every technique on
each dataset using 25% of the data for testing and 75% for training.
Root Mean Square Error (RMSE) comparison. Table 2 shows
the median RMSE and the RMSE percentage decrease of SGP-DT
with respect to lasso and ϵ-lexicase1. A positive value means that
SGP-DT has a lower (better) RMSE median.

SGP-DT achieves a smaller RMSE than lasso for all the datasets,
obtaining always statistical significance (p-value <0.05). The de-
crease of the RMSEmedians ranges from 9.06% for housing to 88.67%
for yacht (51.47% on average). SGP-DT has smaller RMSE medians
than ϵ-lexicase for all datasets except housing (decrease -4.48%).
This is the only comparison of SGP-DT and ϵ-lexicase without
statistical significance. The decrease of the RMSE medians ranges
from -4.48% for housing to 57.07% for ench (23.19% on average).
Computational effort. To compare the computational effort of
SGP-DT and ϵ-lexicase we relied on the total number of evaluated
nodes. Both SGP-DT and ϵ-lexicase operate on nodes, SGP-DT on
tree-like data structures, while ϵ-lexicase on stack-based ones. Ta-
ble 3 reports the median number of nodes (of the 50 trials) that the
1calculated as ((MT −MD )/MT ) · 100, whereMD is the median RMSE of SGP-DT
and MT is the one of the competing technique

Table 2: Median RMSE of the 50 trials.

Median Root Mean Square Error (RMSE) Median RMSE % decrease

Data set SGP-DT lasso ϵ-lexicase lasso ϵ-lexicase

airfoil 2.4634 4.8484 3.6505 49.19 % 32.52 %
concrete 6.5123 10.5383 7.0707 38.20 % 7.90 %
enc 1.4838 3.2498 1.8647 54.34 % 20.43 %
enh 0.5560 2.9645 1.2952 81.25 % 57.07 %
housing 4.4700 4.9155 4.2785 9.06 % -4.48 %
tower 0.2606 0.2953 0.2975 11.75 % 12.39 %
uball5d 0.0402 0.1939 0.0618 79.29 % 35.00 %
yacht 1.0221 9.0237 1.3577 88.67 % 24.72 %

Average RMSE % decrease: 51.47 % 23.19 %

Table 3: Median number of evaluated nodes.

Median number of evaluated nodes Reduction ratio

Data set SGP-DT ϵ-lexicase ϵ-lexicase

airfoil 1.00E+10 9.28E+10 9.26×
concrete 1.14E+10 6.43E+10 5.64×
enc 1.18E+10 4.99E+10 4.25×
enh 1.18E+10 5.08E+10 4.30×
housing 7.70E+09 3.09E+10 4.02×
tower 7.21E+10 1.94E+11 2.69×
uball5d 9.83E+10 3.94E+11 4.01×
yacht 4.62E+09 2.00E+10 4.34×

Average reduction ratio: 4.81×

GP techniques evaluated to produce the final solution (all compar-
isons are statically significant). Comparing with ϵ-lexicase, SGP-
DT reduces the amount of node evaluations by a factor between
4.01× and 9.26×, obtaining better RMSE values than ϵ-lexicase for
seven out of eight datasets (see Table 2).

4 CONCLUSION

SGP-DT presents a novel SGP approach that yields to low approxi-
mation error and computational cost when applied to the symbolic
regression domain. On eight well-know datasets, SGP-DT outper-
forms both lasso and ϵ-lexicase. This is an important result as
ϵ-lexicase outperforms many GP-inspired algorithms [5].
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