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ABSTRACT

In the multi-class classification problem GP plays an important role

when combined with other non-GP classifiers. However, when GP

performs the actual classification (without relying on other classi-

fiers) its classification accuracy is low. This is especially true when

the number of classes is high. In this paper, we present DTC, a

GP classifier that leverages the effectiveness of the dynamic target

approach to evolve a set of discriminant functions (one for each

class). Notably, DTC is the first GP classifier that defines the fit-

ness of individuals by using the synergistic combination of linear

scaling and the hinge-loss function (commonly used by SVM). Dif-

ferently, most previous GP classifiers use the number of correct

classifications to drive the evolution. We compare DTC with eight

state-of-art multi-class classification techniques (e.g., RF, RS, MLP,

and SVM) on eight popular datasets. The results show that DTC

achieves competitive classification accuracy even with 15 classes,

without relying on other classifiers.
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1 INTRODUCTION

Multi-class classification is one of the most important research top-

ics in machine learning [2], and plays a crucial role in many modern

applications. When dealing with the multi-class classification prob-

lem, Genetic Programming (GP) is a fundamental building block for

constructing effective classifiers. For instance, GP has a pivotal role
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in automating the architecture engineering activity of neural net-

works [10, 14, 19, 23, 53, 56], or to select/construct features for other

non-GP classifiers [30, 37, 47, 67]. However, when GP alone is used

to evolve amulti-class classifier (not combinedwith other classifiers)

it has a low classification accuracy [20]. Indeed, several researchers

reported poor performance of GP classifiers [11, 35, 37, 66, 73],

especially when more than two classes are involved.

In this paper, we present Dynamic Target Classifier (DTC), a GP

classifier that learns multiple discriminant functions, one for each

class to predict. DTC is powered by the dynamic target approach [44,

45, 61] that divides the search problem into a sequence of GP runs.

Each run returns a partial model that focuses on the portion of the

problem that the previous runs did not capture well [61]. Ruberto

et al. show that such an approach is more effective than evolving a

single model [61], achieving interesting results in the domains of

symbolic regression [61, 62] and image feature learning [59, 60].

We compare DTC with eight state-of-art classifiers (i.e., RF, RS,

MLP, SVM, and three GP wrapper approaches [37, 66]) on eight

popular datasets. The results show that DTC achieves competitive

(and often even better) classification accuracy even with 15 classes.

Notably, DTC employs GP to perform the actual classification and

does not rely on other classifiers.

DTC presents a novel combination of well-known techniques

that, to the best of our knowledge, have never been used in a GP

classifier. First, before computing the fitness of an individual, DTC

uses linear scaling [32] to optimize the individual with respect to the

decision boundary of the discriminant function. Second, to compute

the fitness, DTC relies on the hinge-loss function [58] (commonly

used by SVM [13]) instead of canonical functions that maximize the

number of correct classifications [20]. The hinge loss function has

the advantage of penalizing those individuals that correctly classify

instances whose prediction is close to the decision boundary [58].

Our proposed fitness function works well in synergy with the

dynamic target approach. On one hand, the hinge-loss function

focuses only on the portion of the problem in which the current

classification model is uncertain [58]. On the other hand, each

dynamic target focuses on the portions of the problem not optimized

by previous GP runs [61].

The following section describes the background of multi-class

classification with GP, and discusses the limitations of current ap-

proaches. Section 3 describes DTC in detail, highlighting its novel

aspects. Section 4 describes the experiments that we conduct on

eight popular datasets for the multi-class classification problem.

Section 5 reports the results of the experiment comparing DTC

with eight state-of-the-art classifiers. Section 6 concludes the paper

highlighting promising future work, and discusses what our results

entail for future studies on GP-based multi-class classification.
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2 BACKGROUND AND RELATEDWORK

Multi-class classification is one of the fundamental problems

in Machine Learning [2, 20]. It is the problem of predicting the

value of categorical attributes𝐶 = {𝑐1, 𝑐2, · · · 𝑐𝑘 } (the classes), based
on the values of other 𝑝 attributes [20]. In this paper, we assume
classification problems with two or more classes (𝑘 ≥ 2).

We consider supervised learning, in which a search algorithm

induces a classifier from a set of correctly classified data instances

T = {( �𝑥𝑖 , 𝑦𝑖 ), 𝑖 = 1, 2, · · ·𝑛} (training set), where �𝑥𝑖 ∈ R𝑝 is the

vector of 𝑝 attributes.
Neural Networks (NNs) [28] have shown to be very effective

in the multi-class classification problem, especially in the image

classification domain [64]. Because developing NNs requires labor-

intensive architecture engineering, researchers have investigated

GP approaches to automate the architecture engineering activity of

NNs. For example, the Neuroevolution of Augmenting Topologies

(NEAT) techniques [3–5, 8, 10, 14, 43, 53, 56].

In this paper, we present a GP-based classifier that does not

rely on other classifiers (e.g., NNs). Applying GP to the multi-class

classification could bring some interesting advantages with respect

to non-GP classifiers: (i) GP often does not need large training sets

to learn competitive models [52], (ii) GP is generally robust to noisy

data [42, 59, 60], and (iii) the intrinsic flexibility of GP could lead to

classifiers that easily adapt to the specific problem at hand [20].

GP Classifiers. Previous GP classifiers investigated various strate-

gies andmodel representations: decision trees [33, 70], classification

rules [31, 46], and discriminant functions [12, 40, 41, 54]. Interested

readers can refer to the survey of Espejo et al. for a literature re-

view on this topic [20]. In this paper, we are targeting Genetic

Programming (GP) classifiers represented as discriminant func-

tions. A discriminant function f is a mathematical expression in

which different kinds of operators and functions are applied to the

attributes of the instance to be classified, i.e., 𝑓 : 𝑅𝑛 → 𝐶 , 𝑓 ( �𝑥) = 𝑐 𝑗 .
We now discuss the relevant examples of GP classifiers that use

discriminant functions. Paul and Iba propose a GP classifier for

binary classification (|𝐶 | = 2) that learns multiple discriminant

functions to classify the training set into two classes [54]. It then

classifies instances with a majority voting. Differently, DTC targets

multiclass classification with two or more classes (|𝐶 | > 2), and

produces a single discriminant function for each class. Chen and

Lu propose a GP classifier that produces a set of single-threshold

discriminant functions [12]. Each of these functions classifies an

instance in one or more classes. There could be multiple functions

associated with a single class. To classify an instance, this approach

considers the majority voting scheme. Lin et al. present the Layered

Genetic Programming (LAGEP) classifier [40, 41], where each layer

evolves a portion of the discriminant function, which is progres-

sively constructed layer-by-layer. Similarly to LAGEP, DTC also

progressively constructs the discriminant function. However, Lin

et al. evaluated LAGEP mostly for the binary classification problem

and using only two layers, while DTC shows competitive results

even with 15 classes and using tens of partial models.

Early attempts of GP classifiers based on discriminant functions

have shown poor performance [11, 35, 73] (when compared to other

state-of-the-art classifiers). In fact, Krzysztof Krawiec remarks that

“in most real-world cases, it is rather unreasonable to expect the GP

individuals to evolve into complete, well-performing classifiers, even

for the two-class discrimination problem” [35]. Castelli et al. and

Silva and Tseng, reached a similar conclusion: the performance of

GP classifiers is drastically reduced with the increasing number of

classes [11, 66].

GP Feature selection/construction for multiclass classifier.

Because of the poor performance of GP classifiers, GP-based con-

structive induction of features has been investigated as a good

compromise to employ GP for multi-class classification [35]. More

specifically, researchers have investigated the use of GP as a pre-

processing step for a multi-class classifier (e.g., SVM,Random Forest,

Bayesian approaches, and NN). The idea is to use GP to perform

feature selection and construction to improve the discriminating

power of the features, and thus improving the performance of a

classifier. Following the taxonomy of Espejo et al. [20], such tech-

niques can be divided into filter [48, 51] and wrapper approaches [1,

29, 30, 37, 47, 67, 69]. Both approaches use GP to explore the feature

space by combining and selecting features. Filtering approaches

rely on statistical properties (e.g., class scattering and information

entropy) to compute the fitness, and do not use classification results

to guide the evolution. Instead, wrapper approaches rely on the

performance of the classifier to compute the fitness, and thus they

are more related to DTC.

Wrapper approaches have gained popularity in recent years,

showing promising results [37]. Miranda et al. propose a wrapper

approach and evaluate it with five different classifiers (K Nearest

Neighbors, Naive Bayes, SVM, Decision Tree, and Multilayer Per-

ceptron) in the context of electroencephalogram analysis [47]. The

results show better performance when compared to feature selec-

tion/construction using PCA. Similarly, Sotto et al. improve the

performance of Random Forest classifiers by using GP to select

and construct features [67]. The techniques of Howley et al. [29]

and Sullivan et al. [69] use GP to build Kernel Functions for SVM

classifiers. Agapitos et al. [1] present an evolutionary approach that

optimizes the euclidean distance metric to improve the performance

of a Nearest Neighborhood classifier.

Silva and La Cava et al. proposed a series of wrapper approaches

for multi-class classification called MxGP: M2GP [30], M3GP [6,

49, 50, 66] and M4GP [36–38]. M4GP outperforms previous genera-

tions ofMxGP, as well as highly rankedMLmethods, like Multilayer
Perceptron and Random Forests, for some multiclass classification

problems [37]. The idea of MxGP is to employ GP to perform fea-

ture selection/construction in a way that the features become more

suitable for a distance-based classifier (e.g., Nearest centroid classi-

fier [22]). MxGP evolves a population of feature transformations
calculating the fitness as follows: It creates one cluster per class on

the hyper-feature space [6]. The predicted class of each observation

is the class of the nearest centroid, according to the Mahalanobis

distance [15]. The authors of MxGP show that, for this specific prob-

lem, such a distance performs much better than other distances

(e.g., Euclidean Distance) [30].

Nevertheless, all wrapper approaches employ GP to improve the

performance of other (non-GP) classifiers. Differently,DTC employs

GP to perform the actual classification and does not rely on other

classifiers.

813



Towards Effective GP Multi-Class Classification Based on Dynamic Targets GECCO ’21, July 10–14, 2021, Lille, France

3 DYNAMIC TARGET CLASSIFIER (DTC)

This paper presents DTC, a GP-based classifier for the multi-class

classification problem. While previous approaches build functions

that discriminate among two or more classes [73], DTC builds func-

tions that discriminate one class each, i.e., each function discrimi-

nates one class against all the other classes. In particular, for each

class 𝑐 𝑗 ∈ 𝐶 = {𝑐1, 𝑐2, · · · 𝑐𝑘 }, DTC considers a “masked” version of

the training set, with only two classes 𝑐 𝑗 and 𝑐 𝑗 = {𝑐𝑤 ∈ 𝐶 : 𝑐𝑤 ≠
𝑐 𝑗 }. DTC learns a set of 𝑘 = |𝐶 | functions (called 𝐹 ). Each function
f ∈ 𝐹 uses one the masked training sets. Given an instance to clas-

sify �𝑥 , DTC returns the class 𝑐 𝑗 that corresponds to the 𝐹 [𝑐 𝑗 ] ( �𝑥)
that returns the highest predicted value (given that 𝑐 𝑗 is set to 1).
Such a masking approach is commonly used by other non-GP

classifiers (e.g., SVM), and has the advantage that it does not as-

sume any distribution of the classes in the feature space. Indeed,

previous GP classifiers assign an arbitrary value to each class (e.g.,

𝑐1 = 1, 𝑐2 = 2, · · · 𝑐𝑛 = 𝑛) [12, 40, 41]. The choice of this value is
purely arbitrary, but induces a total order on the classes that is un-

likely to reflect the semantics of the problem. Instead, DTC avoids

the issue altogether by considering each class individually. However,

this approach introduces an imbalance issue that we address by

adjusting the fitness scores with an imbalance ratio [7, 18, 39, 55].

Dynamic targets. DTC follows the dynamic target approach [44,

45, 61] that executes multiple GP runs driven by a dynamic “target”

that changes at each run, based on the residual errors of previous

runs. These GP runs produce multiple models, each focusing on

the current target. Recent studies show that such an approach can

be more effective than evolving a single model [44, 45, 61].

In particular, DTC follows the SGP-DT [61, 62] dynamic target

framework, recently proposed by Ruberto et al. for the symbolic

regression domain [61]. SGP-DT runs a GP algorithmmultiple times

to produce a sequence of GP models (called partial models), where

each model focuses on a particular characteristic of the problem at

hand. Then, it generates the final model with a linear combination

of all the partial models. A key property of SGP-DT is that it does

not fix the targets in advance, instead it dynamically discovers

them during the GP evolution. At the first iteration, the target

is the training instances. At the other iterations, SGP-DT defines

the next target as the residual errors of the current iteration, i.e.,

the values predicted by the partial model minus the values of the

(current) target. As such, the next iteration will focus on the problem

characteristics that the previous iteration did not approximate well.

Evolving a discriminant function. Algorithm 1 describes how

DTC evolves a discriminant function for each class 𝑐 𝑗 ∈ 𝐶 . Function
evolve-discriminant-function has four inputs: (i) the class in

input (𝑐 𝑗 ), (ii) the training set (T), (iii) the number of external itera-

tions (𝑁ext), which corresponds to the number of partial models, and

(iv) the number of internal iterations (𝑁int), which is the number

of generations that DTC uses to optimize each partial model. DTC

outputs f, the discriminant function for class 𝑐 𝑗 .

Masking. An initial masking phase (Lines 2 to 10) transforms the

training setT intoT𝑚𝑎𝑠𝑘 bymasking all the classes that are different

from 𝑐 𝑗 . More specifically, it replaces the dependent variables �𝑦 with
either +1 (if 𝑦𝑖 = 𝑐 𝑗 ) or -1 (if 𝑦𝑖 ≠ 𝑐 𝑗 ).

However, this likely introduces an imbalance problem [21], with

𝑐 𝑗 the minority class and 𝑐 𝑗 (all classes that are not 𝑐 𝑗 ) the majority

Algorithm 1: Dynamic Target Classifier (DTC)

input :𝑐 𝑗 : class in input
T = {( �𝑥𝑖 , 𝑦𝑖 ), 𝑖 = 1, 2, · · ·𝑛} : training set
Next : number of external iterations
Nint : number of internal iterations

output : f : discriminant function for class 𝑐 𝑗

1 Function evolve-discriminant-function
2 T𝑚𝑎𝑠𝑘 ← ∅
3 numc𝑖 ← 0 // # of instances belonging to class 𝑐 𝑗

4 for each ( �𝑥𝑖 , 𝑦𝑖 ) ∈ T do
5 if 𝑦𝑖 = 𝑐 𝑗 then
6 add ( �𝑥𝑖 , +1) to T𝑚𝑎𝑠𝑘
7 num𝑐 𝑗 ← numc 𝑗 + 1
8 else
9 add ( �𝑥𝑖 ,−1) to T𝑚𝑎𝑠𝑘

10 imb ←
𝑛−num𝑐 𝑗
num𝑐 𝑗

// imbalance coefficient

11 �𝑡 ← �𝑦 ∈ T𝑚𝑎𝑠𝑘 // initialization of the target

12 partialModels ← ∅
13 for ext-iter 1 . . . 𝑁ext do // external iterations

14 P ← get-random-initial-population()
15 for int-iter 1 . . . 𝑁int do // internal iterations (GP runs)

16 for each I ∈ P do
17

18 Ils ← compute-ls(I, �𝑥, �𝑡 ) // linear scaling

19 �𝜖 ← �𝑡 − Ils ( �𝑥) // error of the individual

20 �𝑝 ← �𝑦 − �𝜖 // prediction

21 �ℎ𝑙 ← ℓ ( �𝑝) : max(0, 1 − �𝑡 · �𝑝) // hinge-loss

22 fitness(I) =
𝑛∑
𝑖=1

⎧⎪⎪⎨
⎪⎪⎩
�ℎ𝑙
2

𝑖 · imb if �𝑦𝑖 = +1

�ℎ𝑙
2

𝑖 otherwise

23

24 I★
𝑙𝑠 ← get-best-individual(P)

25 if fitness(I★
𝑙𝑠 ( �𝑥)) = 0 then

26 break loop line 13

27 P′ ← ∅
28 add elite(P) to P′

29 while P′ is not full do
30 I ← tournament-selection(P)
31 add mutate(I) to P′

32 P ← P′

33 add I★
𝑙𝑠 to partialModels

34 �𝑡 ← �𝑡 − I★
𝑙𝑠 ( �𝑥) // update the new target

35 f ←
∑

model∈partialModels

model

36 return f

masking

fitness computation

class. In this scenario, classifiers can have good accuracy on the

majority class but very poor accuracy on the minority class [7].

One possible solution for imbalanced data in ML are sampling tech-

niques [21] that artificially balance the training set. However, they

suffer from overfitting and poor generalization issues [7].

Instead, we use an imbalance ratio to amplify the incorrect pre-

dictions of the minority class by a factor of the class imbalance [7].

For this reason, we count the number of instances in T𝑚𝑎𝑠𝑘 that

belong to class 𝑐 𝑗 (num𝑐 𝑗 ). DTC needs this information to compute

the imbalance ratio imb at line 10, i.e., the ratio of the instances that

do not belong to class 𝑐 𝑗 (𝑛 − numc𝑗 ) to those that belong (numc𝑗 ).

When computing the fitness function, DTC will rely on this ratio

to adjust the hinge-loss scores of the instances belonging to 𝑐 𝑗 .
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DTC then starts the external and internal iterations of the dy-

namic target approach [61]. It initializes the current target �𝑡 with the
dependent variables �𝑦 of the masked training set (line 11), and starts
the 𝑁𝑒𝑥𝑡 external iterations. At each external iteration (lines 13-

34), DTC instantiates P (line 14) with a fresh randomly generated

population using the ramped-half-and-half approach [34]. Then, it

starts the 𝑁int iterations to evolve P.

3.1 Fitness Computation

DTC computes the fitness scores of the individuals in P by relying

on the linear scaling [32] and the hinge-loss function [58].

Linear Scaling [32]. Function compute-ls calculates the linear

scaling [32] for each individual I ∈ P. Linear scaling adapts in-

stantly an individual to the best possible scale with respect to the

current target (�𝑡 ) [32]. This is particularly useful in our case be-

cause by using the hinge-loss function we introduce a boundary (0),

and the individuals might not be optimized for such an arbitrary

boundary. Note that we could have chosen any arbitrary bound-

ary, we chose 0 following standard practices. In other words, linear

scaling transforms the individuals so that their potential fit with

the current target is immediately given; we do not need to wait for

GP to produce an individual optimized for the boundary [32]. And

thus, in a dynamic-target approach linear scaling reduces the num-

ber of both external and internal iterations [61]. Fewer iterations

result in populations with simpler structural complexity and less

computational cost [61].

We compute the linear scaling of an individual I following the

equations of Keijzer [32]:

Linear scaling : I𝑙𝑠 = 𝑎 + 𝑏 · I (1)

where 𝑎 = 𝑡 − 𝑏 · I(�𝑥) and (2)

𝑏 =

∑𝑛
𝑖=1 [(𝑡𝑖 − 𝑡) · (I(𝑥𝑖 ) − I(�𝑥))]∑𝑛

𝑖=1 [(I(𝑥𝑖 ) − I(�𝑥))2]
(3)

where 𝑛 is the number of training cases, and 𝑡 and I(�𝑥) denote
the average target and average output value, respectively. The cost

of computing the linear scaling coefficients for each external itera-

tion is O(𝑁𝑖𝑛𝑡 · 𝑛 · |P |).

Hinge-loss function [58]. The hinge-loss is a loss function com-

monly used for training classifiers, most notably SVMs. At the best

of our knowledge, we are the first to use it in a GP classifier.

Figure 1 depicts the intuition behind the hinge-loss function.

The x-axis represents the distance from the boundary (0) of a given

instance, and the y-axis represents the loss value (or penalty) that

the function returns depending on the distance from the bound-

ary. The function penalizes instances that are incorrectly classified

proportionally to the distance from the boundary (<0 the red area

in Figure 1). A positive distance from the boundary incurs a low

hinge loss, or no hinge loss at all if the prediction is further away

from the boundary (>= 1 the green area in Figure 1). If the distance

from the boundary is 0 (meaning that the instance is exactly on the

boundary), then we incur a loss size of 1.

Figure 1: Hinge-loss function

The advantage of the hinge-loss function is that it captures the

situation in which the instance is correctly classified but with low

margin (the gray area in Figure 1), so that a search algorithm can

further improve it. This is the main difference from the commonly

used Root Mean Square Error (RMSE) and accuracy-based loss func-

tions. RMSE penalizes instances at the increasing of the distance

from the lines of the best fit (+1 and -1 in our case). Accuracy-based

loss functions do not distinguish correctly classified instances that

are very far (the green area in Figure 1) from or very near (the gray

area in Figure 1) from the boundary.

Hinge-Loss : ℓ ( �𝑝) = max(0, 1 − �𝑡 · �𝑝) (4)

where �𝑡 ± 1 is the intended output (current target) and the vector
�𝑝 are the predicted values.

Lines 19 to 22 compute the fitness score of the individuals using

the hinge-loss function. First, DTC computes the error ofI𝑙𝑠 with re-

spect to the current target �𝑡 , i.e., 𝜖 = �𝑡 −Ils ( �𝑥). Then, DTC computes

the prediction �𝑝 as the difference between the actual prediction val-
ues (�𝑦) and the residual errors �𝜖 , i.e., �𝑝 = �𝑦 − �𝜖 . Intuitively, because
�𝑡 captures the residual errors of all previous external iterations,
𝜖 represents the error that would be obtained if I𝑙𝑠 is used as the
next partial model. And thus, �𝑝 = �𝑦 − �𝜖 represents the hypothetical
prediction of the model (if I𝑙𝑠 is used as the next partial model).

Line 21 computes the hinge-loss values, as described above. Then

line 22 computes the fitness score of I by summing the hinge-loss

values for each 𝑖 = 1 · · ·𝑛 as follows: If 𝑦𝑖 = +1 (i.e, the actual class
is 𝑐 𝑗 ) we multiply the hinge-loss value ℎ𝑙𝑖 with the imbalance ratio
imb, otherwise we just sum the hinge-loss value ℎ𝑙𝑖 as it is. This is
to mitigate the class imbalance of the masked training set. In any

case, we consider the square of the hinge-loss to (i) penalize more

the high losses, and (ii) create a synergy with the linear scaling that

also uses the least square methods [32].

Running example.We exemplify the fitness computation with

a running example. Let assume that we have a masked training

set T𝑚𝑎𝑠𝑘 with three instances (𝑛 = 3), actual prediction values

�𝑦 = 〈+1,−1,−1〉, and imbalance ratio imb = 10.

Let assume that at the first internal iteration DTC computes the

fitness of a scaled individualI𝑎
𝑙𝑠
that returnsI𝑎

𝑙𝑠
( �𝑥) = 〈−0.7,−0.3, 0.0〉

when evaluated on the training set. Lines 19 and 20 compute the

error �𝜖 and prediction �𝑝 . In this case �𝑝 = I𝑎
𝑙𝑠
( �𝑥) because at the first

iteration there are not previous errors to approximate (i.e, �𝑡 = �𝑦,
line 11). The hinge-loss ℓ ( �𝑝) is the following:
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[hinge-loss for 𝑖 = 1]: the actual value of this instance is +1 and

the predicted value is -0.7, meaning that the point is on the wrong

side of the boundary, thus incurring a large hinge loss of ℎ𝑙1 = 1 -
(+1 · -0.7) = +1.7 (because max{+1.7, 0} = +1.7).

[hinge-loss for 𝑖 = 2]: the actual value of this instance is -1 and the

predicted value is -0.3, which is smaller than 0 but greater than -1.

The predicted class would be correct but the value is still too near

to the boundary and get a moderate penalty of ℎ𝑙2 = 1 - (-1 · -0.3) =
+0.7 (because max{+0.7, 0} = +0.7).

[hinge-loss for 𝑖 = 3]: the actual value of this instance is -1 and the

predicted value is 0, which means that the point is on the boundary,

thus incurring a cost of ℎ𝑙3 = +1.

The fitness of I1
𝑙𝑠
is [(1.72 · (imb = 10)) + (0.72) + (12)] =

28.9 + 0.49 + 1 = 30.39.

After 𝑁int internal iterations, before starting a new external iter-

ation, DTC updates the new target �𝑡 based on the residuals errors
of the current target and the best model I★

ls
(line 34). Let assume

that the best model I★
ls
is the individual discussed above (I𝑎

𝑙𝑠
). Thus,

the new target is �𝑡 = �𝑦 − I1
𝑙𝑠
( �𝑥) = 〈+1.7,−0.7,−1〉.

At the second iteration, let us assume that DTC computes the fit-

ness of a scaled individualI𝑏
𝑙𝑠
that returnsI𝑏

𝑙𝑠
( �𝑥) = 〈+1.2,−0.3,−1.0〉

when evaluated on the training set. This time at line 20 we need to

consider also the previous errors (the target �𝑡 ) in order to get the
prediction �𝑝 and calculate the hinge loss.

The difference between the target �𝑡 and the partial model I𝑏
𝑙𝑠
( �𝑥)

gives the error with respect to the training set �𝜖 = 〈+0.5,−0.4, 0〉.

The values predicted by I𝑏
𝑙𝑠
on the training set are �𝑝 = �𝑦 − �𝜖 =

〈+1,−1,−1〉 − 〈+0.5,−0.4, 0〉 = 〈+0.5,−0.6, 0〉. The corresponding
hinge loss will be �ℎ𝑙 = 〈+0.5, +0.4, 0〉. Then, DTC computes the

fitness score of I𝑏
𝑙𝑠
as explained above.

3.2 Evolution

After DTC computes all fitness scores for each individual in the

current population P, it gets the individual in P with the best (i.e.,

lowest) fitness score (I★
ls
). DTC then adds it to the list of partial

models. It then checks if its fitness score is zero. If so, then the

external loop at line 13 prematurely ends and DTC combines all

partial models in a single discriminant function f. Otherwise (the

common case), DTC evolves P into P′.

Following the dynamic-target framework [61], DTC uses a vari-

ant of the classical GP algorithm that does not use any form of

crossover. Ruberto et al. show that such a variant is effective for the

dynamic-target approach [61]. More specifically, DTC adopts the

standard elite operator (line 28), uses the tournament selection [57]

and the canonical mutation operators for tree-like individuals [61].

The tournament selection selects one individual Ils ∈ P (line 30),

mutates it with a certain probability (line 31) and adds it to P′.

After DTC completes all the 𝑁ext external iterations, it returns

the discriminant function f as a linear combination of all the partial

models produced during the external iterations (using the linear

scaling coefficient already computed at line 18). That is the sum

of the partial models with their linear scaling [32] coefficients. In-

tuitively, by combining all partial models we are summing all the

estimates of the residuals, and thus obtaining a function f that well

approximates the training set [60].

Algorithm 2: The DTC classifier

input :T = {( �𝑥𝑖 , 𝑦𝑖 ), 𝑖 = 1, 2, · · ·𝑛} : training set
𝐶 = {𝑐1, 𝑐2, · · · 𝑐𝑘 } : classes to predict
Next : number of external iterations
Nint : number of internal iterations

output :𝐹 : 𝑘 discriminant functions for each class in𝐶

37 Function train-classifier
38 𝐹 [] ← ∅
39 for each class 𝑐 𝑗 ∈ 𝐶 do
40 𝐹 [𝑐 𝑗 ]←evolve-discriminant-function(𝑐 𝑗 ,T,𝑁ext,𝑁int)

41 return 𝐹

input : �𝑥 : new instance to classify
𝐶 = {𝑐1, 𝑐2, · · · 𝑐𝑘 } : classes to predict
𝐹 : 𝑘 discriminant functions for each class in𝐶

output :predicted_class: predicted class of �𝑥 (𝑐 ∈ 𝐶)

42 Function GP-classifier
43 predicted_value[]← ∅
44 for each class 𝑐 𝑗 ∈ 𝐶 do
45 predicted_value[𝑐 𝑗 ]← 𝐹 [𝑐 𝑗 ] ( �𝑥)

46 predicted_class ← argmax
𝑐 𝑗 ∈𝐶

{predicted_value[𝑐 𝑗 ] }

47 return predicted_class

3.3 Classification

Algorithm 2 describes how DTC creates the discriminant functions

𝐹 (train-classifier) and classifies new instances (GP-classifier).

Function train-classifier has four inputs: (i) the training

set (T), (ii) the set of classes to predict 𝐶 = {𝑐1, 𝑐2, · · · 𝑐𝑘 }, (iii) the
number of external iterations (𝑁ext), and (iv) the number of internal

iterations (𝑁int). It constructs the set of discriminant functions by

invoking Function evolve-discriminant-function described in

Algorithm 1 for each class 𝑐 𝑗 ∈ 𝐶 .
Function GP-classifier has three inputs: (i) the new instance

to classify (�𝑥), (ii) the set of possible classes 𝐶 = {𝑐1, 𝑐2, · · · 𝑐𝑘 },
(iii) the set of discriminant functions (𝐹 ) returned by Function train-
classifier. It returns the set of discriminant functions by invoking

Function train-classifier. To classify a new instance �𝑥 , DTC
computes the predicted_value of every discriminant function in

𝐹 [𝑐 𝑗 ](�𝑥), where 𝑗 = 1 · · ·𝑘 (line 45). DTC returns the predicted

class as the one that corresponds to the function with the highest

predicted value (line 46). Ideally, only one function in the set returns

a value greater than zero. However, if multiple functions in 𝐹 return
values greater than zero, DTC considers the highest one. This is

because functions with higher predicted values are likely to have

more confidence in their predictions.

4 EXPERIMENT

We now describe an experiment that we conducted to evaluate the

classification accuracy of DTC on eight popular datasets. Moreover,

we compare DTC with eight state-of-the-art classifiers.

4.1 Datasets

Table 1 shows the characteristics of the eight datasets that we con-

sider in our experiments. The number of classes ranges from 2

(heart) and 15 (movl), and the number of instances from 270 (heart)

to 5,000 (wav). These are popular datasets for the multi-class clas-

sification problem. Six of these datasets are from the UCI data
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Table 1: The characteristics of the eight datasets used in our experiment

heart im-3 wav segm im-10 yeast vowel movl

# classes 2 3 3 7 10 10 11 15
# instances 270 322 5,000 2,310 6,798 1,484 990 360
# attributes 13 6 40 19 6 8 13 90

repository [17], and the other two, im-3 and im-10, are satellite

datasets from the United States Geological Survey (USGS) [71]. We

choose them because they are the datasets used by LaCava and

Silva to evaluate M2GP, M3GP, and M4GP.

Heart Statlog [17] (heart) has 270 instances and 13 attributes that

includes age, sex, cholesterol, type of pain, electrocardiogram char-

acteristics. This classification problem has two classes representing

the presence or absence of a heart disease.

Waveform_40 [9, 17] (wav) has three classes of waves generated by

a combination of 2 or 3 “base” waves. It includes 5,000 instances

generated by adding noise (mean 0, variance 1) in each of the 40

continuous attributes.

Image Segmentation [17] (segm) has 2,310 instances with 19 at-

tributes. The attributes represent the characteristics of a hand-

segmented region of 3x3 pixels randomly chosen from seven out-

door images (i.e., the seven classes to predict).

Yeast [17] (yeast) comprises 1,484 instances. Each instance is a set

of eight binary attributes, representing yeast protein traits. The 10

classes to predict are the possible 10 cellular localization sites of

these proteins. This dataset is very imbalanced [17].

Vowel [72] (vowel) includes 11 different vowel classes of the Japan-

ese language. Each of these 11 vowels is uttered 6 times by 15

different speakers for a total of 990 instances [72].

Movement Libras [16] (movl) has 15 classes of 24 instances each

(360 instances in total), represented as 90 continuous attributes.

Each class represents a type of hand gesture. This problem has the

highest number of classes (15) among the eight considered datasets.

The datasets im-10 and im-3 consist of satellite images from the

USGS [71]. The dataset im-10 includes 6,798 images, while im-3 322

images, which belong to ten and three classes, respectively.

4.2 Classifiers

We compare our approach with eight different classifiers. We con-

sider four standard non-GP classifiers: Random Forest (RF) [26],

Random Subspace (RS) [27]. Multi Layer Perceptron (MLP) [63],

and Support Vector Machines (SVM) [13]. We also consider the

following four state-of-the-art wrapper approaches, which employ

GP to select/construct features for a nearest centroid classifier [22].

M2GP [30] uses multiple trees to transform the original features in

a new n-dimensional space (where 𝑛 is decided in advance). M2GP
computes the class centroids and classifies instances according to

the nearest centroid. M2GP and all of its successor employ the

covariance matrix and the Mahalanobis distance to compute the

distance between instances and centroids [30].

Table 2: Configuration parameters of DTC

Parameter description value Parameter description value

population size (|P |) 100 size elitism 1

prob. of mutation 100% depth of tree (initialization) [1;4]

prob. mutation leaf level 70% max. depth of tree (mutation) 5

Ephemeral Random Constants (ERC) [-1;1] max. depth of tree (all phases) 15

tournament size 2 internal iterations (𝑁int) 50

M3GP [66] addresses the limitation of M2GP that needs to know

in advance the number of dimensions (𝑛). M3GP proposes genetic
operators to dynamically explore the number of dimensions to

optimize the classification.

eM3GP [66] is a variant of M3GP that uses ensembles. In particular,

it identifies the best feature transformations and uses different

strategies to build ensembles of such transformations.

M4GP [36–38] follows the same approach as M3GP with the main

difference of using a stack-based representation of individuals (while

both M2GP and M3GP use tree-like individuals). Such a representa-

tion gives the advantage that an individual returns multiple outputs,

and thus reduces the exploration cost [37]. There are three variants

of M4GP, each adopting a different parent selection criterion: (i)

tournament selection [57], (ii) lexicase [25, 68], and (iii) Age-Fitness

Pareto survival (AFP) [65], which exploits an archive of best in-

dividuals. For a fair and meaningful comparison, we consider the

variant of M4GP that uses tournament selection, because it is the

same selection criterion used by DTC.

We chose to compare with wrapper approaches because they

are known to drastically outperform previous GP classifiers that

evolve discriminant functions [37, 66]. Indeed, several researchers

reported poor classification accuracy for GP classifiers, especially

with classification problems with more than two classes [11, 35, 73].

4.3 Experimental Setup

Table 2 shows the configuration parameter values of DTC, which

are the same used by the dynamic target approach SGP-DT [61].

Note that the probability of mutation is 100% because DTC does not

use the crossover operator. While we kept the number of internal

iterations fixed for all experiments (𝑁int = 50), for the number of

external iterations (𝑁ext) we explored four different values (“low”:

20, “medium”: 40, “high”: 80, “very high”: 160) on some sample

data. We noticed that DTC needs a “high” or “very high” 𝑁ext with

datasets with a high number of instances or classes. yeast is the

only dataset that does not follow this trend (because it is very

imbalanced). As such, we choose the following values of 𝑁ext and

we kept them the same for every trial: “low” (yeast, heart), “medium”

(movl, im-3), “high” (wav, vowel), and “very high” (segm, im-10).
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Table 3: Median classification accuracy (%) of the 30 trials on the TEST set (statistical significance is marked in underlined bold)

dataset RF RS MLP SVM M2GP M3GP eM3GP M4GP DTC

heart 80.25 81.48 80.25 55.56 80.25 79.01 80.86 87.65 81.48
im-3 94.85 92.78 95.88 93.81 93.81 95.36 8.45 97.94 93.81
wav 81.50 82.20 83.33 86.30 84.87 84.33 81.23 86.03 85.90
segm 97.26 95.96 96.32 55.84 95.60 95.61 94.73 95.09 96.54
im-10 96.86 93.92 90.22 90.36 90.19 90.96 90.31 89.56 93.46
yeast 57.53 56.63 57.98 41.12 53.82 56.19 56.19 56.84 59.35
vowel 89.39 82.83 82.49 81.82 85.86 93.77 78.62 95.96 92.09
movl 71.76 65.74 75.93 14.35 62.96 57.07 65.15 76.85 76.39
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Figure 2: Distributions of the classification accuracy (%) of the 30 trials on the TEST set.

We contacted La Cava and Silva (the authors of MxGP), which

provided us the datasets and the classification accuracy results of

the eight classifiers (see Section 4.2). They also helped us to replicate
as much as possible their experimental setup, so that we could run

DTC on the same setup. Each classifier is run for 30 trials, and for

each trial, the dataset is randomly partitioned into 70% training and

30% testing. The performance of the classifiers is evaluated with the

median classification accuracy % of the 30 trials (
# correct pred.
# total pred.

· 100).

To check for statistical significancewhen comparing the accuracy

of DTC and the other eight classifiers, we performed the following

statistical tests. First, we performed a Friedman test [22] that indi-

cates significant differences between methods across all datasets.

Then,we computed the p-values with the post-hoc analysis based on

the non-parametric pairwiseWilcoxon rank-sum test [24] (𝛼 = 0.05).

5 RESULTS

Table 3 shows, for each dataset and classifier, the median classifica-

tion accuracy % (on the test set) of the 30 trails, For each dataset (row

in the table), the medians in underlined bold represent the distribu-

tions that are statistically significantly better than the ones not in

bold. If a dataset has multiple medians in underlined bold, it means

that there is no statistical difference among them. Figure 2 shows

the box plots of the distributions of the classification accuracy of the

30 trials. The results show that DTC achieves competitive results

on all datasets. In particular, we highlight four interesting findings.

I. DTC has high accuracy even with many classes (≥ 7). The

datasets with a higher number of classes (≥ 7) are segm, im-10,

yeast, vowel, and movl. If for each of these datasets we sort the

classifiers based on median accuracy, DTC is always in the TOP 3

classifiers. This is an unprecedented result for GP classifiers based

on discriminant functions [11, 35, 66, 73].
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Table 4: Median classification accuracy (%) of the 30 trials on the TRAINING set

dataset RF RS MLP SVM M2GP M3GP eM3GP M4GP DTC

heart 98.41 88.89 98.41 100.00 89.42 94.71 86.77 93.65 99.47
im-3 100.00 97.11 98.67 100.00 98.22 99.56 93.30 99.11 100.00
wav 99.47 92.01 98.49 100.00 87.40 90.69 81.86 88.81 91.77
segm 99.88 98.42 97.56 100.00 96.82 98.08 96.16 95.86 99.81
im-10 99.81 96.30 91.05 100.00 91.44 92.96 92.00 90.46 96.02
yeast 98.27 71.08 64.58 100.00 62.56 68.49 61.06 59.68 65.89
vowel 99.86 97.76 91.92 100.00 95.89 100.00 87.88 100.00 100.00
movl 99.21 92.26 91.27 100.00 100.00 100.00 100.00 100.00 100.00

II. DTC outperforms off-the-shelf classifiers for most of the

datasets. DTC has a higher median classification accuracy than

Random Forest (RF) for seven datasets (except im-3), Random Sub-

space (RS) for six datasets (except im-10 and heart), Multi Layer

Perception (MLP) for seven datasets (except im-3), and Support Vec-

tor Machines (SVM) for six datasets (except im-3 and wav). Notably,

SVM and DTC both use the hinge-loss function and the one-versus-

all classification strategy.

III. DTC outperforms early versions of MxGP.When consider-

ing the median classification accuracy, DTC outperforms M2-GP

and M3-GP for seven datasets (except im-3) and eM3-GP for all

datasets.

IV. DTC and M4GP achieve similar and complementary per-

formance. DTC outperforms M4GP for three datasets (segm, im-10,

yeast) with statistical significance in two of them. In the other five

datasets, they both achieve comparable accuracy. Interestingly, DTC

and M4GP exhibit complementary performance. Table 3 shows that

DTC and M4GP are the classifiers that collectively achieve the best

results overall (see the underlined bold medians).

Remarkably, La Cava recently experimented with a variant of

M4GP, called M4GP-float [37], that evolves discriminant functions

to directly classify instances (without relying on the nearest cen-

troid classifier). The results of La Cava show that the original M4GP

with tournament selection drastically outperforms M4GP-float, es-

pecially on the datasets with seven or more classes [37]. This is

also true if we compare DTC with M4GP-float. For example, for the

datasets segm, vowel, andmovl (|𝐶 | ≥ 7),DTC has amedian accuracy

on the test set more than double that the one of M4GP-float [37].

6 DISCUSSION AND CONCLUSION

In this paper, we presented DTC, a GP classifier for the multi-class

classification problem. At the best of our knowledge, DTC is the first

attempt to combine the synergy of the GP dynamic target approach,

hinge-loss function, and linear scaling. Our results on eight popular

datasets show that DTC achieves a classification accuracy that is

competitive with – and sometimes even better than – popular ML

approaches (e.g., RF, RS, SVM, and MLP) and the state-of-the-art

wrapper approaches for GP feature selection/construction (e.g.,

M2GP, M3GP, eM3GP, and M4GP). Notably, differently from DTC,

wrapper approaches employ GP to improve the performance of

other (non-GP) classifiers. DTC employs GP to perform the actual

classification and does not rely on other classifiers.

The promising results of DTC spark interesting future work.

Above all, there are three research directions that could further

improve the effectiveness of DTC.

Parameter tuning. Table 4 shows the median classification accu-

racy % of the eight classifiers on the training set. In some cases, a

high classification accuracy of DTC on the training set (Table 4)

corresponds to a significantly lower classification accuracy on the

test set (Table 3). For instance, on the movl dataset the median clas-

sification accuracy of DTC is 100% on the training set and 76.39% on

the test set. Even if 76.39% is the best result on the test set (together

with the one of M4GP), there might still be room for improvement.

In fact, this situation suggests over-fitting. A systematic exploration

of the parameters of DTC could help better understand this issue

and further improve the classification accuracy on the test set.

Alternative parent selection. Another interesting future work

is to study alternative parent selection techniques (DTC currently

uses tournament selection). In particular, the selection technique

lexicase [68] could work in synergy with the dynamic target ap-

proach. In fact, the dynamic target approach focuses on some char-

acteristics of the problem at every external iteration, while lexicase

could focus on a different portion of the training cases at each in-

ternal iteration. This would further promote the division of the

problem in smaller, hopefully, easier parts.

Reduce the computational effort. Population-based approaches

are generally computationally expensive. Indeed, DTC performs

many GP runs for learning one discriminant function, and needs

to learn one discriminant function for each class. To give an idea

of the typical resource consumed by DTC, we report the computa-

tional cost for the yeast dataset, which has ten classes (|𝐶 | = 10).

The median size of a partial model is 81 nodes (recall that DTC

evolves tree-like individuals). DTC computed 20 external iterations

(𝑁𝑒𝑥𝑡 = 20) for yeast, and thus it computed 1,640 nodes to evolve

ten discriminant functions. According to the results reported by La

Cava et al. [37], the cost of M4GP is on the same order of magnitude.

However, preliminary experiments show that by drastically re-

ducing the depth of the trees (15 in our experiments) the computa-

tional cost decreases significantly, while the classification accuracy

slightly decreases. Investigating the trade-off between classification

accuracy and computational cost is an important future work. Also,

one could both reduce the computational cost and improve the

performance of DTC by changing the way it represents individuals:

from trees to more compact or expressive structures (such as, the

stack-based representation used by M4GP [37]).
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