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ABSTRACT
Learning features from raw data is an important topic in machine
learning. This paper presents a novel GP approach to learn high-
level features from 2D images. It is a generative approach that
resembles the concept of an autoencoder. Our approach executes
multiple GP runs, each run generates a (partial) model that focuses
on a particular high-level feature of the training images. Then,
it combines the models generated by each run into a parametric
function that reconstructs the observed images. We evaluated our
approach on the popularMNIST dataset of 2D images representing
handwritten digits. Our evaluation results show that our parametric
approach can precisely reconstruct the MNIST hand-written digits.
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1 INTRODUCTION
Feature learning is an important topic in machine learning, as it
powers many classification and knowledge discovery techniques.
Such techniques need numeric representations of raw data (features)
that are mathematically and computationally convenient to process.
Feature learning becomes a key task when dealing with raw high-
dimensional data (e.g., 2D images, videos and sound), which do not
have well-defined features.

Recently, we have seen the first GP approaches that learn 2D
images features based on the autoencoder method [3–5]. These
approaches emulate the behavior of a neural-network autoencoder,
with forests of GP trees that reconstruct (encode and decode) the
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pixels of a given image [5]. Thus, following the classical Neural Net-
work (NN) autoencoder architecture with encoder→code→decoder.

Structured Layered GP (SLGP in short) [5] by Rodriguez-Coayah-
uitl et al. splits each image in input into smaller “image portions” to
be considered individually. SLGP evolves two sets of populations,
one set encodes the image portions outputting the code (i.e, latent
space), the other set decodes the code into the reconstructed image.
SLGP generates as many encoding GP trees as the size of code,
which has to be chosen in advance.

Concurrently with SLGP, McDermott proposed a similar autoen-
coder GP [4] that relies on two multi-value linear GP, one for the
encoder and one for the decoder.

GPMaL [3] by Lensen et al. is a GP manifold learning technique,
which relates to both SLGP and McDermott’s approaches. Manifold
learning aims to reduce the dimensions of raw data. This is similar,
in principle, to the encoder component of most autoencoders, which
transforms the input into a lower dimensional code (latent space).
GPMaL resembles the encoder of SLGP, as it also uses as many GP
trees as the number of dimensions of the latent space.

2 GP AUTO-ENCODER
This paper presents a Genetic ProgrammingAutoencoder for feature
learning on 2D images, but we believe that our approach is general
enough to be applied to other types of high-dimensional data, such
as videos or sounds.

There are three fundamental differences between our GP autoen-
coder and the previous ones. First, previous attempts emulate the
classical NN autoencoder architecture with three distinct compo-
nents: encoder→code→decoder. Conversely, we follow the general
idea of the classical NN autoencoder, without emulating its internal
architecture. As such, we avoid the issue of aligning the encoder
and decoder components. Second, previous attempts generate as
many decoding GP trees as the number of pixels in the image and
as many encoding GP trees as the size of code, which has to be cho-
sen in advance. Differently, our autoencoder dynamically adapts
the number of high-level features during the evolution. Third, our
approach relies on the pixel coordinates (structural information)
to learn high-level features, while previous attempts overlook this
important information.

The key challenge of using structural information for feature
learning is the variability of structural information among images
that represent the same concept. For example, when considering the
problem of classifying handwritten digits, “1” or “I” are two popular
styles for writing the number one. These styles have different albeit
similar structural information. A single non-parametric function

https://doi.org/10.1145/3377929.3389981
https://doi.org/10.1145/3377929.3389981


GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico S. Ruberto et al.

cannot output different pixel values for the same coordinate in
input, and thus cannot encode both styles.

Our autoencoder accounts for such variability by parameterizing
the GP model fgp so that changing the parameter values reproduces
the observed variability. That is, it allows fgp to output different
pixel values for the same coordinate. We define such parameters as
the coefficients of a linear combination of multiple GP models.

More specifically, we evolve a series of GP models (called partial
models) that learn high-level features by relying on both the values
of the pixels and their 2D coordinates. Our autoencoder takes as
input a training dataset of images and outputs a model represented
as a function fgp that given a 2D coordinate (c1, c2) returns the
value of a pixel p, i.e., fgp(c1, c2) = p.

Under the hood, we follow the SGP-DT approach [6] that exe-
cutes multiple GP runs (called external iterations). Each external
iteration evolves the partial models driven by a dynamic “target”
that changes at each iteration. Each target focuses on a particular
high-level feature of the training images, and it is defined as the
residual errors between the previous and current iterations. As such,
the next iteration will focus on the characteristics of the images that
the previous iteration does not approximate well. Each external iter-
ation will output a partial model that focuses on a specific high-level
feature of the images. At the end, the autoencoder creates fgp with
a linear combination of the partial models, using linear scaling [2]
to compute the coefficients of such a combination. Differently from
SGP-DT, these coefficients are the parameters of the model and
their values will be recomputed for any new image in input. No-
tably, the residual errors and the corresponding coefficients must
be computed following the same order used during the training.

3 EXPERIMENTS
Evaluation Setup. We performed a preliminary evaluation of our
approach on the popularMNIST dataset of 2D images representing
handwritten digits [1]. MNIST comprises a training set of 60,000
examples, and a test set of 10,000 examples. Each example is a
grayscale numeral bitmap image of 28×28 pixels representing a
handwritten digit from 0 to 9. MNIST is widely-used as a standard
benchmark in the ML community [1].

We considered a subset of theMNIST training set of 60,000 im-
ages to train the fдp models, by sampling 100 images for each of the
ten digits. We trained a different fдp model for each of the ten digits
by giving in input to our autoencoder the sampledMNIST images
corresponding to each digit. Due to the stochasticity nature of GP,
we relied on an ensemble methodology that combines the results of
multiple models for reconstructing the images. In our experiments,
we used ensembles of 50 models for one digit. As such, we obtained
500 models overall (10 digits × 50 ensembles). When reconstructing
images, for each of the 28×28 coordinates, we averaged the values
of the pixels returned by the 50 ensemble models.
Evaluation Results. The matrix in Figure 1 shows five images
from the MNIST test set and their reconstructions at various num-
bers of external iterations (i.e., partial models). Column Next shows
the images that our approach reconstructs using the linear com-
bination of the first Next partial models. With a low value of Next,
the reconstructed images focus on the macro characteristics of the

number of external iterations (Next)
original 2 5 10 15 20 25

Figure 1: Examples of test images reconstructed by our au-
toencoder at the increasing of the external iterations.

images. For instance, the images of Column Next = 2 show clouds of
dust that resemble the shape of the digits. When Next increases, the
finer details gradually appear because the autoencoder focuses on
the residual errors of previous iterations. The first models focus on
the macro characteristics of the image while the successive models
take care of the finer details. As Figure 1 exemplifies, the process
looks like a progressive cleansing of the images. This is because
the residual errors decrease at the increase of external iterations.

4 CONCLUSION
The parametric nature of our GP autoencoder shows promising
results. It successfully learns high-level features of digit images of
multiple hand-written styles. These are important results, consid-
ering that our autoencoder is one of the first GP attempts to learn
high-level features from 2D images.
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