
From Implemented to Expected Behaviors:
Leveraging Regression Oracles for Non-regression

Fault Detection using LLMs
Stefano Ruberto

JRC European Commission
Ispra, Italy

stefano.ruberto@ec.europa.eu

Judith Perera
University of Auckland

Auckland, New Zealand
jper120@aucklanduni.ac.nz

Gunel Jahangirova
King’s College London

London, United Kingdom
gunel.jahangirova@kcl.ac.uk

Valerio Terragni
University of Auckland

Auckland, New Zealand
v.terragni@auckland.ac.nz

Abstract—Automated test generation tools often produce
assertions that reflect implemented behavior, limiting their usage
to regression testing. In this paper, we propose LLMPROPHET, a
black-box approach that applies Few-Shot Learning with LLMs,
using automatically generated regression tests as context to
identify non-regression faults without relying on source code. By
employing iterative cross-validation and a leave-one-out strategy,
LLMPROPHET identifies regression assertions that are misaligned
with expected behaviors. We outline LLMPROPHET’s workflow,
feasibility, and preliminary findings, demonstrating its potential
for LLM-driven fault detection.

Index Terms—Regression Oracles, Non-Regression Faults, Few-
Shot Learning, Large Language Models, Fault Detection

I. INTRODUCTION

Recent advances in software testing have significantly
improved test input generation, leaving the oracle problem
as the primary obstacle to full test automation [1]. Existing
state-of-the-art tools such as EVOSUITE [2] and RANDOOP [3]
generate test case assertions that capture the implemented
behavior, which is useful for detecting regression faults in
future software versions. However, to uncover faults in the
current software version, these assertions must align with the
expected behavior—often known only to human developers.

The advancements in applying Large Language Mod-
els (LLMs) to software engineering tasks [4] have sparked
interest in their potential for generating test cases [5], [6] and,
more specifically, test oracles that capture expected behavior [7].
The study by Konstantinou et al. [7] evaluates the effectiveness
of LLMs in two key areas: oracle classification, which involves
determining whether a given assertion aligns with the expected
behavior, and oracle generation, which focuses on creating
new assertions that accurately represent the expected behavior.
Their findings reveal that LLMs frequently produce oracles
that reflect the program’s implemented behavior rather than
its expected behavior and are not successful in accurately
identifying which oracles align with the expected behavior.

This paper presents LLMPROPHET, a novel approach to
verify whether a regression assertion, which aligns with the
implemented behavior, also aligns with the expected behavior.
Unlike Konstantinou et al. [7], LLMPROPHET avoids prompt-
ing source code to LLMs directly, as this could introduce biases

class 
under 

test

Regression 
Test Generator

(e.g., evosuite, 
randoop) …

regression 
tests (T)

LLMPROPHET

for each test case …

class signature/structure

: non-regression 
fault revealing

: plausible

Fig. 1: Logical architecture of LLMPROPHET

into the LLM’s reasoning process. Instead, it uses regression
tests generated by existing tools to train an LLM on the behavior
of the class under test (CUT) through a Few-Shot Learning strat-
egy. By employing iterative cross-validation and a leave-one-out
technique – and by leveraging the LLM’s extensive internal
knowledge – LLMPROPHET identifies regression assertions
that do not capture the expected behavior, thereby revealing
non-regression faults. Our preliminary findings suggest that
this approach is promising and deserves further investigation.

II. LLMPROPHET

Figure 1 shows the logical architecture of our envisioned
approach. LLMPROPHET takes as input a regression test suite
generated by tools such as EVOSUITE [2], RANDOOP [3], or
PYNGUIN [8] represented as T = ⟨t1, t2, . . . , tn⟩, along with
the class signatures of the CUT and any relevant classes (i.e.,
CUT direct dependencies). It then automatically evaluates each
test case, marking it as non-regression fault-revealing or not.

Internally, LLMPROPHET leverages an LLM by querying it
n times – once for each test case in T . For each test case ti, the
LLM evaluates whether the assertion in the test aligns with the
expected behavior or merely aligns with the current (potentially
faulty) implementation. In essence, while the regression test
case under analysis pass on the current implementation (by
design), LLMPROPHET aims to determine whether it would
also pass on a correct implementation of the CUT.

During each query, the remaining n−1 test cases are provided
as contextual examples for the LLM to use as reference

979-8-3315-3467-7/25 © 2025 IEEE

Accepted for publication by IEEE. © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ICST Workshops 2025, Naples, Italy
AIST 2025

37



(representing possible input/output pairs). More formally, the
approach follows a cross-validation process: it selects n− 1
test cases as context for the model, applies Few-Shot Learning
with an LLM to approximate the behavior of the class under
test, and evaluates the remaining case ti using a leave-one-out
strategy.

This process is repeated iteratively for all test cases, ensuring
that each test is cross-validated. Note that a test case may
contain multiple assertions, in which case LLMPROPHET
evaluates each assertion individually. Since the entire process
is fully automated, LLMPROPHET provides an efficient
and novel way to identify potential non-regression faults in
the current version of the program, relying on automatically
generated regression tests.

A potential issue is that if the CUT is faulty, it is likely that
multiple tests would contain regression oracles that predicate
on incorrect program behaviors. This will result in the context
being polluted with noisy input/output pairs that do not align
with the expected (correct) behavior of the CUT. However,
our preliminary results reveales that this is not a critical issue.
In fact, we observed that LLMPROPHET, when specifically
prompted, recognizes and ignores such noisy test cases. From
our preliminary analysis we conjecture that this is because
an LLM deduces the expected behavior of the CUT not only
from the given examples, but (especially) also from contextual
information (such as class, method, and parameter names, as
well as JAVADOC/comments) and its vast internal knowledge.
This will be further discussed in the next sections.

III. RUNNING EXAMPLE

We now explain how LLMPROPHET works through a
running example. Listing 2 presents the prompt to determine
whether a regression test exposes non-regression faults.

The example involves a JAVA flight booking application.
The FlightBooking class is initialized with a customer
and implements a method, findBestFlight, which is
responsible for finding the best flight. The input parameter for
this method is an instance of the PreferenceDate class.
This class specifies a preferred flight date and a range, defined
in days, within which the application is allowed to propose
alternative dates with both backward and forward flexibility.
The method under test, findBestFlight, is expected to
return a date within the specified range based on an arbitrarily
complex internal logic.

Test case under analysis: Let us assume that LLMPROPHET
has invoked a regression test suite generator (e.g., EVOSUITE
or RANDOOP) that generated six test cases that predicate on
the return value of findBestFlight. For instance, consider
the following automatically generated JUNIT test case:

Customer customer06 = new Customer(24680,"Diana","Clark");
FlightBooking booking = new FlightBooking(customer06);
Date date01 = DateFormat.parse("20/05/2022");
PreferenceDate preferenceDate01 = new ←↩

PreferenceDate(date01,4);
Date date02 = booking.findBestFlight(preferenceDate01);
assertEquals(DateFormat.parse("15/05/2022"),date02);

Listing 1: regression test that predicates on an incorrect return value
of findBestFlight.

This test case initializes a flight booking instance for a
customer, sets a preferred flight date ("20/05/2022") with
a flexibility of four days, and checks if the returned date is
"15/05/2022". However, the assertion was automatically
generated by executing the code and assuming the values
returned by findBestFlight are correct (because it is a
regression test). While the assertion passes (i.e., it returns
true) on the current implementation, the test case triggers
a fault because "15/05/2022" lies outside the range spec-
ified by PreferenceDate (i.e, from "16/05/2022" to
"24/05/2022" inclusive). As such, in a correct implemen-
tation of findBestFlight, the test should fail.

GPT-4O, GPT-4O-MINI, GPT-O1, GPT-O1-MINI, and
LLAMA 3.3 70B can all correctly identify that this test reveals a
non-regression fault using only the prompt shown in Listing 2.

Class Description:
As an expert Java tester, you are given the following
abstract Java classes:

public class PreferenceDate {
public Date date;
public int flexibilityDays;

}

public class FlightBooking {
public void FlightBooking(Customer customer);
public Date findBestFlight(PreferenceDate date);

}

Example Test Cases:
1. Learn from this example:

Customer customer01 = new Customer(34567, "John", "Smith");
FlightBooking booking = new FlightBooking(customer01);
Date date01 = DateFormat.parse("10/12/2024");
PreferenceDate preferenceDate01 = new ←↩

PreferenceDate(date01, 3);
Date date02 = findBestFlight(preferenceDate01);
assertEquals(DateFormat.parse("11/12/2024"), date02); // ←↩

<outcome>true</outcome>

2. Learn from this example:

Customer customer01 = new Customer(12345, "Alice", ←↩
"Brown");

FlightBooking booking = new FlightBooking(customer01);
Date date01 = DateFormat.parse("16/08/2022");
PreferenceDate preferenceDate01 = new ←↩

PreferenceDate(date01, 3);
Date date02 = booking.findBestFlight(preferenceDate01);
assertEquals(DateFormat.parse("15/08/2022"), date02); // ←↩

<outcome>true</outcome>

3. Learn from this example:

Customer customer03 = new Customer(98765, "Eve", "Adams");
FlightBooking booking = new FlightBooking(customer03);
Date date01 = DateFormat.parse("05/09/2023");
PreferenceDate preferenceDate01 = new ←↩

PreferenceDate(date01, 3);
Date date02 = booking.findBestFlight(preferenceDate01);
assertEquals(DateFormat.parse("10/09/2023"), date02); // ←↩

<outcome>true</outcome>

4. Learn from this example:

Customer customer04 = new Customer(67890, "Bob", "Smith");
FlightBooking booking = new FlightBooking(customer04);
Date date01 = DateFormat.parse("01/01/2024");
PreferenceDate preferenceDate01 = new ←↩

PreferenceDate(date01, 5);
Date date02 = booking.findBestFlight(preferenceDate01);
assertEquals(DateFormat.parse("01/01/2024"), date02); // ←↩

<outcome>true</outcome>

5. Learn from this example:

Customer customer05 = new Customer(13579, "Charlie", ←↩
"Johnson");

FlightBooking booking = new FlightBooking(customer05);
Date date01 = DateFormat.parse("10/10/2023");

38



PreferenceDate preferenceDate01 = new ←↩
PreferenceDate(date01, 2);

Date date02 = booking.findBestFlight(preferenceDate01);
assertEquals(DateFormat.parse("12/10/2023"), date02); // ←↩

<outcome>true</outcome>

Instructions:
Some of the above assertions may be incorrect as they
capture the implemented behavior, not the expected
behavior. Exclude the incorrect examples from your
reasoning.
Now, consider this new test case:

Customer customer06 = new Customer(24680, "Diana", ←↩
"Clark");

FlightBooking booking = new FlightBooking(customer06);
Date date01 = DateFormat.parse("20/05/2022");
PreferenceDate preferenceDate01 = new ←↩

PreferenceDate(date01, 4);
Date date02 = booking.findBestFlight(preferenceDate01);

Evaluate the following assertion step by step, assuming a
correct implementation of the classes:

assertEquals(DateFormat.parse("15/05/2022"),date02);

Question:
Is this a plausible assertion? In other words, should the
outcome of this assertion be true or false?

Reason step by step and then answer with a single tag:
<outcome>true</outcome>, or
<outcome>false</outcome>

Listing 2. Example of LLMPROPHET’s prompt to detect
non-regression faults from automatically generated regression tests

The prompt consists of four main components: 1) Class
Description: the signatures of the class under test and relevant
classes (without the implementation) 2) Example Test Cases: a
set of test cases used by the LLM to infer the expected logic
behind the behavior of the method under test; 3) Instructions:
the description of the task, and 4) Question: the specific query
that the LLM is expected to answer.
1) Class Description: In our approach, the LLM derives its
expectations about the behavior of the CUT entirely from
its internal knowledge and the provided class signatures. We
intentionally exclude the actual class implementations from
the input. This decision ensures that the LLM infers the
correct expected behavior, rather than mimicking the current
(potentially faulty) implementation. By not providing the source
code, we avoid introducing bias that could interfere with
the LLM’s ability to assess correctness. Instead of virtually
executing the code, the LLM uses class names, parameter
names, and other textual descriptions as cues to retrieve its
understanding of the expected behavior. In this way, the LLM
functions as a black-box reasoning engine, identifying faults
by detecting deviations from these inferred expectations.

In this example, the input includes the method signatures of
the FlightBooking and PreferenceDate classes. Al-
though absent from this example, adding JAVADOC comments
could further improve the LLM’s performance by providing
additional semantic clues.
2) Example Test Cases: The second component of the
prompt consists of the remaining n − 1 tests (five in our
example). These tests are used in a few-shot learning scenario
to help the LLM learn the expected behavior of the CUT
by providing input/output pairs. For example, the first test
case has input PreferenceDate("10/12/2024", 3)

and output "11/12/2024". Note that all tests pass because
they capture the implemented behavior, as indicated by the
comment <outcome>true</outcome>.
3) Instructions: The third component of the prompt describes
the task by providing the test case under analysis. As mentioned
earlier, LLMPROPHET assumes that errors may exist in the
regression oracles of the example test cases, such as the third
example being incorrect ("10/09/2023" falls outside the
acceptable range). Therefore, the prompt informs the LLM that
some examples might be erroneous and should be ignored.
This approach introduces flexibility and helps prevent the
LLM from overfitting to the examples, a well-known issue in
AI, particularly with small datasets. Since the input does not
include the implementation and provides only sparse examples,
we expect the evaluation to also rely on the LLM’s vast
memory-derived knowledge, adapted from similar cases, and
the semantic clues given by the class signatures.
4) Question: The final component asks if the assertion
of the input test case (Listing 1) should pass or fail
in a correct implementation of the CUT. The prompt
requires the outcome of the assertion evaluation as an
<outcome>true/false</outcome> tag to facilitate the
automated parsing of the results. Since LLMs often perform
better with Chain-of-Thought reasoning, we explicitly request
this with the keyword “step by step”. This results in a
detailed output, but the final evaluation can be easily extracted
by parsing the <outcome> tag.

The prompt can be easily parameterized to evaluate different
test cases and classes in various scenarios while preserving
its structure. The principles outlined here are general, and
we expect this prompt to be applicable to different software
and LLMs. We have tested this prompt on the previously
mentioned five LLMs, confirming the validity of the design
principles, as it always correctly detects the test cases from
Listing 1 as non-regression fault-revealing (i.e., answering
<outcome>false</outcome>). This is despite the fact
that Example 3 is incorrect.

IV. LLMPROPHET’S SENSITIVITY TO THE EXAMPLES

We conducted a small-scale experiment to assess LLM-
PROPHET’s tolerance to variations in both the quantity and
correctness of input examples. We generated two sets of ten
test cases for the FlightBooking class: one with “faulty
assertions” (e.g., the one in Listing 1) that reflect incorrect
behavior, and another with “correct assertions” (e.g., the first
test case in Listing 2) aligned with the expected behavior.

Next, we created samples by combining different numbers
of faulty assertions (0, 1, 5, 10) and examples (0, 1, 5,
10), as shown in Table I, where zero examples constitutes
a zero-shot scenario. For instance, in our running example
(Listing 2), we provided five test cases as context for the
model, one of which contained a faulty assertion. We randomly
selected correct and faulty cases from our two sets of test
examples and used the same prompt format as in Listing 2.
Each combination was evaluated twice using always the
same test case under analysis of our running example, once

39



TABLE I: Results with GPT-4O using the non-regression fault-
revealing assertion of our example and a correct assertion, while
varying the number of provided and incorrect examples. ✓ and
✗ indicate a correct and incorrect classification, respectively.

assertion to analyse for the # incorrect # examples
test in Listing 1 examples 0 1 5 10

non-regression fault revealing
assertEquals("15/05/2022"),.);

0 ✓ ✓ ✓ ✓
1 ✓ ✓ ✓
5 ✓ ✓
10 ✓

correct
assertEquals("19/05/2022"),.);

0 ✓ ✓ ✓ ✓
1 ✓ ✓ ✓
5 ✗ ✓
10 ✓

with a faulty assertion (expecting "15/05/2022") and
once with a correct assertion (expecting "19/05/2022").
This allows us to evaluate both scenarios in which LLM-
PROPHET should produce <outcome>false</outcome>
and <outcome>true</outcome>. We used GPT-4O with
temperature 0.0 and top-p 1.0. We released all the prompts
used in this experiment [9].

Table I shows promising results: the LLM always
correctly identifies the faulty assertion by outputting
<outcome>false</outcome>. However, it fails once on
the correct assertion when the prompt includes five test cases,
all of which are faulty (outputting false instead of true). This
suggests the model can be biased toward incorrect behavior
when all examples in the prompt are wrong. Surprisingly, the
model recovers when presented with ten faulty examples and
zero correct ones, suggesting that, in most cases, our prompt
effectively instructs the LLM to ignore erroneous input/output
pairs. We conjecture that under these conditions, the LLM
relies on its internal knowledge to infer the correct behavior.

V. DISCUSSION

Our preliminary results demonstrate the LLM’s ability to
retrieve an appropriate model from its internal knowledge to
infer expected software behaviors. Indeed, the class signatures
in the FlightBooking example provide minimal informa-
tion about the expected method behaviors. However, the LLM’s
exposure to similar software systems and tests during training
allows it to interpolate or adapt to the current scenario. General
background knowledge, even non-technical, can also be crucial.
For example, knowing the traditional process for booking a
flight helps to correctly infer the expected behavior of the CUT.

Since the training set of LLMs can be extremely vast, we
expect most software behaviors to be well covered. However,
there may be exceptions where LLMPROPHET will be less
effective, such as when the functionality under test is too
specific or unusual, or when variable names and textual
information are insufficient or unrelated to the CUT’s behavior.
In such complex cases, we conjecture that, unlike the simple
FlightBooking example, the test cases will play a more
significant role in helping the LLM infer the CUT’s semantics.

VI. CONCLUSION AND FUTURE WORK

This paper presented a novel approach for automated testing
that uses automatically generated regression tests to detect
non-regression faults. To the best of our knowledge, this is a
novel way of leveraging the reasoning power and knowledge
base of LLMs for fault detection. This new idea paper sparks
interesting future work.

Prototype tool implementation: We plan to develop a
prototype tool that fully automates every step of LLMPROPHET:
test generation, prompt creation, and result reporting. Since our
approach is language-independent, it would be interesting to
evaluate LLMPROPHET’s effectiveness on different program-
ming languages. For instance, JAVA and PYTHON have well-
established regression test generation tools (i.e., EVOSUITE [2],
RANDOOP [3], PYNGUIN [8]).

Comprehensive evaluation: We need a comprehensive
evaluation involving several CUTs of varying complexity to
understand which semantic sources of information (test cases,
class signatures, comments, or the LLM’s internal knowledge)
contribute most to LLMPROPHET’s effectiveness. Although
test cases had minimal impact in our simple example, they
might become critical for more complex CUTs with less
straightforward input/output relationships. An ablation study
would help shed light on this. Moreover, a direct comparison
with the approach of Konstantinou et al. [7] is necessary to
confirm that a white-box approach that provides implementation
details to the LLM can bias it toward implemented rather than
expected behaviors.

Sustainability considerations: While recent LLMs achieve
remarkable performance, they are also CPU- and energy-
intensive. To reduce computational and energy consumption,
we can train specialized, smaller LLMs. We have already run
experiments on smaller, faster models like LLaMA 3.3 70B,
and further optimizations are likely possible. Additionally, test
generators like EVOSUITE can produce large test suites, so
approaches for selecting a representative subset of tests could
lower the overall cost of LLMPROPHET.

REFERENCES

[1] V. Terragni, G. Jahangirova, P. Tonella, and M. Pezzè, “Evolutionary
improvement of assertion oracles,” in ESEC/FSE, 2020, p. 1178–1189.

[2] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in ESEC/FSE, 2011, pp. 416–419.

[3] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random testing
for java,” in OOPSLA, 2007, p. 815–816.

[4] V. Terragni, A. Vella, P. Roop, and K. Blincoe, “The future of ai-driven
software engineering,” ACM Trans. Softw. Eng. Methodol., Jan. 2025.

[5] W. C. Ouedraogo, K. Kabore, H. Tian, Y. Song, A. Koyuncu, J. Klein,
D. Lo, and T. F. Bissyande, “Llms and prompting for unit test generation:
A large-scale evaluation,” in ASE, 2024, pp. 2464–2465.

[6] M. Schäfer, S. Nadi, A. Eghbali, and F. Tip, “An empirical evaluation of
using large language models for automated unit test generation,” IEEE
Transactions on Software Engineering, 2023.

[7] M. Konstantinou, R. Degiovanni, and M. Papadakis, “Do llms generate
test oracles that capture the actual or the expected program behaviour?”
in arXiv 2410.21136, 2024.

[8] S. Lukasczyk and G. Fraser, “Pynguin: Automated unit test generation
for python,” in ICSE, 2022, pp. 168–172.

[9] S. Ruberto, J. Perera, G. Jahangirova, and V. Terragni, “LLMPROPHET
experimental data,” 2025, https://doi.org/10.5281/zenodo.14889625.

40

https://doi.org/10.5281/zenodo.14889625

	Introduction
	LLMProphet
	Running Example
	LLMProphet's Sensitivity to the Examples
	Discussion
	Conclusion and Future Work
	References

