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Abstract—Large Language Models (LLMs) are showing remark-
able performance in generating source code, yet the generated
code often has issues like compilation errors or incorrect
code. Researchers and developers often face wasted effort in
implementing checks and refining LLM-generated code, frequently
duplicating their efforts.

This paper presents LLMLOOP, a framework that automates
the refinement of both source code and test cases produced
by LLMs. LLMLOOP employs five iterative loops: resolving
compilation errors, addressing static analysis issues, fixing test
case failures, and improving test quality through mutation analysis.
These loops ensure the generation of high-quality test cases that
serve as both a validation mechanism and a regression test suite
for the generated code.

We evaluated LLMLOOP on HUMANEVAL-X, a recent bench-
mark of programming tasks. Results demonstrate the tool
effectiveness in refining LLM-generated outputs. A demonstration
video of the tool is available at https://youtu.be/2CLG9x1fsNI.

Index Terms—AI4SE, software testing, program synthesis,
automated test generation, Large Language Models

I. INTRODUCTION

Recent years have seen remarkable progress in large language
models (LLMs), leading to their adoption across a wide range
of domains [1]. Beyond generating textual responses, LLMs
have shown great potential in generating source code [2]–[5],
promising to improve the productivity of software engineers [6].

Researchers and practitioners are studying and evaluating the
effectiveness of LLMs in generating source code from textual
prompts. While the results are promising [2], [3], [7], several
challenges remain [3], [5]. For instance, such code often fails
to compile, as LLMs do not inherently perform compilation
checks, requiring more sophisticated pipelines to handle such
tasks. Additionally, LLM-generated code frequently suffers
from dependency issues [5], such as missing libraries. These
models are also limited by the quality and of their training
data [8], which may include outdated or buggy code samples.

We observed that researchers and practitioners consistently
encounter these issues. This leads to significant wasted effort
in implement automated techniques to fix LLM-generated
code. A commonly adopted strategy involves feedback loops
that integrate LLMs with source code analysis tools (e.g.,
compilers) [9]. These tools identify issues, which are then fed

back to the LLM, providing contextual clues to refine the code
based on the reported problems. This iterative approach allows
LLMs to refine their output, correct mistakes, and produce more
robust and contextually appropriate code. However, setting
up these feedback loops often requires significant effort to
implement and setup properly.

This paper presents LLMLOOP, a framework to enhance the
quality and reliability of LLM-generated JAVA code. LLMLOOP
serves as an intermediary between developers/researchers and
LLMs, providing automated mechanisms to fix, validate, and
improve both source code and test cases produced by LLMs.
The tool is fully automated and highly configurable, enabling
researchers and developers to efficiently refine LLM-generated
code. LLMLOOP avoids the repeated effort in implementing
feedback loops and can be seamlessly integrated in any tool
or workflow that uses LLMs to generate JAVA source code.

The framework is for JAVA and runs within a dedicated
DOCKER image, functioning as a secure sandbox environment.
This ensures that the framework operates in isolation, protecting
the host system from the execution of any potentially harmful
code generated by the LLM during test case execution.

LLMLOOP currently implements five iterative self-
refinement loops: (i) to fix compilation errors, (ii) to improve
code quality issues reported by static analysis, (iii) to fix failures
of automatically generated test cases, (iv) to improve the quality
of the test cases via mutation analysis. These test cases serve
a dual purpose: identifying bugs in LLM-generated code and
providing an associated test suite for the generated code.

We evaluated LLMLOOP by assessing its effectiveness in
generating programming solutions of the HUMANEVAL-X [2]
benchmark, as compared to a baseline approach that invokes
the LLM only once (without incorporating any feedback loop).
The results show that LLMLOOP improves the quality of LLM-
generated code: pass@10 of 90.24% versus pass@10 of 76.22%
for the baseline. We believe that LLMLOOP provides substantial
benefits to the developer and research communities that are
using LLMs to generate code. A demonstration video on how to
use it is available at https://youtu.be/2CLG9x1fsNI

We publicly released LLMLOOP’s code and experimental
data: https://github.com/ravinravi03/LLMLOOP
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Fig. 1. Logical architecture of LLMLOOP

II. LLMLOOP

Figure 1 illustrates the logical architecture of LLMLOOP,
which leverages iterative feedback loops and multiple analysis
methods to enhance LLM-generated JAVA code. For each type
of feedback, LLMLOOP generates a dedicated prompt to guide
the LLM in improving the code (production or test) based on
the feedback (see “create prompt {input}” in Figure 1).

Inputs. The inputs to LLMLOOP are: 1) a prompt to generate
a program, 2) a series of command-line arguments (see Table I),
3) an optional test suite to validate the generated code.

The framework dynamically adjusts the LLM’s temperature
to optimize the generation process. It begins with the default
deterministic setting (temperature = 0) or the temperature
specified in input (flag -t) but increments the temperature
by 0.1 in successive runs if errors persist. This introduces
variability, potentially resolving repeated issues. Studies like
Liu et al. [3] suggest an optimal temperature for generating
code is around 0.2, guiding LLMLOOP’s adaptive adjustments.

Outputs. The output of LLMLOOP is a MAVEN project
containing the improved code generated by the LLM along
with an automatically generated test suite in addition to the
given test suite (if any).

While the canonical input is a prompt and arguments,
LLMLOOP can also start from an existing MAVEN project.
In such cases, it can automatically fix and improve a specific
class under test or integrate newly generated code into the
project. This functionality is particularly useful as it relies
on dependencies already declared in the project. Additionally,
users can use LLMLOOP to create a new project from scratch,
fix bugs in an existing project, or enhance test suite coverage
by providing the root directory and the path to a test class. For
simplicity, the rest of the paper will assume the canonical use
of LLMLOOP.

Implementation Details. LLMLOOP is implemented for
JAVA programs, leveraging the MAVEN ecosystem and the
MAVEN build automation tool for dependency resolution.

To address security concerns related to running LLM-
generated code, LLMLOOP operates within a DOCKER con-
tainer. This isolated environment safeguards the host system
from potential vulnerabilities, including malicious code that

TABLE I
COMMAND-LINE FLAGS OF LLMLOOP

Flag Additional Argument Description

-e - Enable EVOSUITE
-p Path to JAVA project (String) Path to an existing JAVA project
-d - Enable debug logging
-t - Enable test generation using LLMs
-r - Enable code coverage report
-n Number of retries (Int) Set the number of attempts in the feedback loop
-s - Enable static analysis of code generated by LLM

-mut - Enable mutation analysis of tests generated by LLM
-temp Temperature value (Float) Set the temperature of the LLM model

-ts Path to test suite (String) The relative path of the test suite
-depth Dependency depth (Int) The depth of the dependency tree

-m Number of minutes (Int) Number of minutes that EVOSUITE runs for

might originate from open-source training data. Using a sand-
box environment ensures the protection of sensitive information
and maintains system integrity [2], [10].

LLMLOOP’s implementation uses the OpenAI APIs1 to
interact with LLMs, leveraging OpenAI’s extensive range of
powerful LLMs and its position as a leading provider in the
LLM field. However, it could be easily adapted to any LLM.

A. Feedback Loops in LLMLOOP

Loop 1: Fixing Compilation Errors The first feedback
loop ensures all generated or modified code is compilable. The
process begins with an initial prompt to the LLM, supplemented
with comments to direct it to produce JAVA 11-compliant code.
We choose JAVA 11 because EVOSUITE currently supports
up to Java 112. The LLM’s response is structured as a nested
JSON object containing:

• src: A map of file paths to code strings.
• main: Configuration for running the project.
• dependencies: A list of required dependencies.

The framework parses the JSON object, updates the MAVEN
project, and attempts to compile it. If compilation errors are
detected, their details (location and type) are fed back to
the LLM for refinement. This loop continues until the code
compiles successfully or a set limit is reached (-n).

Loop 2: Test Failures After generating compilable code,
the framework runs the given test cases (if any). The feedback
provided to the LLM consists of the test cases that fail, along
with the corresponding stack traces for each failure. In this

1https://platform.openai.com/docs/models
2https://github.com/EvoSuite/evosuite

https://platform.openai.com/docs/models
https://github.com/EvoSuite/evosuite


loop, we assume the given tests are correct and only ask the
LLM to fix the generated code so that the tests pass.

Loop 3: Static Analysis When all given test pass, or the
budget is reached, the framework performs static analysis using
the PMD MAVEN plugin. PMD3 is an extensible multilanguage
static code analysis tools that detects common programming
flaws like unused variables, empty catch blocks, unnecessary
object creation, etc. It comes with 400+ built-in rules and
can be extended with custom rules. It parses source files into
abstract syntax trees (AST) and runs rules against them to
find violations. Once the PMD report is generated, LLMLOOP
performs the following steps:

1) Parses the PMD report for violation details.
2) Prompts the LLM to fix these issues.
3) Iterates until no violations remain or the iteration limit is

reached.

To ensure compatibility, the framework dynamically verifies
and adds required plugins and dependencies to the pom.xml
file using MAVEN.

Loop 4: Test Generation LLMLOOP supports two test
generation strategies:

• EVOSUITE: A search-based tool that generates unit tests
with high code coverage [11], [12].

• LLM-Generated Tests: The LLM creates test cases based
on provided prompts and project context [13]–[16].

The two modes of test generation offer different approaches
to testing. The test suite generation by EVOSUITE focuses
on achieving a set of coverage objectives guided by a fitness
function. The produced test cases contain test oracles that
capture the implemented behaviour (but not the intended
behaviour), leading to test cases applicable only for a regression
scenario [17], so all tests would pass by construction.

The test generation by LLMs, however, is not guided by any
pre-determined algorithm, but is expected to produce test code
similar to the one produced by humans (due to being trained
on a large set of human-produced data) and often produces
test oracles that capture the expected behaviour instead of
the implemented behavior [17], [18]. The prompt used by
LLMLOOP explicitly instructs to generate test cases that
achieve high coverage, to ensure that both positive and negative
scenarios are covered and to take into account exceptional cases
and boundary values.

Both types of generated test cases are validated through the
MAVEN test lifecycle. If failures occur for the LLM-generated
tests, the details are sent back to the LLM for refinement. This
iterative process continues until the test suite pass all the test.
Note that in order to make the test suites pass the LLMs can
change either the generated source code, the generated test
code, or both. This means that LLMLOOP lets the LLM to
autonomously determine whether the test cases reveal a bug in
the generated code or if the test cases themselves contain issues

3https://docs.pmd-code.org/latest/index.html

that need to be fixed. As such, loop 4 can potentially improve
both the code under test and the associated automatically LLM-
generated test suite.

Loop 5: Mutation Analysis Once LLMLOOP ensures that
all the generated test cases are passing, it proceeds with
the further improvement of the test suite quality. For this
purpose, we use mutation testing, which evaluates the test suite
effectiveness by introducing errors (mutants) into the code.
These mutants are slight variations of the original code. The
test suite is then executed against these mutants to determine
whether it can detect the seeded errors. If a test suite fails to
identify a mutant, it indicates a potential weakness or gap in
the tests. This approach provides a quantitative measure of test
suite quality. Loop 5 needs that all generated tests are passing
on the given version, as mutation testing requires a ‘green‘ test
suite were all test pass. Note that this step is only performed
for the generated tests, not for the given tests (used in loop 2).

LLMLOOP uses the PIT4 mutation testing tool and performs
the following steps:

1) Generate a report of surviving and killed mutants.
2) Provide details of surviving mutants to the LLM for

refinement.
3) Iterate until all mutants are addressed or the iteration limit

is reached.

III. EVALUATION

Benchmark. To evaluate LLMLOOP, we used
HUMANEVAL-X [19], an extension of the popular
HUMANEVAL [2] benchmark. Unlike the original benchmark,
which focuses solely on PYTHON, HUMANEVAL-X expands
to multiple programming languages, including JAVA, and
introduces 80× more test cases [3]. HUMANEVAL-X contains
164 coding problems in JAVA, each comprising a function
signature, a docstring describing the function’s intended
behavior (which we will use as the initial LLM prompt),
and a test suite of unit tests. These tests serve as a widely
accepted proxy for correctness. Following prior work on
program synthesis, we consider a solution correct if it passes
all the provided test cases [19]. The test suite is divided into
example and validation tests. Example tests (used in Loop 2)
are designed to guide the program synthesis tool in solving
the task; validation tests are exclusively used to assess the
correctness of the generated code and kept hidden during
program synthesis.

Experimental Setup. We developed a PYTHON script
to convert the function signatures and docstrings from
HUMANEVAL-X into class skeletons. Additionally, we trans-
formed HUMANEVAL-X’s tests, originally written as stan-
dalone main functions, into JUNIT tests for compatibility with
the framework. After reformatting the problems, LLMLOOP
launches a DOCKER container based on the framework’s image,
with the project files mounted into the container for execution.

4https://pitest.org/



TABLE II
PASS@1 OF HUMANEVAL-X PROBLEMS (MEAN OVER 10 RUNS) AT EACH

STEP OF LLMLOOP.

LLMLOOP stage pass@1 pass@1
(mean ± std) (mean %)

#1 Baseline (no feedback loop) 117.50 ± 1.20 71.65%
#2 Compilation (Loop 1) 125.30 ± 1.55 76.40%
#3 HUMANEVAL-X Given Tests (Loop 2) 130.40 ± 2.91 79.51%
#4 Static Analysis (Loop 3) 130.50 ± 3.11 79.57%
Loops 4 and 5 repeated for LLM and EVOSUITE-generated test cases
#5 LLM Tests (Loops 4 + 5) 132.50 ± 3.14 80.55%
#6 EVOSUITE Tests (Loops 4 + 5) 132.60 ± 3.10 80.85%

For our experiments, we used OpenAI’s GPT-4O-MINI
LLM. The terminal prompt provided to the DOCKER container
included all the necessary flags to perform every stage of the
framework (see Table I). The number of retries (-n) and the
depth of the dependency tree (-d) were both set to five. We
presented each of the 164 JAVA problems to the LLM using a
standardized initial prompt for code generation. To account for
the non-deterministic nature of LLM output, we ran LLMLOOP
ten times for each problem.

The second column in Table II gives the order of loops
used in our experiments. We started with the Compilation
Loop (Loop 1 in Figure 1) because successful compilation is
necessary for executing tests and performing static analysis.
We then used the HUMANEVAL-X example tests to guide
the feedback loop (Loop 2), applied static analysis (Loop 3),
and finally generated additional tests using both LLM and
EVOSUITE (Loops 4-5). It is important to mention that Loop
1 is triggered every time the code changes, even in subsequent
loops. This is because Loop 1 must always ensure that the
code is compilable to perform the static analysis and run the
test suites.

We evaluated the framework’s effectiveness with pass@k [2]:
The probability that at least one out of k independently
generated code samples for a given problem passes all the
test cases. We computed pass@1 to pass@10, aligned with the
ten runs for each problem in input. This metric is particularly
relevant for LLMs due to their non-deterministic nature, where
identical inputs may produce different outputs. Considering
multiple samples, pass@k provides a robust measure of
performance [2].

How to run the experiments. To run the HUMANEVAL-X
evaluation, the following steps should be followed:

1) Build the DOCKER image and tag it as framework.
2) Run the generate.py script to begin generating solu-

tion attempts for the problems in the dataset.
3) Once the script completes, the solutions will be in the

results/result.json file, and the logs will be in
the framework_logs directory.

There are various scripts to analyze the data. Each of the
analysis scripts takes a list of directories or runs as command-

Fig. 2. Pass@K for the ten runs, baseline vs LLMLOOP

line arguments, each containing the framework JSON logs for
the problem. The scripts include:

• aggregate.py: Calculates the average number of
problems passed at each stage, both individually and
cumulatively, with standard deviations.

• stats.py: Displays this data as a bar graph.
• pass_k.py: Calculates the pass@k values for the

baseline and framework and plots them on a line graph.

Results. Table II shows the average number of problems
solved at each stage of the framework across ten runs. The
framework solved an average of 132.6 problems, a 9.2%
improvement over the baseline, which solved 117.5 problems.
Average pass@1 increased from 71.65% for the baseline to
80.85% after completing all loops of LLMLOOP.

Figure 2 illustrates the improvement in pass@k metrics. The
baseline achieved a pass@1 of 71.65%, rising to 76.22% at
pass@10. In comparison, LLMLOOP achieved a pass@1 of
80.85% and a pass@10 of 90.24%. The framework consistently
outperformed the baseline, with a 9.2% increase at pass@1 and
a peak difference of 14.02% at pass@10. The iterative feedback
loops in LLMLOOP amplified the baseline’s improvements as
the number of code samples increased.

The results show that the performance of GPT-4O-MINI ben-
efited from the iterative refinement provided by LLMLOOP. The
largest improvement came from the Compilation Loop, which
ensures that code compiles successfully, enabling subsequent
tests and analyses. The feedback of the HUMANEVAL-X’s
example tests (Loop 2) also contributed significantly, aligning
the generated code more closely with the problem requirements.

Later stages of the framework provided smaller gains. The
LLM-generated tests (Loop 4) showed (small) improvements,
as they could targeted expected behavior [17] (rather than
implemented one). Differently, EVOSUITE-generated tests
had zero gain in pass@1, as expected. Indeed, EVOSUITE
generates tests with regression oracles to validate implemented
logic (for regression testing), rather than checking program
correctness [11], [17].

IV. LIMITATIONS AND FUTURE WORK

One limitation of LLMLOOP is the time required to complete
all loops, which increases computational costs due to the



frequent invocation of the LLM (often taking several minutes).
This makes the approach less sustainable, as repeatedly
invoking the LLM is very expensive in terms of both energy
and computation. Future work could focus on reducing the
number of LLM interactions by prioritizing feedback that is
most likely to significantly improve the code. For example,
LLMLOOP could begin by addressing the compilation error
associated with the most issues in the code.

Another important future work is evaluating the quality
of the tests generated by LLMLOOP (in particular the
improvement of Loop 5). Due to space limitations, this was
not included in this paper. It will be interesting assessing both
LLM-generated and EVOSUITE tests generated and improved
via feedback loops [20].

Future work could also integrate LLMLOOP as a plugin for
IDEs to encourage adoption by developers. While researchers
may continue using the command-line version, an IDE plugin
would improve usability, bringing LLMLOOP closer to a mature,
IDE-friendly tool.

Finally, extending LLMLOOP to support PYTHON is also
important. This could replace EVOSUITE with PYNGUIN [21]
to generate PYTHON test cases, and PIT with MUTPY.

V. RELATED WORK

Using feedback loops is a common approach to improving
LLM-generated code [10]. However, LLMLOOP is the first
framework designed to reduce the repeated effort typically
required to set up such loops. Additionally, LLMLOOP intro-
duces new types of feedback loops that are not explored in
other techniques, which focus solely on handling compilation
errors and test failures [13]–[16].

The work most closely related is SELFEVOLVE [9], which
employs a self-correcting loop with a PYTHON interpreter
to detect and fix errors in the generated code, including
test failures. The loop iterates until all errors are resolved
or a maximum number of iterations is reached. However,
SELFEVOLVE is limited to PYTHON and does not implement
feedback loops using static analysis output or automated test
generation, as LLMLOOP does. Also, SELFEVOLVE is not
currently publicly available, and its companion paper is an
ArXiv preprint, which may not have been peer-reviewed yet.

VI. CONCLUSION

This paper presented LLMLOOP, a framework to automat-
ically improve LLM-generated JAVA code through iterative
feedback loops. By open-sourcing LLMLOOP, we aim to
empower researchers and developers with an important asset
to reduce repeated effort when generating code with LLMs.
Moreover, the community could extend its capabilities, optimize
its performance, and explore new feedback mechanisms. We
hope that LLMLOOP will serve as a useful starting point for
improving the quality and reliability of LLM-generated code.
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