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Abstract—Automatic generators of GUI tests often fail to
generate semantically relevant test cases, and thus miss important
test scenarios. To address this issue, test adaptation techniques can
be used to automatically generate semantically meaningful GUI
tests from test cases of applications with similar functionalities.

In this paper, we present ADAPTDROID, a technique that
approaches the test adaptation problem as a search-problem, and
uses evolutionary testing to adapt GUI tests (including oracles)
across similar Android apps. In our evaluation with 32 popular
Android apps, ADAPTDROID successfully adapted semantically
relevant test cases in 11 out of 20 cross-app adaptation scenarios.

Index Terms—GUI testing, test reuse, search-based testing, test
and oracle generation, Android applications

I. INTRODUCTION

Verifying GUI applications is both important, due to their
pervasiveness, and challenging, due to the huge size of their
execution space [1]. GUI testing is a popular way to verify the
behavior of GUI applications, which amounts to design and
execute GUI test cases. A GUI test case (GUI test in short)
consists of (i) a sequence of events that interact with the GUI,
and (ii) assertion oracles that predicate on the GUI state.

Because manually designing GUI tests is expensive, many
automatic GUI test generators have been proposed. Current
approaches generate GUI tests either randomly [2] or by relying
on structural information that they obtain either from the
GUI [3]–[5] or from the source code [6]. Current approaches
suffer from two main limitations. By largely ignoring the
semantics of the application, they produce tests that are either
semantically meaningless or unrepresentative of the canonical
usage of the application [7]. Thus, they likely miss the GUI
event sequences that properly exercise functionalities and reveal
faults [8], [9]. Moreover, current GUI test generators rely on
implicit oracles [10], [11] that miss many failures related to
semantic issues [9], [12].

Recently, researchers investigated the opportunity to address
these challenges by exploiting semantic similarities across GUI
applications [13]–[15]. Indeed, browsing the Google Play Store
reveals many Android apps that are semantically similar, albeit
offering different graphics appearance, access permissions, side
features, and user experience [16]–[18]. Hu et al. have shown
that among the top 309 non-game mobile apps in the Google
Play Store, 196 (63.4%) of them fall into 15 groups that share

many common functionalities [15]. This confirms the huge
potential of sharing tests across similar applications because
common functionalities yield to common GUI tests [15].

The recent CRAFTDROID [19] and APPTESTMIGRA-
TOR [20] approaches generate GUI tests by automatically
adapting existing GUI tests across similar Android apps. Both
approaches generate new tests for a recipient app, by adapting
the tests designed for some donor app that shares semantically
similar functionalities with the recipient app. Test adaptation,
when successful, addresses the limitations of existing GUI test
generators: (i) it yields to semantically meaningful GUI tests
that characterize canonical usages of the app under test. (ii) it
leverages the functional oracles of the donor tests.

CRAFTDROID and APPTESTMIGRATOR explore a GUI
model of the recipient app to find a sequence of events that
maximize the semantic similarity with the events of the donor
test. They compute the semantic similarity of GUI events
using word embedding [21] applied to the textual descriptors
of events extracted from the GUI widgets. Both techniques
greedily explore a single test adaptation scenario, missing the
many alternative adapted tests that could be generated starting
from a same donor test. Indeed, extensively exploring the
execution space is often imperative to identify a sequence of
events that well reflects the semantics of the donor test.

In this paper, we present ADAPTDROID, a technique that
formulates the GUI test adaptation problem as a search-problem
using an evolutionary approach. ADAPTDROID explores the
huge space of GUI tests with a fitness function that rewards the
tests that are most similar to the donor test. The ADAPTDROID
notion of similarity considers both the semantics of the events
and the capability of the adapted test to reach states where the
donor oracle can be applied to.

We implemented ADAPTDROID in a prototype tool, and
evaluated with a human study involving 32 Android apps.
Our results show that ADAPTDROID successfully adapts se-
mantically relevant GUI tests in 11 out of 20 test adaptation
scenarios. Thus confirming that test adaptation is a promising
and complementary solution for generating GUI tests.

In summary, the main contributions of this paper are:
• formulating the problem of adapting GUI tests across similar

applications as an evolutionary approach,
• proposing ADAPTDROID, to adapt both GUI event sequences

and oracle assertions across mobile apps,

1



eD1 = click(wD1)

wD1

eD2 = fill(wD2,”Test”)

eR1 = click(wR1)

wR1

wR2

wR3

wR4

wR5

wR6 wR7

wD2

wD3

wD4

eD4 = click(wD4) oD1 = not(exists(“Test”)

(A) Donor test case tD for Splendo app (AD)
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not(exists(“Test”)(wD4)

Fig. 1. Example of ADAPTDROID cross-application test adaptation

• presenting the results of a study showing that test adaptation
of Android apps is a valuable opportunity,

• presenting an empirical evaluation of ADAPTDROID that
highlights its effectiveness and limitations,

• releasing the ADAPTDROID tool and all experimental
data [22].

II. ADAPTING TESTS ACROSS GUI APPLICATIONS

GUI applications interact with users through a Graphical
User Interface (GUI) [23]. A GUI is a forest of hierarchical
windows (activities in Android), where only one window is
active at any time [3]. Windows host widgets, which are atomic
GUI elements characterised by properties: type, displayed text
(if any) and xpath (a label that uniquely identifies the widget
in the structural hierarchy of the window [24]). At any time,
the active window has a state S that encompasses the state
(properties values) of the displayed widgets. Some widgets
expose user-actionable events that users can trigger to interact
with the GUI. For instance, users can click on widgets of type
button or can fill widgets of type text field.

A GUI test t is an ordered sequence of events 〈e1, ..., en〉
on widgets of the active windows. A test execution induces
a sequence of observable state transitions S0

e1−→ S1
e2−→

S2 . . .
en−→ Sn, where Si−1 and Si denote the states of the active

window before and after the execution of event ei, respectively.
An event is an atomic interaction on a widget. Events are typed.
In this paper, we consider two common types of events

- click(w): clicking a widget w;
- fill(w, txt): filling a string txt in widget w.

Each test t is associated with one or more assertion
oracles [25] that check the correctness of the state Sn obtained
after the execution of t [26]. We use Ot to denote the assertions
associated with the test t, and consider two types of assertions:

- exists(txt) checks if Sn contains a widget with text txt:
exists(txt) ⇔ ∃w ∈ Sn : text(w) = txt;

- hasText(w, txt) checks if Sn has a widget w with text txt:
hasText(w, txt) ⇔ ∃w′ ∈ Sn : xpath(w′) = xpath(w) ∧
text(w′) = txt.
This paper presents ADAPTDROID to adapt GUI tests (in-

cluding oracles) across interactive applications that implement
similar functionalities. Given two Android apps AD (donor),
AR (recipient), and a “donor” test tD for AD, ADAPTDROID
generates a “recipient” test tR that tests AR as tD tests AD.

III. WORKING EXAMPLE

Figure 1 introduces a working example that illustrates the
challenges of adapting GUI tests across similar applications.
Figure 1A shows a donor GUI test (tD) designed for Splendo, an
Android app to manage tasks lists. The test adds a new task to
a task list, and verifies that the task disappears once marked as
done. Figure 1B shows how ADAPTDROID successfully adapts
tD to the recipient app Bills Reminder (AR), by generating
tR that adds a new bill to the bill list and verifies that the
bill disappears once marked as paid. Although the two apps
belong to different domains, they share the logical operations of
creating a new element (a task in AD, a bill in AR) and marking
it as completed (done in AD, paid in AR). Automatically
adapting GUI tests across apps presents three main challenges:
1) Huge space of GUI tests The space of the possible GUI
tests grows exponentially with both the length of the donor test
and the number of widgets in the recipient app [1]. Adapting
tests requires an effective search strategy that recognizes the
relevant GUI events in the recipient app.
2) GUI differences The donor test may exercise GUI widgets
that are logically equivalent but very different from the widgets
of the recipient app. For instance in Figure 1, semantically
similar widgets are labelled ''What is to be done?'' (wD2) and
''Payee/Item'' (wR2), respectively. Also, Splendo uses a tick
mark button (wD3) to save a task, while Bills Reminder uses
a floppy disk image button (wR4).
3) No one-to-one GUI event matching The donor and adapted
tests might have a different number of events. For instance,
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Fig. 2. The ADAPTDROID process

in Figure 1 the donor and recipient tests have four and seven
events, respectively. Creating a bill in Bills Reminder requires
more events than creating a task in Splendo. Marking a bill as
paid in Bills Reminder requires a date, while marking a task
as done in Splendo does not.

The next Section presents ADAPTDROID and discusses how
it addresses these challenges.

IV. ADAPTDROID

Figure 2 overviews the ADAPTDROID process. ADAPT-
DROID takes as an input the APK of a donor application
AD, a donor test tD and the APK of a recipient application
AR, and generates a test tR for AR.

ADAPTDROID adapts tests in five phases. The Semantic
Information Extraction phase executes tD on AD to extract
semantic information relevant to the adaptation process, such
as the semantic descriptors of the widgets exercised by
tD. The Initial Population Generation, Fitness Calculation
and Population Evolution phases implement an evolutionary
algorithm that evolves a population of GUI tests guided by
a fitness function that steers the evolution towards a test tR
as similar as possible to tD. The Population Evolution and
Fitness Calculation phases iterate until they either perfectly
adapt the test (fitness = 1.0) or a time-budget expires. The
Test Reduction and Oracle Injection phase removes irrelevant
events in tR and adds to tR the oracles adapted from tD.

ADAPTDROID faces Challenge 1 (huge space of GUI tests)
with an evolutionary algorithm equipped with a proper set
of evolution operators; Challenge 2 (GUI differences) with
a matching strategy that takes into account the semantics of
GUI events; Challenge 3 (no one-to-one GUI event matching)
with a flexible fitness function that captures the different nature
of the donor and recipient apps. The following subsections
describe the cross-app semantic matching of GUI events and
the five ADAPTDROID phases.

A. Cross-app Semantic Matching of GUI Events

ADAPTDROID matches GUI events across applications
according to their semantic similarity, regardless of syntactic
differences, such as, widget types, positions and layouts. This
is because two similar apps may implement operations that are
semantically similar but syntactically different.

ADAPTDROID encodes the semantics of an event as an
ordered sequence of one or more words, a sentence in natural
language, that we call descriptor. ADAPTDROID extracts the
event descriptors from either the information shown in the
GUI or the identifiers defined by the programmers (widget ids
and file names). Given an event ei, ADAPTDROID extracts its
descriptor di as follows.

For click events ei = click(wi), di is the text displayed in the
widget wi (its text property). In the example of Figure 1, the
label of widget wD4 ''Test'' is the descriptor of eD4. Similarly,
dR5 = ''Test'', dR6 = ''Mark as Paid'' and dR7 = ''8''. If the
text property is empty and the widget wi includes an image, di
is the file name of the image. In the example of Figure 1, the
name of the image file associated with wD1 (''bs add task'')
is the descriptor of eD1. Similarly, dD3 = ''action save task'',
dR1 = ''action add'' and dR4 = ''action save''. To facilitate
the matching of descriptors, ADAPTDROID splits words by
underscore or camel-case (dD1 becomes ''bs add task''),
removes stop-words, and performs lemmatization [27]. If the
text property is empty and wi does not include an image, di is
the id assigned by the developers to reference wi in the GUI.

For fill events ei = fill(wi, txti), di is the text of the nearest
widget from wi. We follow the approach of Becce et al. [28],
which is based on the observation that text fields are normally
described by near labels. In the example of Figure 1, the text
property of the label on top of wR3 ''Amount'' is the descriptor
of eR3. Similarly, dD2 =''What is to be done?''and dR2 =
''Payee/Item''. If there are no lables near wi, di is the id
assigned by the developers to reference wi in the GUI.

ADAPTDROID identifies pairs of descriptors that represent
the same concept with a Boolean function ISSEMSIM(txt1,txt2)
that returns true if the sentences txt1 and txt2 are
semantically similar, false otherwise. The many available dis-
tances, such as Euclidean Distance, Cosine Distance and Jaccard
Similarity, are ill-suited for our purposes. This is because they
are not designed to overcome the synonym problem, that is, two
sentences have the same semantics but no common words [21].
We cannot expect that two distinct albeit similar apps use
exactly the same words to express the same concepts.

Both CRAFTDROID [19] and APPTESTMIGRATOR [20]
address the synonym problem with WORD2VEC [21], a vector-
based word embedding [29]. WORD2VEC trains a model that
embeds words into a vector space, where words with similar
semantics are close in the space [21]. WORD2VEC matches
single words, and thus it is inadequate when descriptors contain
multiple words (as dR6 = ''Mark as Paid'' in Figure 1).

Instead, ADAPTDROID uses Word Mover’s Distance
(WMD) [30], which calculates the distance between sentences
composed of one or more words [29]. Given two sentences
txt1 and txt2, WMD returns a number between 0 to 1 that
expresses how close the sentences are in the vector space [30].
ISSEMSIM(txt1, txt2) = true, if WMD(txt1, txt2) is greater than a
given threshold τ (0.65 in our experiments), false otherwise. We
implement ISSEMSIM as a Boolean function with a threshold,
because the WMD distances are not accurate enough to assume
that the highest similarity is the best one [29], [30]. For example,
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two sentences with WMD 0.99 might not be more semantically
similar than two sentences with WMD 0.88 [30].

We now define the semantic matching of events, denoted
by ∼. Given a donor test tD, a recipient test tR, and two events
ei ∈ tD and ej ∈ tR, with descriptor di and dj , respectively,
we say that ei ∼ ej if one of the following cases holds.

Matching click events: ei = click(wi) ∧ ej = click(wj) ∧
ISSEMSIM(di, dj) = true. This is the case of clicks events
that execute a similar functionality.

Matching fill events: ei = fill(wi, txti)∧ej = fill(wj , txtj)∧
ISSEMSIM(di, dj) = true ∧ txti = txtj . This is the case of fill
events that execute a similar functionality with the same input.

Matching fill-to-click events: ei = fill(wi, txti) ∧ ej =
click(wj) ∧ ISSEMSIM(txti, dj) = true. This is the case of
a fill event in tD that can be mapped to an equivalent click
event in tR. For example, entering the value ''1'' in a calculator
app can be mapped to clicking the button with text ''1'' in
another calculator app. The reader should notice that we do
not allow the opposite, that is, mapping click events of tD to
fill events of tR. Otherwise, ADAPTDROID could easily (and
incorrectly) map a button click in tD with an event of AR that
enters the label of the clicked button in an input field.

In the example of Figure 1, ADAPTDROID matches the
events in tD with those in tR as follows:

eD1 ∼ eR1 eD3 ∼ eR1 eD3 ∼ eR4 eD4 ∼ eR5

B. Semantic Information Extraction

This phase executes tD in AD to collect the following
information, which are required by the next phases.

- Oracle assertions. For each oracle assertion in Ot, ADAPT-
DROID logs both the state of the widgets, when each assertion
is checked, and the expected value of the assertion.

- Events ordering. Obtaining a meaningful test adaptation
that preserves the semantics of tD may require that some events
are executed in a specific order. Conversely, certain events may
follow alternative orders without affecting the semantics of the
test (such as, the fill events that fill a form). ADAPTDROID
identifies such events to avoid unnecessary constraints on the
events ordering while generating the adapted test.

To identify the opportunity of re-ordering events, ADAPT-
DROID checks if each pair of consecutive events ei and ei+1

in tD could be potentially executed in the opposite order. Let
us consider . . . Si−1

ei−→ Si
ei+1−−−→ Si+1 . . ., which indicates the

sequence of states traversed with the execution of events ei
and ei+1. We say that events ei and ei+1 can be reordered,
denoted by ei 
 ei+1, iff ei+1 is enabled in state Si−1 and ei
is enabled in state Si+1. We say that an event e that interacts
with a widget w is enabled in a state S iff S contains a widget
w′ with the same xpath of the widget w and w′ is interactable.

We define the cluster of the events that can be arbitrarily
reordered as the set of consecutive events that can be reordered.
Formally, given ei 
 ei+1,∀i = j . . .m (1 ≤ j < m < n),
the corresponding cluster is C = {ej , . . . em+1}. We also say
that cluster(ei) = C,∀i = j . . .m+1. We build the clusters by
checking each pair of consecutive events to guarantee a linear

time complexity with respect to test length. For instance, tD in
Figure 1 has four clusters with a single event each, indicating
that the prescribed order is the only possible one.

To facilitate the definition of the next phases, we introduce
the Boolean function ISBEFORE(ei, ej) that returns true iff
cluster(ei) 6= cluster(ej)∧ i < j (ei must strictly precede ej
in tD), false otherwise.

C. Initial Population Generation

Any evolutionary algorithm starts by generating P0 the
initial population of N individuals [31]. An individual for
ADAPTDROID is a test tR for the recipient application AR.
ADAPTDROID populates P0 with NR randomly-generated
tests (to guarantee genetic diversity in P0) and NG tests
(N = NG + NR) generated with a greedy algorithm that are
similar to tD (to have “good” genetic material for evolution).

ADAPTDROID generates random tests following standard
random approaches [2]. Specifically, ADAPTDROID generates
a random test tR by opening/restarting AR to obtain the initial
state S0, and repeating the following three steps until tR reaches
the maximum length L: (i) it randomly selects an event ei from
those enabled in the current GUI state Si−1; (ii) it appends ei
to tR; (iii) it executes ei obtaining the state Si.

The greedy-algorithm chooses an event ei among the events
that semantically match an event in tD, and then executes
step (ii) and (iii) of the random-algorithm. In details, step
(i) of the greedy-algorithm selects an event ei from the set
{ej : ej is enabled in Si−1 ∧ ∃ek ∈ tD : ej ∼ ek}. If this
set is empty, it selects an event at random.

D. Fitness Calculation

At each generation gen of the evolutionary algorithm, the
Fitness Calculation computes a fitness score in [0,1] for
each test tR in Pgen. The score characterizes the similarity
between tR and tD, and guides the exploration of possible
test adaptations. ADAPTDROID computes the fitness score by
executing each tR in Pgen and extracting the event descriptors
and state transitions. While executing the tests, ADAPTDROID
also updates a GUI model [3] that encodes the sequence
of events that trigger window transitions. The definition of
such a model follows the one proposed by Memon et al. [3].
ADAPTDROID uses this model in the Population Evolution
phase to repair infeasible tests.

We define the fitness function of a test tR, by considering
(i) the number of events in tD that semantically match the
events in tR (similar events), and (ii) the number of assertions
in tD that are applicable to the states reached by tR (applicable
assertions). Intuitively, the higher these numbers are the more
successful the adaptation is.

Similar Events To compute the number of similar events for
each test tR ∈ Pgen, ADAPTDROID maps the events in tR to
those in tD using the semantic matching (see Section IV-A).
LetM⊆ tR×tD denote a binary relation over tR and tD, that
we call mapping, such that each pair of events semantically
match. That is, M is a set of pairs of events (eR ∈ tR, eD ∈
tD) : ∀(eR, eD) ∈ M, eR ∼ eD. An event in tR can be
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mapped to multiple events in tD. For instance, in Figure 1 eR1

maps both eD1 and eD3. We use M to denote all the possible
mappings between events in tR and tD.

Many mappings in M could be invalid. A mapping M∈M
is valid iff all the following three criteria are satisfied:
1) Injective matching M does not contain any event in tR
that relates with more than an event in tD: ∀eRA, eRB ∈ tR
and ∀eD ∈ tD, if (eRA, eD) ∈ M ∧ (eRB , eD) ∈ M, then
RA = RB (eRA and eRB are the same event). In the example
of Figure 1, the mapping M = {(eR1, eD3), (eR4, eD3)} is
invalid because it does not satisfy this criterion.
2) Valid ordering All events in tR satisfy the order-
ing of tD as extracted in the Semantic Information Ex-
traction phase: ∀(eRA, eDA), (eRB , eDB) ∈ M if ISBE-
FORE(eDA, eDB)=true, RA<RB (eRA precedes eRB in tR).
3) Consistent matching Two events in tD that are associated
with the same event descriptor must be matched to consistent
recipient events in tR: ∀(eRA, eDA), (eRB , eDB) ∈M if eDA

and eDB have identical descriptors (deDA
= deDB

), then also
eRA and eRB must have identical descriptors (deRA

= deRB
).

This constraint avoids mapping two equivalent events in tD
(such as clicking the same button) to different widgets in AR.

ADAPTDROID selects the valid mapping M? ∈ M that
maximizes the number of matched events, and uses M? to
compute the event similarity between the two tests. Intuitively,
M? is the mapping that best captures the similarity of tR
and tD. More formally, M? ∈ M such that M? is valid
and @ a valid M ∈ M :|M|>|M?|. |M| indicates the
number of pairs in a mapping M. If there are multiple
valid mappings with the highest cardinality, ADAPTDROID
selects one randomly. In the example of Figure 1, M? =
{(eR1, eD2), (eR4, eD4), (eR5, eD6)}.

Because of the huge number of possible mappings (2|tR|·|tD|),
ADAPTDROID does not enumerate M and then remove all
invalid mappings. Instead, ADAPTDROID efficiently identifies
M? by applying the three validity criteria while building M.

Applicable Assertions ADAPTDROID fitness function also
considers the number of assertions in tD that “can be applied
to” tR. This is because a good adaptation of the donor test tD
must reach a state of the recipient app with widgets that are
compatible with the ones checked by the donor assertions.

Intuitively, an assertion o ∈ OD is applicable in tR if o
can be applied to at least a state reached after the execution
of the last event in the mapping M? (we recall that we only
consider assertions at the end of the tests). The applicability of
an assertion in a state depends on the existence (or absence)
of widgets in the recipient app that are semantically similar to
the widgets checked by the donor assertion in the donor app.

ADAPTDROID supports four types of assertions: o1 = ex-
ists(txt) and o2 = hasText(w,txt)), and their negative counter-
parts: o1 = not(exists(txt)) and o2 = not(hasText(w,txt)).

For the positive assertion types o1 and o2, the Boolean
function ISAPPLICABLE(o,M?) returns true iff o is applicable
in the state reached after executing the last event of tR in M?,
false otherwise. An assertion o is applicable in a state Si if there

exists a widget w′ ∈ Si such that ISSEMSIM(dw′ , do) = true,
where dw′ is the descriptor of the widget w′ extracted with the
rules in Section IV-A. The descriptor of an assertion of type
o1 = exists(txt) is do1 = txt , while for type o2 = hasText(w,txt)
is do2 = dw.

For the negated assertion types o1 and o2, we define the
ISAPPLICABLE function differently. This is because it is trivial
to find a state that does not contain a certain widget/text. Indeed,
most of the states traversed by an adapted test satisfy this
condition. To better capture the semantics of negated assertions,
we force tR to explicitly move the recipient app from a state that
does not satisfy the assertion to a state that satisfies it. Since we
check for the absence of a certain widget/text, we also require
tR to satisfy this constraint on the same window. Otherwise,
the constraint could be easily satisfied by changing the current
window of the app. More formally, given a negated assertion o,
ISAPPLICABLE(o,M?) returns true iff (i) the positive version
of o (obtained by removing not) is applicable in a state Si

traversed by tR, (ii) the positive version of o is not applicable
in a state Sj traversed after the last event in the mapping M?,
(iii) Si is traversed before Sj , and (iv) both Si and Sj refer to
the same window; false otherwise.

In the example of Figure 1, assertion oD1 in tD verifies that
no widget with text ''Test'' exists. The assertion is applicable
to tR because the last state of tR does not contain such a widget
(oD1 is true), the state after the event eR4 does (oD1 is false),
and these two states belong to the same window.

Let O?
D ⊆ OD denote the set of assertions of tD such that

ISAPPLICABLE(o,M?) returns true. As such, the cardinality
of O?

D (| O?
D |) measures the number of assertions successfully

adapted to the recipient app.

FITNESS-SCORE(tR) =
|M? | + | O?

D |
| tD | + | OD |

∈ [0; 1]

The fitness score is proportional to both the number of
events and the number of assertions in tD. That is, obtaining
an applicable assertion contributes as much as successfully
adapting an event. The score is a value in [0, 1], with 1
representing a perfect adaptation.

E. Population Evolution

The Population Evolution phase combines and mutates
the individuals (GUI tests) in the current population Pgen

to generate a new population Pgen+1 of size N . We follow
the classic evolutionary algorithm [32], which works in four
consecutive steps: elitism, selection, crossover and mutation.

Elitism ADAPTDROID adds in Pgen + 1 the elite set E of
observed individuals with the highest fitness score (|E| < N ).
This elitism process is a standard genetic algorithm step that
avoids missing the best individuals during the evolution [32].

Selection ADAPTDROID selects N/2 pairs of individuals from
Pgen as candidates for the crossover. We use the standard
roulette wheel [32] selection that assigns at each individual a
probability of being selected proportional to its fitness.

Crossover ADAPTDROID scans each selected pair 〈tR1, tR2〉
and with probability CP performs the crossover and with
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probability 1− CP adds the two tests as they are in Pgen+1. The
crossover of two parents produces two offspring by swapping
their events. ADAPTDROID implements a single-point cut
crossover [32] as follows. Given a selected pair 〈tR1, tR2〉,
ADAPTDROID chooses two random cut points that split both
tR1 and tR2 in two segments. It then creates two new tests.
One concatenating the first segment of tR1 and the second
segment of tR2. The other concatenating the second segment
of tR1 and the first segment of tR2.

The crossover likely yields infeasible tests, where executing
the first segment leads to a window (W1) different from
the window (W2) that the first event in the second segment
expects. ADAPTDROID repairs these tests by interleaving the
two segments with a sequence of events that move from W1

to W2. ADAPTDROID identifies such sequence by querying
the GUI Model of AR (see Section IV-D).

Mutation When the crossover terminates (|Pgen+1| = N ),
ADAPTDROID mutates the tests in Pgen+1 with a certain
probability, aiming to both add genetic diversity and quickly
converge to a (sub)optimal solution. As such, ADAPTDROID
uses two mutations types: random and fitness-driven.

Random Mutations mutate the tests in Pgen+1 with a probabil-
ity RM by applying any of these mutations: (i) adding an event
in a random position; (ii) removing a randomly selected event;
(iii) adding multiple random fill events in a window containing
multiple text fields. The rationale of the last mutation is that
forms with several fields might require many generations to
be entirely filled out. This mutation speeds up the evolution
by filling all the text fields in a single mutation.

Fitness-Driven Mutations mutate a test to improve its fitness
score. Each test in Pgen+1 has a probability FM of being mutated
using one of these two mutations: (i) removing an event in
tR that does not match (according to M?) any event in tD;
(ii) adding an event ej in tR such that ei ∼ ej , where ei is a
randomly selected event in tD that does not match tR events.

Like crossovers, also mutations could create infeasible tests.
ADAPTDROID identifies them by checking if all the events
in the mutated tests can be executed in the order prescribed
by the test, and fixes the infeasible tests it by removing all
non-executable events. Indeed, the fixed test could still have
useful genetic material for the evolution [33].

The search for an adapted test keeps evolving and evaluating
populations of tests until either a predefined budget expires
(# of generations or time) or ADAPTDROID finds a test with
fitness one. When the search terminates, ADAPTDROID post-
processes the test with the highest fitness score by reducing
the test length, and injecting the donor assertions (if possible).

ADAPTDROID reduces the test length by removing one
by one the events that are not part of the mapping M?

used to calculate the fitness score. After removing an event,
ADAPTDROID executes the test and recalculates its fitness. If
the fitness decreases, ADAPTDROID restores the event because,
even though it did not directly contribute to the fitness value,
it enabled other relevant events to be executed. In the M? of
the example of Figure 1, events eR2, eR3, eR6, and eR7 of tR

do not match any event in tD, but the post-process keeps them
because removing any event reduces the fitness.

If the fitness function finds some assertions in tD that are
applicable to tR, ADAPTDROID adds them at the end of tR. In
the example of Figure 1, ADAPTDROID injects the assertion
oD1 = not(exists(''Test'')) at the end of tR.

V. EVALUATION

We evaluated ADAPTDROID by implementing a prototype
tool for Android apps [22]. Our prototype uses the APPIUM
6.1.0 framework [34] to read the GUI states and Android
emulators to execute the tests. We evaluated ADAPTDROID
considering two research questions:
RQ1: Effectiveness Can ADAPTDROID effectively adapt GUI

tests and oracles across similar applications?
RQ2: Baseline Comparison Is ADAPTDROID more effective

than baseline approaches?
To measure the quality of test adaptations we need human

judgment, possibly involving the designers of the donor tests.
For this reason, we evaluated ADAPTDROID with a human
study that involved four PhD students majoring in Software
Engineering, who were not related to this project. We asked
each participant to design some donor tests and to evaluate the
adaptations produced by ADAPTDROID.

Selecting Subjects and Collecting Donor Tests We selected
a total of 32 Android apps (8 donors and 24 recipients) from
the Google Play Store by referring to four app categories
that represent apps with recurrent functionalities [15]: Expense
Tracking, To-Do List, Note Keeping, and Online Shopping. We
avoided selection biases as follows.

We queried the Google Play Store by searching for each
category name. From the list of returned apps, we selected
the first two that are free/freemium and do not require login
credentials at start-up. Thus, obtaining a total of eight donor
apps. For each donor app AD, we identified three recipient
apps by retrieving the list of similar apps suggested in the
Google Play Web page of AD. From this list, we selected the
first three apps that were not selected as donors and have the
same characteristics described above. This process resulted in
24 pairs 〈AD, AR〉 of donor and recipient apps.

We randomly partitioned the eight donor apps among the
testers, by assigning two donor apps of different categories
to each tester. In this way, we prevented that a tester could
design similar donor tests. We asked each tester to design a
Selenium GUI test [35] (with an oracle assertion) to test the
main functionality of the app. We left up to the tester to identify
the main functionality of the app.

After each tester implemented a donor test, we asked to
evaluate whether the test could be adapted to the recipient apps.
Each tester evaluated each adaptation on a scale ''Fully'' (the
main functionality ofAR can be tested as in tD), ''Partially'' (AR

allows to replicate only some of the operations performed in
tD), ''No'' (AR implements no functionality that can be tested
as in tD). Column “〈AD, AR〉 Adaptable?” of Table I reports
the responses. The testers deemed fully adaptable 18 pairs of
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TABLE I
EVALUATION SUBJECTS AND RESULTS

Subject description ADAPTDROID RQ1: Effectiveness RQ2: Baseline
Tester Donor App (AD) |tD| Recipient App (AR) ID 〈AD,AR〉 | tR | fitness gen. QT # spurious # missing QS Oracle Random Basic

adaptable? events events adapted? fitness gen. fitness gen.

T1

Expense Manager
(Expense Tracking) 15

KPmoney 1 Partially 13 0.64 33 3 6 0 1.00 No 0.30 79 0.57 50
Monefy 2 Yes 10 0.47 59 4 1 0 1.00 Yes 0.23 3 0.43 98
Money 3 Yes 15 0.47 95 4 0 0 1.00 Partially 0.30 2 0.40 82

Mirte Notebook
(Note Keeping) 10

Xnotepad 4 Partially 7 0.78 91 1 4 3 0.50 No 0.36 8 0.77 80
Color Notes 5 Yes 15 0.24 4 2 9 2 0.75 Partially 0.21 40 0.27 9
Keep Mynotes 6 Yes 2 0.39 1 1 1 5 0.14 No 0.33 79 0.33 11

T2

Markushi Manager
(Expense Tracking) 16

Spending Tracker 7 Yes 23 0.74 59 2 1 8 0.73 Partially 0.72 7 0.74 36
Smart Expenditure 8 Yes 18 0.41 25 0 - - - - 0.32 3 0.41 16
Gastos Diarios 9 Partially 6 0.50 17 0 - - - - 0.37 19 0.50 22

Bitslate Notebook
(Note Keeping) 13

Notes 10 Yes 8 0.45 15 3 0 2 0.80 No 0.33 61 0.31 10
Fast Notepad 11 Yes 10 0.41 86 4 0 2 0.83 Yes 0.23 6 0.44 41
Notepad 12 Yes 12 0.11 1 1 10 11 0.15 Yes 0.11 1 0.11 1

T3

Pocket Universe
(To-dolist) 11

Seven Habits 13 No - - - - - - - - - - - -
Ob Planner 14 No - - - - - - - - - - - -
Simplest Checklist 15 No - - - - - - - - - - - -

Aliexpress
(Online Shopping) 16

Banggood 16 Yes 11 0.50 43 2 4 1 0.88 No 0.30 11 0.64 36
Light in the box 17 Yes 7 0.50 75 1 4 5 0.38 No 0.23 23 0.44 72
Shein 18 Yes 9 0.30 92 0 - - - No 0.17 62 0.30 64

T4

Zalando
(Online Shopping) 6

Zara 19 Yes 8 0.42 19 3 0 0 1.00 No 0.38 32 0.42 22
Romwe 20 Yes 5 0.54 5 3 0 1 0.83 No 0.50 1 0.54 11
Yoox 21 Yes - - - - - - - - - - -

Splendo
(To-dolist) 10

To Do List 22 Yes 9 0.63 59 3 4 6 0.45 Yes 0.38 46 0.55 26
Tasks 23 Yes 8 0.46 32 1 6 5 0.29 No 0.34 59 0.38 10
Tick Tick 24 Yes 15 0.46 21 1 11 8 0.33 Yes 0.29 7 0.53 93

TABLE II
CONFIGURATION PARAMETERS OF ADAPTDROID

name description value name description value

τ threshold for WMD 0.65 N population size 100
E # tests for elitism 10 L max length of the initial tests |tD|
NR # initial random tests 90 NG # initial greedy tests 10
CP crossover prob. 0.40 RM random mutation prob. 0.35
FM fitness-driven mutation prob. 0.35

tests (75%) and partially 3 pairs of tests (12.5%). This result
confirms the intuition that GUI tests can be adapted across
similar applications. Tester T3 deemed the pairs with ID 13, 14
and 15 as not adaptable, because the test executes functionalities
available only in the donor Pocket Universe and not in the
recipient apps. We asked the four testers to manually adapt the
fully and partially adaptable donor tests to the recipient apps.

Running ADAPTDROID We ran ADAPTDROID with the 21
fully and partially adaptable donor tests giving as input the
pairs 〈AD, AR〉 and the corresponding manually-written test
tD. We used a popular WMD model trained on a Google News
dataset (about 100 billion words) [36].

We ran ADAPTDROID with a budget of 100 generations
with the configuration parameters values shown in Table II.
We selected these values by performing some trial runs and
by following basic guidelines of genetic programming [31].
Special considerations can be made for the values τ and L. We
chose τ = 0.65 as the threshold for the semantic similarity by
evaluating the WMD model on a list of ∼2.5 M synonyms [37].
More specifically, τ = 0.65 is the threshold that achieves the
best trade-off between matched synonyms and unmatched pair
of randomly selected words. We choose L = |tD| to obtain
initial tests for AR with a max length proportional to the length
of the donor test.

When dealing with the test pair with ID 21, we experienced

some compatibility issues between the APPIUM framework
and the recipient app AR, issues that prevented ADAPTDROID
generating tests. Thus, we exclude such a pair from our analysis.

The “ADAPTDROID” columns of Table I show information
about the returned adapted test tR (the one with the highest
fitness score). Column “|tR|” provides the number of events
of the adapted test. Column “fitness” shows the fitness score
of tR. ADAPTDROID never reached fitness score 1.0, thus it
terminated after 100 generations. Column “gen.” shows the
generation in which ADAPTDROID produced tR.

ADAPTDROID completed 100 generations in 24 hours on
average, and spent most of this time in executing the generated
tests on the emulator. Executing tests is expensive because
ADAPTDROID re-installs AR in the emulator before each test
execution to guarantee that each test executes from a clean
state. This time could be reduced by running many emulators
in parallel or using cloud platforms for mobile testing.

RQ1: Effectiveness We asked the testers to judge the quality
of each test case tR produced with ADAPTDROID for their
assigned pairs. We used a score from 0 to 4, where 0 means
that tR is completely unrelated to the donor test semantics, and
4 means that tR is an adaptation as good as the one that they
manually produced (Column “QT ” of Table I).

In 8 cases out of 20 (40%) the testers evaluated ADAPT-
DROID adaptations as high quality (QT ≥ 3), with three of
which considered perfect adaptations. In three cases (15%),
the adapted tests were evaluated as medium quality (QT = 2).
This suggests that in these eleven cases (QT ≥ 2) the fitness
function well describes the similarity with the donor test.

We asked the testers to indicate the spurious and miss-
ing events in the tests. Columns “# spurious events” and
“# missing events” of Table I report the number of events
identified as spurious and missing to obtain a perfect adaptation,
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respectively. Column “QS” of Table I reports a structural
quality indicator of the completeness of the matched events:
QS = 1− (#missing/|tR|), where tR is the manually adapted test.
QS ranges in [0, 1], where 0 indicates no matching between the
events in tR and tR, and 1 indicates a perfect matching. The
average of QS is f 0.53, indicating that overall ADAPTDROID
adapted 53% true event matches identified by the testers. There
is a moderate correlation between the two quality indicators
QT and QS (Pearson coefficient is 0.89). This confirms that it
is important for the testers to adapt a large portion of a test.

Column “Oracle Adapted?” in Table I reports whether
tR has an assertion that the tester evaluated to be correct
(''Yes''), partially correct (''Partially''), or not applicable in the
states reached by tR (''No''). Testers T1 and T2 attributed
partial correctness to three adapted oracles because of marginal
differences in the expected output. For instance, in the pair
with ID 3, the oracle in the donor test checks if a widget
with descriptor ''expenses'' has text ''100''. The corresponding
widget in the recipient test has text ''-100'', which is semantically
equivalent (100 expenses = -100 balance) but syntactically
different. Therefore, the oracle was deemed partially correct.

We identify two main issues that limited the effectiveness
of ADAPTDROID.

1) Significant differences between AD and AR. For instance,
in the pair with ID 18, tD searches in the Aliexpress app for
a USB drive and adds it to the shopping basket. Tester T3
manually adapted tD searching in the Shein app for a t-shirt.
ADAPTDROID failed to adapt this test to Shein, as searching
for a USB drive in Shein results in an empty search. As another
example, in the pairs with ID 23 and 24, tD adds a task to a
pre-existing work task list. ADAPTDROID failed to adapt these
tests, as the recipient apps do not have a task list.

2) Missed Event Matches. The semantic matching of the
descriptors was not always precise due to (i) the unsoundness
of WMD; and (ii) the limited semantics information of the
event descriptors. For example, some of the considered apps
have image buttons with file name ''fabButton.png'', which
does not describe the semantics of the widget.

The results of our study are promising: ADAPTDROID
produced eleven good quality test adaptations between apps
with very different GUIs. In the experiments, we configure
ADAPTDROID to report all adaptations. We can improve the
quality of the generated output, by reporting only adapted tests
that reach a minimum fitness score.

RQ2: Baseline Comparison We compare ADAPTDROID
with two baseline approaches (i) RANDOM, to empirically
assess the effectiveness of the evolutionary algorithm of
ADAPTDROID; (ii) ADAPTDROID-BASIC, a restrained version
of ADAPTDROID without the fitness-driven mutations and
greedy-matching initialization, to assess their impact to the
overall effectiveness.

We obtained RANDOM from ADAPTDROID by (i) replacing
the roulette-wheel selection with random selection, (ii) ran-
domly generating the tests in the initial population (NR = 100
and NG = 0, Table II), (iii) setting the probability of the fitness-
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Fig. 3. Average fitness growth.

driven mutations to zero (FM= 0.0 Table II), and (iv) disabling
elitism. As such, RANDOM carries population initialization and
evolution completely random. We opted to use a random variant
of ADAPTDROID rather than an existing random generator [2],
for a meaningful evaluation. With an existing random generator,
we cannot ensure that the differences are due to the search
strategy and not to differences in other implementation details,
such as the events and inputs types considered by the tools.

We obtained ADAPTDROID-BASIC from ADAPTDROID by
applying only the modifications (ii) and (iii) described above.

We ran RANDOM and ADAPTDROID-BASIC with a budget
of 100 generations as ADAPTDROID. The last four columns
in Table I show the fitness score of the fittest test and the
generation that created it (with the highest fitness value among
the tools in bold). ADAPTDROID consistently achieves a higher
fitness than RANDOM, and the same fitness only in one case (ID
22). The difference between the tools is statistically significant:
a two-tailed t-test returns a p-value of 0.0002. ADAPTDROID
achieves an average fitness of 0.48, while ADAPTDROID-BASIC
of 0.45. This shows a difference albeit small of the fitness score.

Figure 3 illustrates the gain of ADAPTDROID over the
baseline approaches, by plotting the highest fitness score per
generation averaged over the 20 adaptations. The plot highlights
three important aspects:

I.- the fittest test of the greedily generated initial population
(P0) of ADAPTDROID has a much lower fitness score than
the final score. This shows that the greedy algorithm used to
initialize the population is inadequate, thus motivating the use
of an evolutionary approach.

II.- the highest fitness per generation of ADAPTDROID steadily
increases while the fitness of RANDOM saturates much faster.
This demonstrates that ADAPTDROID evolutionary approach
is effective in exploring the search space, and it confirms our
hypothesis that ADAPTDROID generates GUI tests that can
hardly be generated at random.

III.- ADAPTDROID and ADAPTDROID-BASIC reach similar
fitness, but ADAPTDROID reaches it faster. This indicates that
the greedy-match initialization and the fitness-driven mutations
help to converge faster to the fittest test.

Threats to Validity A main threat to the external validity
concerns the generalizabilty of a small set of adaptations. The
scale of the experiment is limited, due to the cost of involving
human testers. However, it is comparable to the ones of the
main related approaches [19], [20].
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Another threat relates to the selection of testers. The four
testers have testing experience, but they are not the developers
of the apps. We mitigate this issue by letting the testers get
familiarity with the apps before asking them to design the tests.

A final threat relates to the statistical significance of the
results. Since the evolutionary algorithm is inherently stochastic,
multiple runs may yield different results. Since the evaluation of
the results involved human participants, who can only evaluate
few tests, we ask them evaluate a single result of ADAPTDROID.

VI. RELATED WORK

GUI Test Generation Existing generators of GUI tests [38],
[39] have two major limitations: (i) lack of domain knowl-
edge [40], and thus they may generate either unrealistic or
semantically meaningless GUI tests [8], (ii) lack of automated
oracles, and thus they are able to only detect crashes or
exceptions [10], [11]. ADAPTDROID addresses these limitations
by generating semantic GUI tests and oracles adapted from
manually-written GUI tests of similar apps.

Researchers have exploited usage data to improve GUI test
generation [40]–[43]. For example, POLARIZ [40] and MON-
KEYLAB [41] generate Android tests using GUI interaction
patterns extracted from app usage data. Differently, ADAPT-
DROID fully adapts existing tests across apps maintaining the
same semantics of the donor test.

Similarly to ADAPTDROID, the GUI test generators AU-
GUSTO [14] and APPFLOW [15] exploit commonalities among
GUI applications. However, they do not aim to adapt tests across
applications nor leverage existing GUI tests. Instead, they rely
on a set of manually-crafted GUI interaction patterns. Moreover,
APPFLOW recognizes common widgets using a semi-automated
machine learning approach. Conversely, ADAPTDROID matches
GUI events without requiring human intervention.

GUI Test Adaptation CRAFTDROID [19] and APPTESTMI-
GRATOR [20], [44] are the first attempts to adapt GUI tests
across mobile apps. Both approaches explore a statically
computed GUI model of the recipient app to “greedly” find
a sequence of events that maximizes the semantic similarity
with the events of the donor tests. Similarly to ADAPTDROID,
they extract event descriptors from the GUI and match them
across applications using word embedding [21]. However,
ADAPTDROID differs substantially from these two techniques.

ADAPTDROID shares the overall objective of adapting
tests across applications, but introduces substantial novelties.
Both CRAFTDROID and APPTESTMIGRATOR use a greedy
algorithm, which resembles the one that ADAPTDROID uses to
generate the initial population P0. ADAPTDROID uses an evo-
lutionary algorithm to improve an initial set of greedy-matched
tests. As discussed in Section V, ADAPTDROID evolutionary
approach largely improves over a greedy algorithm. Indeed,
APPTESTMIGRATOR and CRAFTDROID explore a single test
adaptation, and do not consider alternative sequences of random
events that could yield to a better adaptation. The ADAPTDROID
evolutionary approach explores many possible test adaptations
to find the sequence of events that yields the best adaptation. As

such, ADAPTDROID can be used to improve the tests adapted
with APPTESTMIGRATOR or CRAFTDROID.
GUI Test Repair Test repair techniques fix tests that become
invalid during software evolution [45]–[50]. These techniques
assume that most widgets remain unmodified between versions
of the same app [45], [51], and do not address the core challenge
of semantically matching widgets across apps.

VII. CONCLUSIONS

This paper presents ADAPTDROID an evolutionary technique
to adapt test cases across mobile apps that share similar function-
alities. Our empirical evaluation indicates that ADAPTDROID
can adapt useful and non-trivial GUI tests across semantically
similar apps with very different GUIs. This confirms that
formulating the test adaptation problem with an evolutionary
approach is a viable solution. An important future work
is to reduce the computational cost of ADAPTDROID by
implementing a distributed version of the tool that executes
the evolutionary algorithm on the cloud. Indeed, one of the
key advantages of evolutionary algorithms is that are easily
parallelizable. Another interesting future work is to extend
ADAPTDROID to adapt tests across different platforms, for
instance, to adapt GUI tests from Mobile to Web applications.
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[18] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “On Identifying and
Explaining Similarities in Android Apps,” J. Comput. Sci. Technol.,
vol. 34, no. 2, pp. 437–455, 2019.

[19] J.-W. Lin, R. Jabbarvand, and S. Malek, “Test transfer across mobile
apps through semantic mapping,” in Proceedings of the International
Conference on Automated Software Engineering, ser. ASE’34. IEEE
Computer Society, 2019, pp. 42–53.

[20] F. Behrang and A. Orso, “Test migration between mobile apps with
similar functionality,” in Proceedings of the International Conference on
Automated Software Engineering, ser. ASE’19. IEEE Computer Society,
2019, pp. 54–65.

[21] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in
Proceedings of the International Conference on Neural Information
Processing Systems, ser. NIPS ’13, 2013, pp. 3111–3119.
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[48] S. Zhang, H. Lü, and M. D. Ernst, “Automatically repairing broken work-
flows for evolving gui applications,” in Proceedings of the International
Symposium on Software Testing and Analysis, ser. ISSTA ’13. ACM,
2013, pp. 45–55.

[49] M. Mirzaaghaei, F. Pastore, and M. Pezzè, “Supporting test suite evolution
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