
Automated Assessment: Experiences From the Trenches
Andrew Luxton-Reilly

University of Auckland

Auckland, New Zealand

andrew@cs.auckland.ac.nz

Ewan Tempero

University of Auckland

Auckland, New Zealand

e.tempero@auckland.ac.nz

Nalin Arachchilage

University of Auckland

Auckland, New Zealand

nalin.arachchilage@auckland.ac.nz

Angela Chang

University of Auckland

Auckland, New Zealand

angela@cs.auckland.ac.nz

Paul Denny

University of Auckland

Auckland, New Zealand

paul@cs.auckland.ac.nz

Allan Fowler

University of Auckland

Auckland, New Zealand

allan.fowler@auckland.ac.nz

Nasser Giacaman

University of Auckland

Auckland, New Zealand

n.giacaman@auckland.ac.nz

Igor’ Kontorovich

University of Auckland

Auckland, New Zealand

i.kontorovich@auckland.ac.nz

Danielle Lottridge

University of Auckland

Auckland, New Zealand

d.lottridge@auckland.ac.nz

Sathiamoorthy Manoharan

University of Auckland

Auckland, New Zealand

s.manoharan@auckland.ac.nz

Shyamli Sindhwani

University of Auckland

Auckland, New Zealand

shyamli.sindhwani@auckland.ac.nz

Paramvir Singh

University of Auckland

Auckland, New Zealand

p.singh@auckland.ac.nz

Ulrich Speidel

University of Auckland

Auckland, New Zealand

u.speidel@auckland.ac.nz

Sudeep Stephen

University of Auckland

Auckland, New Zealand

sudeep.stephen@auckland.ac.nz

Valerio Terragni

University of Auckland

Auckland, New Zealand

v.terragni@auckland.ac.nz

Jacqueline Whalley

Auckland University of Technology

Auckland, New Zealand

jacqueline.whalley@aut.ac.nz

Burkhard C. Wünsche

University of Auckland

Auckland, New Zealand

burkhard@cs.auckland.ac.nz

Xinfeng Ye

University of Auckland

Auckland, New Zealand

xinfeng@cs.auckland.ac.nz

ABSTRACT
Automated assessment is commonly used across the spectrum of

computing courses offered by Tertiary institutions. Such assess-

ment is frequently intended to address the scalability of feedback

that is essential for learning, and assessment for accreditation pur-

poses. Although many reviews of automated assessment have been

reported, the voices of teachers are not present. In this paper we

present a variety of cases that illustrate some of the varied motiva-

tions and experiences of teaching using automated assessment.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
automated assessment, teaching, computing education, feedback

ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia
© 2023 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Australasian
Computing Education Conference (ACE ’23), January 30-February 3, 2023, Melbourne,
VIC, Australia, https://doi.org/10.1145/3576123.3576124.

ACM Reference Format:
Andrew Luxton-Reilly, Ewan Tempero, Nalin Arachchilage, Angela Chang,

Paul Denny, Allan Fowler, Nasser Giacaman, Igor’ Kontorovich, Danielle Lot-

tridge, Sathiamoorthy Manoharan, Shyamli Sindhwani, Paramvir Singh, Ul-

rich Speidel, Sudeep Stephen, Valerio Terragni, JacquelineWhalley, Burkhard

C. Wünsche, and Xinfeng Ye. 2023. Automated Assessment: Experiences

From the Trenches. In Australasian Computing Education Conference (ACE
’23), January 30-February 3, 2023, Melbourne, VIC, Australia. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3576123.3576124

1 INTRODUCTION
One of the key factors in learning is obtaining feedback on the

quality of student work [13]. Looking at the broader educational

research on feedback, Wisniewski et al. [29] describe feedback as

being about a task, a process, one’s self-regulation, or one’s self.

In this paper, we focus on feedback about a task. To be effective,

feedback about a task should provide learners with information

that allows them to understand the gap between their current and

desired state [23]. Mulliner and Tucker [22] surveyed students and

teachers about feedback practices. They found high agreement

between teachers and students that feedback should be:

. . . timely, constructive, encouraging, provide detailed direction for

https://orcid.org/0000-0001-8269-2909
https://orcid.org/0000-0002-3786-1707
https://orcid.org/0000-0001-9192-0993
https://orcid.org/0000-0002-2866-0081
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0003-1061-5511
https://orcid.org/0000-0001-6885-1571
https://orcid.org/0000-0002-3353-5445
https://orcid.org/0000-0002-5541-4425
https://orcid.org/0000-0003-4958-4185
https://orcid.org/0000-0002-6030-5231
https://orcid.org/0000-0001-6787-1642
https://orcid.org/0000-0001-9107-4918
https://orcid.org/0000-0001-6216-0235
https://orcid.org/0000-0001-5885-9297
https://orcid.org/0000-0001-7633-5200
https://orcid.org/0000-0002-8013-4118
https://orcid.org/0000-0001-8483-2872
https://doi.org/10.1145/3576123.3576124
https://doi.org/10.1145/3576123.3576124


ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia Luxton-Reilly, et al.

future improvement (feed-forward), be linked to a marking scheme
and be specific about the failings of the work.

Assessing students and providing feedback in large comput-

ing classes can be challenging [24]. Automated assessment tools

(AATs) are deployed in educational contexts to improve processes

and outcomes for both teachers and students, particularly in large

classes [7, 28]. AATs are reported to benefit teachers by reducing

administration involved in collecting and distributing student work

for grading, ensure consistency of marking, reduce overall workload

associated with grading, and by supporting teachers to identify and

reduce academic misconduct in assessed work. Students may bene-

fit from AATs through an increase in the timeliness [3] and quantity

of feedback [11], and improvement of self-regulation skills [23].

There are many ways that AATs can be used within courses

in the computational sciences to provide feedback, including both

summative and formative feedback. In this practice report, we share

the collective experiences of teachers using AATs through case stud-

ies and reflections across a wide range of contexts in the hope that

it helps practitioners considering the use of AATs and the potential

impacts on course delivery, student behaviour, and teaching and

learning.

2 RELATEDWORK
Automated assessment is a widely used and widely studied topic

in Computing Education. A review of introductory programming

research by Luxton-Reilly et al. [20] in 2018 found that the majority

of papers related to feedback focused on tools used to automate that

feedback, mainly for the purposes of reducing the cost of marking,

and to provide rapid feedback to students. However, the provision

of rapid feedback is observed to result in some students focusing on

passing test cases through rapid iterative submission cycles rather

than systematically improving their software product.

In 2003, an ITiCSEWorking Group [4] surveyed tertiary teachers

about their perceptions of computer aided assessment. At that

time the authors concluded that using AATs is not a panacea for

the problems of assessment and that the technology has several

limitations. Notably the “black and white” (p116) marking systems

typically used by these tools can be problematic where partial marks

are desired, and significant time and effort is needed to set up such

systems. Since this early survey, technology has advanced and the

use of AATs are more prevalent. Due to the quantity of papers

about AATs, we focus here on the several reviews reported in the

literature.

In early work, Ala-Mutka [1] surveyed the use of AATs for pro-

gramming assignments. The review is organised around the fea-

tures supported by tools, and finds that dynamic assessment using

a sandbox is essential, and it is common to test functionality using

test cases. Some systems evaluated aspects of style (mainly code

conventions), or used standard software metrics to evaluate source

code. The benefits for teachers include administration support for

marking workflow, semi-automatically grading (e.g., automatically

grading correctness and manually grading style), and encouraging

students to improve their work by allowing repeat submissions.

Ala-Mutka [1] advocate that teachers consider carefully how to

incorporate AATs into their courses, since there is the potential for

negative impact.

In the same year, Douce et al. [8] published a review of automatic

test-based assessment of programming. They provide a historical

overview, categorising tools into three generations, the first of

which demonstrate the viability of automated assessment of pro-

gramming, but have limited application. The second-generation

tools use command line and locally supported GUIs, while the third

generation use the web to support submission of code using web

browsers. The authors conclude with the observation that AATs

can support students by helping them to build confidence, and

can support teachers by making the assessment of programs more

efficient.

Ihantola et al. [15] extends the previous work by conducting a

systematic review of AATs for programming exercises published

2006–2010, focusing on the features supported by the systems. At

the time, they found the majority of the systems supported Java,

increasingly AATs were integrated into Learning Management

Systems, and testing the functionality of code is the most common

form of evaluation. They also discuss the value in combiningmanual

marking with AATs, and report only a small number of systems that

support higher level computing courses such as web-programming,

concurrent programming, and SQL.

Although the features supported by tools that automatically

assess programming is the main focus of the Ihantola et al. [15]

review, they also reflect on a variety of ways that AATs could be

used in the classroom to limit the potentially harmful practice

of trial-and-error problem solving. These include: (a) limiting the

number of submissions; (b) limiting the amount of feedback; (c)

imposing a time penalty; (d) using parameterised questions that

change after each submit; and (e) limiting the time available to

complete work.

Souza et al. [27] conducted a systematic review of assessment

tools for programming assignments, focusing on identifying the

tools that have been reported and the main characteristics of those

tools. They identified 30 tools reported in publications from 1985–

2014. The tools are categorised according to a variety of features

including: immediacy of feedback; checks for functional correct-

ness; checks for efficiency; checks for adequate test suites; use of

software metrics; level of documentation; compliance with style

guidelines; and plagiarism. As with previous reviews, the focus is

the technology rather than pedagogy.

Keuning et al. [16] reports the results of a systematic review

of automated feedback generated for programming exercises that

identified 101 tools described in 146 papers. They investigate the

nature of the feedback generated, the techniques used to generate

feedback, how the tools are used by teachers, and the evidence for

quality and effectiveness of the feedback or tool. They found that

many tools provided feedback of more than one type, with most

tools providing feedback about mistakes. Almost half of the tools

also provided some hints about how students could progress, while

fewer tools provided explanations about the task or subject matter

required to complete the task. A variety of technical solutions are

employed by the tools, the most common of which is automated

testing, followed by program transformations and basic static anal-

ysis. Keuning et al. [16] conclude by observing that the diversity of

automated feedback is increasing, but teachers still do not always

find it easy to adapt the tools to their own needs.



Automated Assessment: Experiences From the Trenches ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia

Deeva et al. [6] reviews automated feedback systems from 2008–

2019. Their Technologies for Automated Feedback classification frame-

work comprises four main components: Architecture, Feedback,

Educational Context, and Evaluation. As we are primarily inter-

ested in the application of AATs for practitioners, we focus on the

Feedback category, which comprises Adaptiveness (whether the

system provides feedback that adapts to the task, the student, or

is non-adaptive), Timing (feedback is immediate, on request, or

occurs on task completion), Degree of Learner Control (students

have High Control over feedback, Mild Control over feedback, or

No Control), and Purpose (Corrective, Suggestive, Informative or

Motivational). Despite this framing, the details of classroom use by

practitioners is not reported in the review.

Paiva et al. [25] reports a “state-of-the-art” review of research

on AATs in computing in which 778 publications between 2010 and

2021 were analysed. They found reports of AATs used in the subject

domains of visual programming, programming assignments, sys-

tem administration, formal languages and automata, software mod-

elling, software testing, databases, web development, parallelism

and concurrency, mobile development and computer graphics. Au-

tomated testing involves blackbox testing (outcomes), whitebox

testing (source code analysis), code quality, software metrics, test

development and plagiarism checking. The authors identify 128

AATs, but focus on analysing the features supported by a subset of

30 tools. Although the main focus of the review is the tools and tech-

nologies, the authors find evidence that AATs: (a) reduce teacher

workload; (b) improve student learning; (c) increase the number

of activities solved by students; (d) is generally well-received by

students, and (e) engages students working alone.

In summary, a lot of work has explored the use of AATs in

computing, including at least 778 publications over the last decade.

More than a dozen reviews of AATs have been conducted during the

last 20 years, most of which focus on the technology used to perform

the assessment, and the features that are supported by the tools.

Although some reviews have considered aspects of AATs other than

implementation details, such as measures of effectiveness, there is

no broad analysis of the teachers’ motivations for adopting AATs,

how it is used to support teaching practice, teacher perceptions of

AATs, or the impact of AATs on student behaviour and attitude.

3 USE CASES FOR AUTOMATED ASSESSMENT
In this section we briefly report case studies that illustrate the

diversity of AATs we have used.

3.1 Tools and Infrastructure
We use several tools, both publicly available and locally developed,

to support automated assessment, including:

CodeRunner This is a web-based plugin to theMoodle Learning

Management System (LMS). It is designed to assess the correctness

of programs using a set of test cases, and is highly configurable

due to the use of templates that can be customised during the test

case evaluation [19]. Being part of Moodle, assessment can consist

of CodeRunner-based questions, as well as other question types

supported in Moodle quizzes.

LMS Quizzes Commonly used LMSs , such as Canvas
1
and

Blackboard
2
, support a variety of standard question types such as

multiple-choice and short-answer questions that can be marked

automatically.

Dividni Dividni [21] supports the creation and delivery of indi-

vidualised assessments, which cannot scale to large classes without

an AAT. Dividni also allows creation of question banks that can be

exported to LMS systems (such as Canvas and Moodle) or digital

assessment platforms (such as Inspera
3
) leveraging the automatic

assessment facilities these systems and platforms provide.

Perusall4 This is an online social learning platform where stu-

dents can engage with their peers and experience the course mate-

rial collaboratively.

STACK System for Teaching and Assessment using Computer

algebra Kernel [26], provides assessment of linear algebra under-

standing, and formative feedback that supports student learning.

OpenGLWeuse an extension to CodeRunner that allows student

code to be included in an OpenGL program skeleton and evaluated

in a sandbox running MESA. Students see generated images and

test results. Student solutions are compared to a sample solution

using pixel colours of the output image, OpenGL invariants (such

as the model-view matrix), and program output (function calls,

parameters, and results).

HCIWe use MarCHIr , a first-of-its-kind locally produced tool

for automatically marking Human Computer Interaction submis-

sions. This tool assesses web sites created by students for use of an

assigned colour, and adherence to accessibility principles including

labeling, alternative text for images, and colour contrast. It also

assesses the form for adherence to visual design principles, and

tests basic interactive functionality such as a pop-up window.

Standard Test FrameworksWe use standard unit test frame-

works (e.g. JUnit) to support both unit testing and system testing.

The system testing is supported by providing a layer to pass system-

level actions to the JUnit-managed tests.

Bespoke Test FrameworksWe have developed our own test

frameworks, in particular to support system testing that does not

use standard test frameworks. These typically run from the com-

mand line and control input, monitor output, and compare the

output to a specification of what is expected.

Build tools We use build automation tools such as make and

maven to manage other test frameworks, or to provide extra test

support such as for integration testing.

GitHubWe use the continuous workflow actions provided by

GitHub
5
to support automated assessment. This can used in con-

junction with build tools, but the GitHub API provides access to

the history of the student’s work, allowing support for assessing

such things as code review activity.

3.2 Automated Assessment of Programming
In this section we describe our experiences using systems that

support automated assessment of source code.

1
https://www.instructure.com/canvas

2
https://www.blackboard.com

3
https://www.inspera.com

4
https://www.perusall.com

5
https://github.com

https://www.instructure.com/canvas
https://www.blackboard.com
https://www.inspera.com
https://www.perusall.com
https://github.com


ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia Luxton-Reilly, et al.

Case 1 — CS1 Introduction to Programming.
Context: In a large introductory Python programming course,

we use CodeRunner to automatically assess short programs in

weekly laboratories, timed quizzes (30 minutes), and computer-

based exams that have been used in both invigilated and uninvigi-

lated modes.

Instructional design: All exercises and examination questions

use the same process. When students submit their code, the system

immediately reports which tests pass and fail, and displays the

expected and actual output. Students may submit their program as

many times as they wish, but a penalty scheme is applied after 2

incorrect submissions, reducing the mark by 5% for each subsequent

incorrect submission to a maximum of 50% penalty. One or two

example test cases are visible to the students, but most are not

shown until the student submits a solution. A sample of typical

test cases remain hidden to ensure solutions cannot be engineered

simply to pass the tests.

Driver: Automated assessment is used in this context to provide

an unlimited amount of feedback with clear unambiguous grading

criteria that is assessed rapidly and consistently with low cost.

Reflections: We observe student feedback about automated

assessment to be generally positive, but students do not typically

see the output from the AAT as feedback, and rate feedback lower

than most other categories in student course evaluations. Students

need to be taught explicitly why we use AATs and how it works.

Additionally, students should be given the opportunity to practice

submitting to the AAT to reduce anxiety about using an automated

tool for higher stakes assessments. Students tend to rely on the

automated tests rather than develop their own tests, and become

frustrated with failing hidden tests. The opportunity to resubmit

code until they get the correct answer encourages students to keep

working on their solutions until they pass all the tests, but students

appear to conflate opportunity with expectation and some complain

that the course requires them to spend excessive time to get full

marks in all the assessed work.

Case 2 — CS1 Programming for Engineers.
Context: In a very large (𝑛 > 1000) programming course for

engineering students, we developed a custom tool to provide sched-

uled formative feedback.

Instructional design: We publish a small number of interim

deadlines prior to the final deadline for summative grading. Stu-

dents can submit work in progress at any time prior to such a

deadline. No feedback is provided at the time of submission, but

once one of the interim deadlines is reached, our tool grades all

submissions against a test suite and sends each student email that

gives the number of passing tests across each task of the assignment.

This format gives the student an indication of which tasks require

attention, without revealing exactly which tests have failed.

Driver: The motivation for delaying feedback in this way is

to help students develop good time-management skills. It is well

known that many students put off working on large programming

assignments until deadlines are imminent, and this procrastination

can be a serious problem [5, 9, 12]. By scheduling the feedback

opportunities, we incentivize students to design their own tests and

to start their work early so that they can benefit from the feedback.

Reflections: From our experience, it is clear that the scheduled

feedback opportunities markedly impact submission behaviour

compared to when they are not used. Although we do not have

objective data that students start their work earlier, which was our

original goal, we certainly observe a sharp increase in submissions

with around half of all students typically submitting work more

than a week before the final deadline. We have also seen that at-

risk students, who have poor grades leading up to the assignment,

perform significantly better if they take advantage of the formative

feedback provided [7].

Case 3 — Data Structures in Computer Science.
Context: Coderunner is used in large first-year data structures

and algorithms courses (CS2) taught in Python. This course has

weekly laboratory activities, which comprise a set of approximately

ten programming problems.

Instructional design: In this course we assess efficiency by

setting exercises that required students to use an efficient solution,

because the naive solution would take too long and automatically

generate a "time-out" message (e.g., require a sorting algorithm that

sorted an input file with 100,000 elements).

Driver: The course uses an AAT primarily to provide students

with immediate feedback while reducing the marking load.

Reflections: This is an effective approach, but the assessment

constraints need to be carefully explained to students because they

are not typically familiar with running time being a factor in the

evaluation, and the code still produces the correct answer. This

leads some students to question the accuracy of the automated

assessment results.

Case 4 — Data Structures and Algorithms using OOP.
Context: We use a bespoke process involving unit tests in two

large software engineering courses (300+ students) teaching object-

oriented programming, data structures and algorithms (CS2) taught

in C++ (in one course with make) and Java (in another course with

maven and JUnit).

Instructional design: Unit tests are shipped along with assign-

ment base code, allowing students to run the tests “offline” as part

of their development setup. The approach students follow is akin to

test-driven development, except most of the test cases are provided

to them. A build system (make or maven) is used to execute test

cases. The same test cases are used, along with additional test cases,

for summative assessment purposes after students submit their

code for grading. The complete set of test cases are then shared

with students, so they can check where they lost marks. Although

GitHub is used to manage assignments, testing remains offline as

part of the local build. For final assessment, scripts are used to run

all submissions and email results to students.

Driver: We aimed to reduce grading time and reduce ambiguity

of the specifications described in the instructional handouts, since

students can use the tests to determine exactly what is expected.

Reflections: Taking a fully offline approach has worked ex-

tremely well for these large courses. The assignments are changed

each year, but the same unit test setup is used. This makes gen-

erating new assignments easier every year as they are “molded”

within this same template. Including the test cases along with the

assignment code means that students are encouraged to set up

a professional development environment, including the compiler,



Automated Assessment: Experiences From the Trenches ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia

build tool, versioning with Git, and retain flexibility to use their

preferred IDE. Running test cases is trivial and convenient within

the IDE. Students like the objective assessment, especially as the

first assignment gives them all the test cases used in the summa-

tive assessment. As the course progresses, we provide a smaller

proportion of test cases to encourage students to test on their own.

While setting up the development environment is a valuable

lesson for students, there will be some that struggle to install some

of the necessary tools. To overcome this, drop-in help clinics are

provided for students get assistance, and university’s computers

with all the necessary software are available.

Case 5 — Object Oriented Programming.
Context: A large (300+ students) second-year object-oriented

programming course for software engineering students, covering

fundamental OOP design concepts using Java. A custom JUnit

scaffolding library was implemented to allow system-level test cases

for marking programming assignments implemented as Command

Line Applications (CLIs).

Instructional design: Students get half the tests, with the re-

mainder revealed after the deadline. All tests are used for marking.

The marking is performed by a script that uses maven to build the

submission and run the tests. The script determines the number of

passing and failing tests, which the script converts to a mark. The

script then emails their marks and report to each student.

Driver: The primarymotivation for using system-level test cases,

instead of unit test cases, is to give students freedom and experi-

ence in applying OOP design. A test case is simply a sequence of

commands, and test oracles that verify the absence/presence of

specific strings in the console. Under the hood, our bespoke system

simulates the user of the application that types the commands on

the keyboard one by one and captures the output of the console to

check the absence/presence of the specified strings.

Reflections: Using test cases to mark assignments has worked

very well, although some students initially struggled with the test

suite. As students have access to half the tests, passing the pro-

vided test cases before submitting the assignment is a confidence

booster for students. Our system-level test cases were well received

by students. Students need to make sure their CLI application pro-

duces the correct output given the specified input, oblivious to

implementation details. The system-level test cases are very easy

to understand and interpret because each test case shows the input

typed in the console and what output we expect to observe.

Case 6 — Large Scale Software Development.
Context: This is a third-year course with about 100 students

looking at issues involved in large-scale software development, with

a focus on web development.We use GitHub continuous integration

(CI) workflow actions to execute a maven pom specification to run

both unit and integration tests. The integration tests involve setting

up a web server, installing the student implementation of a REST

interface, and then running the REST tests. This structure is used

for small exercises in weekly labs and a large team project.

Instructional design: Students are given all artefacts needed—

JUnit test classes (for both unit and integration tests) and pom spec-

ification, with no missing or hidden tests. This is deployed through

GitHub Classrooms. This allows them to run the tests in their local

environment. The final assessment is performed at the due date

for the assessment item based on the current state of the students’

repositories.

Driver:While the primary motivation is to provide an objective

means for students to check whether their implementation is valid,

this approach also reduces the marking workload, and ensures

consistency.

Reflections: In the initial offering of this course, some project

teams used the CI workflow as their build process rather than

doing everything locally. We then imposed a limit of the number of

times they could trigger the CI workflow and that appears to have

resolved the problem.

Case 7 — Computer Graphics.
Context: We use a bespoke plugin to the CodeRunner tool in a

large (300+) third year Computer Graphics course which includes:

OpenGL primitives, illumination and shading, 3D transformations

and modelling, texture mapping, ray tracing, and parametric curves

and surfaces. The module uses C/C++ for programming tasks.

Instructional design: The course assessment involves weekly

programming quizzes (a graded and an optional ungraded one) and

a mid-term test and final exam, all of which use AA. Students have

unlimited attempts and can see their marks immediately.

Driver: We use an AAT to increase the quantity, timeliness,

consistent, and availability of feedback. Using an AAT allows us

to have weekly quizzes with immediate feedback. Human markers

often do not notice problems with image output when grading

student work, while an AAT provides more consistent results and

fewer complaints. Using an AAT provides feedback when students

experiment by themselves. Finally, using a web-based AAT avoids

the need for local installation of OpenGL, which some students

struggle with.

Reflections: Feedback from students indicated that those with

limited experience and equipment were able to use the web-based

tool easily, and students were generally positive about the instant

feedback provided.

The tool improved teaching since it made lectures more interac-

tive, and students could test their understanding using the weekly

quizzes. Analysis of usage patterns suggest that students spend

more time on practicing content using short automarked exercises

than they spend on larger manually-assessed assignments.

Several issues were observed: (a) the AAT lacks formative feed-

back; (b) sometimes students were unable to see the difference

between expected and actual output in the images which caused

frustration; (c) some students use a trial-and-error approach to

produce the expected output; (d) it is difficult to determine partial

marks; (e) it was sometimes challenging to detect plagiarism; (f)

some of the top students felt that developing a substantial solution

from scratch would provide a stronger understanding of the subject.

Case 8 —Web Development.
Context: This is a large (450+ students) third-year web devel-

opment course in which students get a full-stack development

experience. The server backend is developed using C# and consists

of practical work constructing APIs. The frontend uses JavaScript

(and CSS, SVG, and HTML).

Instructional design: The course has a total of six scaffolded
assignments, each building on the previous. Two of the assignments

require students to develop open and authenticated APIs. The rest



ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia Luxton-Reilly, et al.

of the assignments require students to develop a frontend using

these APIs, and penetration-test the server backend. There are

two time-limited quizzes that assessing the students’ knowledge of

constructing the server backend and the client.

Driver: The primary driver for automation is the quality and

consistency of assessment. At the same time, the automation yielded

prompt feedback.

Reflections: The assignments and quizzes have previously been

manually graded. There were number of grading consistency issues,

resulting in lengthy re-marking exercises, and delayed feedback.

This prompted us to develop a bespoke grading tool for testing and

marking the server backend development. The tool is completely

automated, and resulted in reducing the re-marking requests from

over 50% to under 5%. It is more difficult to automate grading of

the client frontend, due to the numerous user-interface elements

the frontend has. Therefore we could only partially automate the

assessment of the assignments related to the frontend.

3.3 Automated Assessment of
Non-Programming Artefacts

In this section we share our experiences with automated assessment

systems that evaluate student work that does not include source

code.

Case 9 — Computer Systems.
Context: We use Moodle Quizzes and CodeRunner in our first-

year and second-year computer systems courses. The first-year

course (400+ students) provides an overview of the layers that

make up a modern computer system. It uses Moodle Quizzes to run

weekly tutorials and several assignments. The second-year systems

course (200+ students) teaches caches, virtual memory, assembly

language programming (using LC-3), and how a high-level language

(C) is implemented at the machine level. Moodle is used for weekly

quizzes, and CodeRunner for C programming labs and the LC-3

assignment.

Instructional design: In the first-year course, some quizzes are

entirely auto-marked and others include essay and short-answer

questions that are manually graded. The second-year course allows

the students to take weekly quizzes on Moodle with multiple at-

tempts, where we use a question bank to randomise the questions

presented in each attempt. After two trial attempts, the third at-

tempt is graded. The LC-3 assignment and C programming labs use

CodeRunner to assess the functional correctness of solutions.

Driver:We use AATs primarily to provide timely feedback as

students get immediate results. This gives students an opportunity

to improve their understanding of current content so they are pre-

pared for what follows. The use of AATs also reduces the marking

load, and provides individualisation to support academic integrity.

Reflections: The weekly automated quizzes help students to

remain engaged with the course material, and reinforces their learn-

ing. Our use of the multiple attempts with randomised questions in

the quiz were appreciated by the students, who report that it helps

them to practice key concepts.

Case 10 — Human Computer Interaction.
Context: The tool MarCHIr is used in a large (300+ students)

third-year human computer interaction (HCI) course that includes

an assignment on the design and development of a high fidelity

web prototype. The learning outcomes include an understanding

of usability, accessibility, and visual design as well as the ability to

creatively apply and implement these within an interactive web

prototype.

Instructional design:When students initially receive the hand-

out for the assignment, MarCHIr assigns a personalised colour to

every student which is provided through a batch email. Then, stu-

dents develop a website with a homepage and a form using their

assigned colours as the ‘brand’ colour. The homepage has few con-

straints, inviting creativity, whereas the form requires placement

of a prescribed number of web elements.

MarCHIr assesses the entire prototype for use of the assigned
colour and adherence to accessibility principles including labelling,

alternative text for images, and colour contrast. It assesses the form

for adherence to visual design principles as well as tests basic inter-

active functionality such as a pop-up window. In order forMarCHIr
to work submissions must conform to a small set of naming conven-

tions. Students can pre-test their prototype to verify that it meets

all the naming requirements. After submission, students receive

feedback comprising half automatic grading from MarCHIr and
half the marks and written comments from manual markers.

Driver: We created MarCHIr to provide efficient marking for

large cohorts and to offer objective marking for HCI content that is

typically considered subjective by our technical computer science

and engineering students. Our motivation to include personalisa-

tion was to prompt individual creativity and to prevent cheating.

Reflections: MarCHIr successfully assesses the implementation

of an interactive web prototype and adherence to accessibility stan-

dards and visual design principles, making it a useful tool alongside

manual marking. While we invested more time upfront to develop

MarCHIr , we saved significant marking effort after the fact. The

course evaluations showed fewer comments complaining about

subjective marking, compared to earlier years.

Case 11 — Cybersecurity & Computer Networks.
Context: Personalised and AATs are used in the Cybersecu-

rity and Computer Network courses, which include a second-year

course and two third-year courses. The third-year courses use one

individualised assignment and two individualised tests each, while

the second-year course uses 11 assignments and 2 quizzes, all indi-

vidualised. Individualisation is facilitated through the Dividni [21]

framework.

Driver: In these courses individualised assessments are primar-

ily used to reduce academic misconduct. In addition, automated

grading provides consistency and fairness that is difficult with

manual grading.

Instructional design: Individualised quizzes and assignments

are generated using Dividni [21]. Quizzes are imported to Canvas or

Inspera, both of which facilitate auto-grading. Assignments are de-

ployed to a local server where single-sign on identifies the students

and provides idempotence to the assignments. Students submit

their solutions to a bespoke submission tool and the submissions

are auto-graded using Dividni.

Reflections: Developing individualized assignments for large

classes requires careful consideration so that the grading of such

questions can easily be automated. AATs enable multiple grading



Automated Assessment: Experiences From the Trenches ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia

at no additional cost, so we could allow students to re-attempt

tests and unsuccessful assignment questions without significant

workload.

Case 12 — Object-oriented Analysis and Design.
Context: Blackboard tests are used in a second-year object-

oriented analysis and design course that focuses on requirements

elicitation and expression (semi-formal grammar and fully dressed

use cases) and using UML models (use case, sequence, activity, and

class diagrams) to define and clarify requirements.

Instructional design: A typical assignment involves an authen-

tic case study of a ticketing system with an external client who had

implemented similar systems. The case study had some hidden re-

quirements and students were able to ask the client for clarification

throughout the assignment. The assessment was presented as a se-

ries of incomplete models where students had to fill in the missing

elements. Each group of potential responses included distractors

that were based on common errors from past students. To correctly

complete the models the students needed to be able to evaluate the

potential solutions and map them to the case study requirements.

Driver: The main motivation for using automated assessment

was to ensure efficiency when marking complex models in a large

class. Consistency between markers was previously an issue, regu-

larly resulting in the need to remark large sections of work, even

when highly structured grading flow charts were introduced.

Reflections: Students found assessment manageable but the au-

tomated assessment entailed removing tasks which required them

to use appropriate model elements and deal with laying out the

diagrams. These aspects were instead tested in controlled quiz as-

sessments. Consistency inmarkingwas achieved and it was possible

to easily regrade a question for the entire cohort if required. The

grade average for the assessment was inflated but moderated by

the controlled quizzes. It is recommended that anyone taking this

approach include one diagram that is created and marked by hand.

However, this approach has higher potential for undetectable pla-

giarism. Additionally, designing and testing the assignment takes

time since every potential response needs to be tested in each gap.

But the time to develop the assignment was substantially less than

marking the more traditional assessment that required students

to write requirements and create diagrams from scratch. Despite

students needing to apply concepts and evaluate potential solutions

to complete the assignment some colleagues remain unconvinced

that this a reasonable format for assessment of modelling skills.

Case 13 — Object-oriented software development.
Context: In a large (300+ students) second-year software de-

velopment course taught in Java, we created a reading assignment

using Perusall.

Instructional design: A book chapter and a problem descrip-

tion for a software project is presented to the students in Perusall.

Students are expected to work in small teams, discuss the prob-

lem description within their groups, and add 5–10 relevant and

meaningful annotations to specific parts of the problem description,

citing knowledge gained from the book chapter. The automark-

ing feature of Perusall is complemented with a manual review of

students comments by the instructor. The tool assessed students’

submissions on the basis of such things as annotation content, num-

ber of assignment accesses, student engagement, time spent on the

reading and annotating, number of comments made, and length of

comments.

Driver: The intent of using Perusall was: (a) to enhance students’
understanding of object-oriented concepts through readings; (b) in-

troduce a group discussion-based assessment component to develop

communication skills; (c) reduce the manual marking effort.

Reflections: Automation was essential to provide efficient as-

sessment of student engagement with reading material. Manually

grading student comments using an alternative, such as a forum,

would be too costly, so the use of AATs for this task was essen-

tial. Feedback from students was positive with the majority of

students reporting that the reading supported their learning of

object-oriented concepts.

Case 14 — Collaborative learning of mathematics.
Context and Driver: To major in CS, probably all students must

take a range of mathematics courses (e.g., Linear Algebra). By the

end of these courses, which are often lecture-based, fast-paced, and

content-intense, students are expected to become fluent in complex

and abstract topics. To help students reach these targets many uni-

versity teachers capitalize on the affordances of learning-support

modules (sometimes also called “quizzes”). Such modules can pro-

vide explanations and hints as well as mark student solutions. Math-

ematics education research has developed a comprehensive body

of knowledge on ways of unconventional thinking that students

often develop (e.g., [18]), so if an input answer is consistent with

a known alternative approach, a module can trigger a feedback

message to help students revise their thinking. However, designing

such feedback is an effort-consuming endeavour. Accordingly, an

out-of-course pilot was initiated to explore how ATs could induce

a desired change in students’ thinking.

Instructional design: We invited dyads and triads of first-year

students to participate in a pilot. In a laboratory setting, each group

sat in front of a single computer screen and worked together on

learning-support modules developed in STACK. Each module con-

sisted of a sequence of questions, where each question appeared on

a separate screen. Once the students clicked the “check” button, the

module automatically assessed their answer and presented feed-

back based on previous research. We designed the modules so that

students could progress to the next question without submitting

their answer, return to the previous question, and attempt each

question several times. Our focus was on students’ collaborative

engagement with feedback and its use to inform their thinking.

Reflections: Overall, the design of the modules “paid off” as

feedback messages often assisted students in revising their thinking

and correcting their work. The use of similar questions between

which the students cycled back and forth played a key role in stu-

dents becoming confident that their revised or current approach

was correct. In some cases, corrective feedback spurred a change

in students’ reasoning even if the explanation was not consistent

with group thinking. In those cases where a group was split in

its thinking, feedback occasionally spurred productive discussions

around why one rather than the other approach was correct, but in

other cases the group dynamic was an obstacle to learning. Thus,

collaborative learning from AATs emerges as a complex phenome-

non that is shaped by a range of cognitive, meta-cognitive, social,

and affective factors.



ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia Luxton-Reilly, et al.

Case 15 — Mathematics in Computer Science.
Context: H5P (HTML5 Package) allows the creation of inter-

active content within Canvas and is used in the first-year discrete

mathematics course. Interactive content with multi-choice quizzes

is created (sourced mainly from past tests and exam papers) for

students to practice in their own time.

Instructional design: In this course, students are asked to vol-

untarily complete a module as revision for a chapter on the relevant

material. The interactive quizzes provide both answers and hints

to resources when they click on an (incorrect) option. The quiz did

not contribute to the final grade.

Driver:Many students find discrete mathematics challenging

and have trouble translating concepts learned in class to applica-

tion problems on assignments. Introducing these quizzes aims to

enhance independent student learning by providing immediate

feedback and increasing their confidence in problem-solving.

Reflections: Students have reported that the quizzes help them

solidify their understanding as they get immediate feedback to self-

correct their thinking process. However, some students chose not

to complete the activity as it was optional.

4 DISCUSSION
As the case studies illustrate, there are many variables relating

to the decision to use automated assessment. We summarise that

variety below.

4.1 Nature of Assessment
As would be expected for courses in computer science and software

engineering, providing automated functional testing was the most

common form of assessment. However there was variation even in

this group. In some cases, the tests were applied to a single method

or a single class, that is, unit testing. In other cases the tests were

applied to a set of files or classes and the testing was done at system

level, exercising the system from an entry point (e.g., the main
method in Java).

AAT are not limited to functional correctness. One course auto-

matically assessed the fidelity of a web site prototype using stan-

dards in HCI and accessibility principles (Case 10). One course

tested principles in graphics, such as image creation and transfor-

mation. For some courses, part of what was assessed was whether

the proposed solution met algorithm efficiency requirements.

There were variations on non-code based assessment. Some were

the familiar MCQs or short-answers, but one course experimented

with supporting learning linear algebra, while another assessed

engagement in group discussion.

4.2 Drivers
These cases are reported in institutions that have large class sizes

and limited teaching support. Unsurprisingly the most common

reason to use AAT is to reduce the cost of assessment, but it was not

universal. For one course (Case 14) on linear algebra the motivation

was to support student learning by providing structured interactive

and formative feedback. A consequence of reducing the cost is

that it allows assessments to be regraded cheaply (e.g., to allow

provisional marks with re-submission, see Case 11).

The next most common reason was to provide immediate feed-

back to student work. As we have already noted, providing feedback

is an important part of learning, and so doing so as quickly as pos-

sible would seem a reasonable goal. However this property also

could engender unhelpful student behaviour where they rely solely

on the AAT to complete the assessment (Case 6). To avoid this be-

haviour, but to help develop time management skills, AAT feedback

was only provided at limited interim deadlines. The “reward” of

the feedback encouraged an early start while avoiding degenerate

behaviour (Case 2).

The criteria used for AAT provides an unambiguous specification

for what was required for the assessment. This helps mitigate the

difficulty of fully describing the functional requirements in natural

text (Case 4). A consequence of this, and in some cases the main

driver, was to resolve issues associated with accuracy of marking.In

some cases, AATs identify subtle errors that are difficult for a human

to detect (Case 7). Also, with human markers, there is the concern

that they are not always consistent in their interpretation of the

marking rubric (e.g., Cases 8, 12).

AATs can have pedagogic benefits. Having the AAT feedback

immediately allows students to experiment with their submissions

to help understand the consequences of different choices, such as

what happens when different rotation parameters are provided for

an image (Case 7). Having AAT feedback provides safety to the

students to allow them to explore variations relating to the main

criteria (Case 15).

An important pedagogic benefit that AAT allows is individualisa-

tion, where the assessment task a student has to perform is tailored

to that individual. This is a non-punitive way to support academic

integrity. However, grading individualised assessments manually

is expensive and does not scale. AAT enables individualised assess-

ments to scale to large classes (Cases 9, 11).

Some AATs improve accessibility to learning content. For exam-

ple, several systems are delivered via a web-browser, which allows

students to do their assessment on any web-enabled device. When

the environment required is complex (e.g., Case 7), the AAT may

remove significant barriers to learning.

4.3 Assessment Provision
Several different AATs were used (Section 3.1). The student interac-

tion with the AAT can be fully online (i.e. students interact with a

web application in a web browser and receive the AAT feedback

in the same way), partially online (work is submitted via some

web-based or online system but is assessed in by a separate system

as a separate step), or fully offline (work is submitted directly to

the AAT).

The availability of AAT feedback depends to some extent on

the student interaction. If online, the feedback will typically be

immediate and directly to the student, usually as a web page. This

is typical of tools such as CodeRunner, Perusal, and other LMS-

based AATs.

For partially online, when the feedback is available depends

on when the assessment step is performed. Typically this step is

performed by the teacher or assessment team and some days may

have elapsed from when the work was submitted. The report may

be only used by the assessment team to determine the final mark



Automated Assessment: Experiences From the Trenches ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia

and not provided to the student. Or it could be delivered to the

student via a separate means (e.g., email Cases 2, 4, 10).

For offline, for the student to have access to the feedback report

requires that the student has access to the AAT. In some cases

the assessment was performed only by teachers with availability

similar to the partially online case. However for some courses the

students received all the necessary artefacts to allow them to use

the AAT themselves (e.g., Cases 4, 6).

4.4 Assessment Type
The types of assessment managed by the AATs included “assign-

ments” (deliverable worked on by an individual student in own

time over more than a week) “lab exercise” (deliverable worked on

by an individual student starting at a defined time—the “lab”—but

possibly completed outside of the lab time) “test/exam” (limited

time to work on it typically not more than 3 hours at a fixed time

of the day), “tutorial exercise” (primarily formative exercise done

in a teaching session) “weekly quiz” (formative but not necessarily

done during a teaching session), and “project” (several weeks by a

group).

The nature of the different types of assessment affect the choice

of AAT and how it is used. For example, in-class exercises neces-

sarily require immediate feedback. Offline AATs typically require

some setup time that is not worth spending in-class, meaning an

online system is the best choice.

Online assessment is typically impossible for certain assessment

types. For example, system-level testing, especially with complex

input and output, is difficult to provision through a web browser.

Accordingly, this type of assessment typically uses a separate tool,

that is, either partially or full offline (e.g., Cases 2, 5, 4, 6, 10).

The advantage of standard tools such as JUnit, make, or maven is

that their deployment is well supported. Teachers need only provide

the specification of the process (e.g., JUnit test classes, the makefile,

or a maven POM file) and there are many resources available to

students to help them get the systems running. With locally-created

bespoke systems, their deployment can be non-trivial, and so are

typically only used for situations where the students do not directly

interact with the AATs.

4.5 Assessment Criteria Visibility
The visibility of the criteria used by the AATs can vary, from all

criteria known to the student to nothing being visible—the students

may not even be aware that an AAT is being employed.

Supplying all criteria was useful when the criteria was used to

provide an unambiguous specification of the requirements (e.g.,

Case 7). However, when performing functional testing, it was com-

mon to have hidden tests (e.g., Case 1). An alternative is to not

supply all of the tests that were to be used in the assessment. The

students would get some of the tests but these were deliberately

incomplete in their coverage, with a full test suite employed for the

to complete the assessment (e.g., Cases 1, 2, 5, 4).

4.6 Assessment Outcome
The feedback produced by theAAT could depends on several factors,

including who it is to be delivered to, what the visibility of the

criteria is, what the goal of the assessment is, and the type of

assessment. For example, when provided to students, it may be

only a summary (e.g., Case 2); it may describe the criteria met (e.g.,

what tests, including inputs and expected outputs) were met; it may

be the results for all criteria applied (details of tests that both passed

and failed). It could even provide further feedback and advice on

performance (e.g., Case 14). The different choices provide different

levels of formative feedback.

The reports for teachers generally contain the results for all

criteria, and may include extra information or provide aggregate

data on class performance.

4.7 Submission Options
A decision that has to be made is how and when students submit

their work. If the goal of its use is to provide formative feedback,

then there will typically be no restriction of when, or how often, stu-

dents may make a submission. For example, in an in-class setting

with no summative component allowing unlimited submissions

would be appropriate. However when the assessment mark is par-

tially or wholly determined by the AAT and unlimited submissions

are allowed, we found students can come to rely on it (e.g., Case 1).

Options include limiting the number of submissions, have a penalty

scheme for multiple attempts (Case 1), or limit when feedback is

provided (Case 2).

When assessment is intended for both formative and summative

feedback, this creates a tension as to what the right restrictions are,

and potential unhappiness in students (Case 1).

5 RECOMMENDATIONS
In this work we have presented a variety of ways that automated

assessment is used in contemporary computing courses, and share

the experiences of teachers involved in these courses. We conclude

with a set of recommendations based on those experiences.

Recommendation 1: Familiarise students with the AAT envi-

ronment prior to high stakes assessments.

Students sometimes delay starting assignments until close to

deadlines, and discover too late that they do not know how to ef-

fectively use the AAT. A low-weighted activity scheduled early in

the course, that mimics the AAT use of later assignments, will help

to build student confidence and familiarity with assessment pro-

cesses and resolve mechanical issues at a time that is not critically

important.

Recommendation 2: Provide a sample of test cases with the

assignment to scaffold and encourage testing outside the auto-

mated assessment environment.

To encourage students to focus on testing their own code prior to

submission to an automated assessment system, consider providing

a sample of test cases, along with any necessary build tool configu-

ration, within the assignment resources. This supports students to

start testing their code with minimal effort.

Recommendation 3: Ensure some test cases are hidden, but

visible test cases should cover boundary cases and complex

inputs/outputs.



ACE ’23, January 30-February 3, 2023, Melbourne, VIC, Australia Luxton-Reilly, et al.

Hidden test cases are needed to ensure students cannot engineer

their solution to pass tests without creating a solution to the general

problem specified. However, it can be frustrating for students when

a hidden test covers an unusual case that they had not considered,

especially when the grading scheme is all-or-nothing. The test cases

should therefore be selected to make it unlikely that a genuine

solution will pass the visible cases and fail the hidden ones.

Recommendation 4: Consider using a mechanism to prevent

unlimited submissions for the same problem to prevent unde-

sirable trial-and-error behaviours.

The availability of unrestricted immediate feedback can lead to

over-reliance on the tests provided by auto-graders [2]. Frequent

mechanisms to reduce over-use of AAT feedback include limited

submission opportunities, penalties for re-submission, time delays,

or parameterised problem sets.

Recommendation 5: Consider using features of automated as-

sessment system to provide feedback that explicitly encourages

students.

Positive feedback is known to improve student motivation and

self-perception, and can improve learning performance[10], yet

many of the automated systems emphasise failure to meet criteria.

There is some research suggesting that although negative feedback

can improve student self-assessment accuracy, it can also reduce

student engagement and motivation [17, 30]. Hyland and Hyland

[14] suggest that a combination of both positive and negative feed-

back is most effective, and that positive praise may result in students

being more accepting of negative feedback. Given the focus of AATs

on correctness, it is our view that systems should aim to include

both positive feedback on correct elements as well as gaps between

desired and actual performance.

REFERENCES
[1] Kirsti M Ala-Mutka. 2005. A Survey of Automated Assessment Approaches for

Programming Assignments. Computer Science Education 15, 2 (2005), 83–102.

[2] Elisa Baniassad, Lucas Zamprogno, Braxton Hall, and Reid Holmes. 2021. STOP

THE (AUTOGRADER) INSANITY: Regression Penalties to Deter Autograder

Overreliance. In Proceedings of the 52nd ACM Technical Symposium on Computer
Science Education (Virtual Event, USA) (SIGCSE ’21). ACM, New York, NY, USA,

1062–1068. https://doi.org/10.1145/3408877.3432430

[3] Leopold Bayerlein. 2014. Students’ feedback preferences: how do students react

to timely and automatically generated assessment feedback? Assessment &
Evaluation in Higher Education 39, 8 (2014), 916–931.

[4] Janet Carter, Kirsti Ala-Mutka, Ursula Fuller, Martin Dick, John English, William

Fone, and Judy Sheard. 2003. How Shall We Assess This? SIGCSE Bull. 35, 4 (June
2003), 107–123. https://doi.org/10.1145/960492.960539

[5] Sophie H. Cormack, Laurence A. Eagle, and Mark S. Davies. 2020. A large-scale

test of the relationship between procrastination and performance using learning

analytics. Assessment & Evaluation in Higher Education 45, 7 (2020), 1046–1059.

[6] Galina Deeva, Daria Bogdanova, Estefanía Serral, Monique Snoeck, and Jochen De

Weerdt. 2021. A review of automated feedback systems for learners: Classification

framework, challenges and opportunities. Computers & Education 162 (2021),

104094. https://doi.org/10.1016/j.compedu.2020.104094

[7] Paul Denny, Jacqueline Whalley, and Juho Leinonen. 2021. Promoting Early En-

gagementwith ProgrammingAssignments Using ScheduledAutomated Feedback.

In Australasian Computing Education Conference (Virtual, SA, Australia) (ACE
’21). ACM, New York, NY, USA, 88–95. https://doi.org/10.1145/3441636.3442309

[8] Christopher Douce, David Livingstone, and James Orwell. 2005. Automatic test-

based assessment of programming: A review. Journal on Educational Resources in
Computing (JERIC) 5, 3 (2005), 1–14.

[9] Stephen H. Edwards, Joshua Martin, and Clfford A. Shaffer. 2015. Examining

Classroom Interventions to Reduce Procrastination. In Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science Education
(Vilnius, Lithuania) (ITiCSE ’15). ACM, New York, NY, USA, 254–259.

[10] Emily Faulconer, John Griffith, and Amy Gruss. 2022. The impact of positive

feedback on student outcomes and perceptions. Assessment & Evaluation in Higher
Education 47, 2 (2022), 259–268. https://doi.org/10.1080/02602938.2021.1910140

[11] Graham Gibbs and Claire Simpson. 2005. Conditions under which assessment

supports students’ learning. Learning and teaching in higher education 1 (2005),

3–31.

[12] Yoshiko Goda, Masanori Yamada, Hiroshi Kato, Takeshi Matsuda, Yutaka Saito,

and Hiroyuki Miyagawa. 2015. Procrastination and other learning behavioral

types in e-learning and their relationship with learning outcomes. Learning and
Individual Differences 37 (2015), 72–80. https://doi.org/10.1016/j.lindif.2014.11.001

[13] John Hattie and Helen Timperley. 2007. The Power of Feedback. Review of Edu-
cational Research 77, 1 (2007), 81–112. https://doi.org/10.3102/003465430298487

[14] Fiona Hyland and Ken Hyland. 2001. Sugaring the pill: Praise and criticism

in written feedback. Journal of Second Language Writing 10, 3 (2001), 185–212.

https://doi.org/10.1016/S1060-3743(01)00038-8

[15] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Review

of Recent Systems for Automatic Assessment of Programming Assignments.

In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research (Koli, Finland) (Koli Calling ’10). ACM, New York, NY, USA,

86–93. https://doi.org/10.1145/1930464.1930480

[16] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A systematic literature

review of automated feedback generation for programming exercises. ACM
Transactions on Computing Education (TOCE) 19, 1 (2018), 1–43.

[17] Eun Jung Kim and Kyeong Ryong Lee. 2019. Effects of an examiner’s positive and

negative feedback on self-assessment of skill performance, emotional response,

and self-efficacy in Korea: a quasi-experimental study. BMC medical education
19, 1 (2019), 1–7.

[18] George Kinnear, Ian Jones, Chris Sangwin, Maryam Alarfaj, Ben Davies, Sam

Fearn, Colin Foster, André Heck, Karen Henderson, Tim Hunt, Paola Iannone,

Igor’ Kontorovich, Niclas Larson, Tim Lowe, John Christopher Meyer, Ann

O’Shea, Peter Rowlett, Indunil Sikurajapathi, and Thomas Wong. 2022. A

collaboratively-derived research agenda for e-assessment in undergraduate

mathematics. Int. J. Res. Undergrad. Math. Ed. (8 2022), 31 pages. https:

//doi.org/10.1007/s40753-022-00189-6

[19] Richard Lobb and Jenny Harlow. 2016. Coderunner: A Tool for Assessing

Computer Programming Skills. ACM Inroads 7, 1 (feb 2016), 47–51. https:

//doi.org/10.1145/2810041

[20] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gi-

annakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott,

Judy Sheard, and Claudia Szabo. 2018. Introductory Programming: A Sys-

tematic Literature Review. In Proceedings Companion of the 23rd Annual ACM
Conference on Innovation and Technology in Computer Science Education (Lar-

naca, Cyprus) (ITiCSE 2018 Companion). ACM, New York, NY, USA, 55–106.

https://doi.org/10.1145/3293881.3295779

[21] Sathiamoorthy Manoharan and Ulrich Speidel. 2020. Individualized Assessments

using Dividni-Enhancing Learning via Assessments Unique to Every Student. In

Proceedings of the 51st ACM Technical Symposium on Computer Science Education.
ACM, New York, NY, USA, 1419–1419. https://doi.org/10.1145/3328778.3372545

[22] Emma Mulliner and Matthew Tucker. 2017. Feedback on feedback practice:

perceptions of students and academics. Assessment & Evaluation in Higher
Education 42, 2 (2017), 266–288. https://doi.org/10.1080/02602938.2015.1103365

[23] David J. Nicol and Debra Macfarlane-Dick. 2006. Formative assessment and

self-regulated learning: a model and seven principles of good feedback prac-

tice. Studies in Higher Education 31, 2 (2006), 199–218. https://doi.org/10.1080/

03075070600572090

[24] Claudia Ott, Anthony Robins, and Kerry Shephard. 2016. Translating Principles

of Effective Feedback for Students into the CS1 Context. ACM Trans. Comput.
Educ. 16, 1, Article 1 (jan 2016), 27 pages. https://doi.org/10.1145/2737596

[25] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2022. Automated Assess-

ment in Computer Science Education: A State-of-the-Art Review. ACM Trans.
Comput. Educ. 22, 3, Article 34 (jun 2022), 40 pages. https://doi.org/10.1145/

3513140

[26] Chris Sangwin. 2013. Computer aided assessment of mathematics. Oxford Univer-

sity Press.

[27] Draylson M. Souza, Katia R. Felizardo, and Ellen F. Barbosa. 2016. A Systematic

Literature Review of Assessment Tools for Programming Assignments. In 2016
IEEE 29th International Conference on Software Engineering Education and Training
(CSEET). IEEE, 147–156. https://doi.org/10.1109/CSEET.2016.48

[28] Jacqueline L. Whalley and Anne Philpott. 2011. A Unit Testing Approach to

Building Novice Programmers’ Skills and Confidence. In Proceedings of the 13th
Australasian Computing Education Conference (Perth, Australia) (ACE ’11). Aus-
tralian Computer Society, Inc., Australia, 113–118.

[29] Benedikt Wisniewski, Klaus Zierer, and John Hattie. 2020. The Power of Feed-

back Revisited: A Meta-Analysis of Educational Feedback Research. Frontiers in
Psychology 10 (2020). https://doi.org/10.3389/fpsyg.2019.03087

[30] Shulin Yu, Feng Geng, Chunhong Liu, and Yao Zheng. 2021. What works may

hurt: The negative side of feedback in second language writing. Journal of Second
Language Writing 54 (2021), 100850. https://doi.org/10.1016/j.jslw.2021.100850

https://doi.org/10.1145/3408877.3432430
https://doi.org/10.1145/960492.960539
https://doi.org/10.1016/j.compedu.2020.104094
https://doi.org/10.1145/3441636.3442309
https://doi.org/10.1080/02602938.2021.1910140
https://doi.org/10.1016/j.lindif.2014.11.001
https://doi.org/10.3102/003465430298487
https://doi.org/10.1016/S1060-3743(01)00038-8
https://doi.org/10.1145/1930464.1930480
https://doi.org/10.1007/s40753-022-00189-6
https://doi.org/10.1007/s40753-022-00189-6
https://doi.org/10.1145/2810041
https://doi.org/10.1145/2810041
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3328778.3372545
https://doi.org/10.1080/02602938.2015.1103365
https://doi.org/10.1080/03075070600572090
https://doi.org/10.1080/03075070600572090
https://doi.org/10.1145/2737596
https://doi.org/10.1145/3513140
https://doi.org/10.1145/3513140
https://doi.org/10.1109/CSEET.2016.48
https://doi.org/10.3389/fpsyg.2019.03087
https://doi.org/10.1016/j.jslw.2021.100850

	Abstract
	1 Introduction
	2 Related Work
	3 Use Cases for Automated Assessment
	3.1 Tools and Infrastructure
	3.2 Automated Assessment of Programming
	3.3 Automated Assessment of Non-Programming Artefacts

	4 Discussion
	4.1 Nature of Assessment
	4.2 Drivers
	4.3 Assessment Provision
	4.4 Assessment Type
	4.5 Assessment Criteria Visibility
	4.6 Assessment Outcome
	4.7 Submission Options

	5 Recommendations
	References

