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Abstract—Deep Reinforcement Learning (DRL) systems are
widely used across various domains. However, testing these
systems presents significant challenges. The DRL agent, which
serves as the core decision-maker, generates continuous value
estimates rather than discrete labels and operates under non-
stationary policies within complex and stochastic environments.
Consequently, there is no definitive “correct answer” for each
state-action pair, complicating automated test generation due to
the known oracle problem. To address this challenge, we propose a
Metamorphic Testing (MT) framework (MDPMORPH) specifically
designed for validating DRL agents. Our framework is based
on Markov Decision Processes (MDP) and focuses on the core
reasoning properties of agents to automatically uncover potential
faults. To support MDPMORPH, we introduce a Metamorphic
Relation (MR) design methodology tailored for DRL agents, based
on the temporal characteristics of MDP. Using this method, we
define nine generic MRs that encapsulate common and expected
properties of an agent’s reasoning process. Furthermore, based
on established assumptions and definitions within the context of
MDPs, we theoretically demonstrate the soundness of these MRs.
Finally, we specialize these generic MRs into environment-specific
MRs by determining appropriate thresholds through training
on three classic DRL environments. Our experimental results
demonstrate that MDPMORPH and the proposed MRs are highly
effective in automatically detecting mutants within these studied
environments, with a 0.84 average mutation detection rate.

Index Terms—Deep Reinforcement Learning, Metamorphic
Testing, Machine Learning Testing, SE4AI

I. INTRODUCTION

Over the past decade, Reinforcement Learning (RL) has
gained significant attention for its ability to solve challenging
sequential decision-making problems [1]. By combining RL
with Deep Neural Networks (DNNs), Deep Reinforcement
Learning (DRL) harnesses the representational power of DNNs
to tackle tasks of even greater complexity and uncertainty
without extensive domain knowledge [2]. Deep architectures
enable DRL agents to automatically extract multi-level feature
hierarchies from raw inputs, driving breakthroughs across a
wide range of applications [3]. DRL has been successfully
deployed in fields such as autonomous driving [4], [5], robotic
control [6], and intelligent transportation systems [7].

Similar to other software systems, the agent (acting as
the central decision-making component in an DRL system)
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faces considerable challenges in ensuring correct decisions,
particularly in complex and uncertain real-world environments.
Any potential fault that causes the agent to make an incorrect
decision could lead to unexpected, or even catastrophic conse-
quences. In autonomous driving, for instance, the result could
range from vehicle damage to human casualties [8]. Therefore,
it is essential to thoroughly evaluate safety-critical DRL agents
under a wide range of failure scenarios to identify and address
hidden vulnerabilities before deploying them in real-world
environments. Recent research has explored software testing
techniques for DRL systems that automatically generate diverse
test cases to identify as many faults in agents as possible [9],
[10], [11], [12]. However, these testing methods rely on human-
written oracles, the oracle problem remains a major challenge
in automated testing of DRL systems [13].

Metamorphic Testing (MT) [14] is a popular software
testing technique that, when combined with automated test
generation, allows for the automatic detection of faults without
requiring the expected output for each individual test case.
This is achieved by checking whether the outputs of related
inputs satisfy specific conditions known as Metamorphic
Relations (MRs). Significant research has been done on MT for
traditional software [15], [16] and Machine Learning (ML) [17]
systems. In the field of ML, especially, the high computational
complexity and vast input space make it difficult for software
developers to design systematic testing methods for thorough
evaluation and quality assurance. As a result, MT has emerged
as a promising testing technique and has been extensively
applied to ML programs [18], [16]. However, existing MT
methods and MRs are inadequate for DRL systems due to their
inherent characteristics. These fall into three main categories:
First, although MT has been applied to both traditional software
and ML models, it often emphasizes single-step input–output
relationships. In contrast, the behavior of an DRL agent unfolds
over time, which makes multi-step or trajectory-level MRs
particularly important. Second, unlike traditional software or
ML models that typically operate in static and predictable
environments, an DRL agent interacts with a dynamic and
complex environment, making it challenging for previous MT
methods to effectively describe and verify the agent’s policy
behavior. Third, agents within DRL systems generate data that
is uncertain and interactive during the reasoning phase, such
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as state sequences, action sequences, and reward sequences.
Existing MT methods lack the ability to recognize and process
these data streams, as they were not designed for this purpose.

To tackle these challenges, we propose MDPMORPH, a
novel MT framework for DRL systems, to effectively alleviate
the oracle problem in DRL agents. Grounded in the Markov
Decision Process (MDP), our framework considers the internal
logical structure of the environment while incorporating the
agent’s decision-making behavior. Although this framework
could potentially be applied to a broader range of RL agents, the
increased nonlinearity, deep network architectures, and large-
scale parameters of DRL agents exacerbate the oracle problem.
As a result, the MDPMORPH proposed in this paper is primarily
designed for DRL agents. Since the MDP provides a rigorous
mathematical foundation and verifiable temporal relationships
for DRL systems, our MR design is primarily based on MDP
properties. Specifically, we leverage the temporal characteristics
of the MDP to divide the agent’s inference process into
local MDP and global MDP, where the local MDP is further
categorized into single-step and multi-step. Based on these
hierarchical levels, as well as considering MDP assumptions
and properties, we propose nine MRs specifically tailored for
DRL systems. We also provide theoretical verification to show
that these relations represent essential properties of all DRL
systems that meet the specified assumptions. Subsequently,
following prior work on automatically generating MRs [19],
[20], [21], we propose an automated threshold training method
aiming for zero False Positives (FPs) and minimal False
Negatives (FNs) to determine the optimal thresholds for the
MRs under different environments.

We evaluated MDPMORPH and our proposed MRs across
three widely used DRL environments (CARTPOLE, LU-
NARLANDER, and BIPEDALWALKER) using 1,000 metamor-
phic test pairs and 80 different mutants. Experimental results
show that, although individual MRs may miss certain mutants,
they collectively detects all mutants. The average mutation
detection rate across the three environments is 0.73, 0.93, and
0.87, respectively. These results validate the effectiveness of
MDPMORPH and MRs. Further analysis reveals that neuron-
level and layer-level mutants are more difficult to detect, which
explains why some MRs fail to detect them.

In summary, this paper makes the following contributions:

• A new MR design methodology for DRL systems that
leverages the characteristics of MDPs. Using this method-
ology, we propose nine generic MRs for DRL agents and
provide theoretical analysis of their necessary properties.

• MDPMORPH, a new MT framework for DRL agents
that automatically learns thresholds within MRs, enabling
the fully automated transformation of generic MRs into
environment-specific ones.

• Experiments conducted on three classic DRL environments
that demonstrate that our MRs exhibit strong mutant
detection capabilities.

• We publicly release the tool implementation [22] and
experimental data [23] to foster future research.
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Figure 1. Structural diagram of Deep Reinforcement Learning (DRL)

II. PRELIMINARIES

A. Deep Reinforcement Learning (DRL) Systems

DRL systems are decision-making methods that incorporate
RL with DNNs. By leveraging neural networks to approximate
policy or value functions, these systems enable agents to learn
optimal or near-optimal strategies in complex environments
characterized by high dimensionality and continuity [24], [3].
Figure 1 illustrates the structural diagram of DRL systems.

The operation of an DRL system can be described as
a Markov Decision Process (MDP) [25], a discrete-time
stochastic control process used to model sequential decision-
making problems. An MDP is defined by a tuple consisting of
states s, actions a, state transition function P (s, a), rewards r,
and a discount factor. The system is composed of two principal
entities: the environment and the agent. The environment,
governed by its own dynamic rules, transitions the current
state s to a new state s′ upon receiving an action a from the
agent, and provides scalar reward r through a reward function.
The agent observes the state s of the environment at each
time step and samples an action a according to its policy π(s),
continuously updating its network parameters based on the
received rewards. The goal of training is to learn a policy that
maximizes discounted cumulative reward, which is then used
during the reasoning phase.

B. Metamorphic Testing (MT)

Metamorphic Testing (MT) [14] is an approach designed
to alleviate the oracle problem. At the heart of MT are Meta-
morphic Relations (MRs), which define expected relationships
among the outputs corresponding to multiple related inputs. The
fundamental insight of MT is that, even when it is not feasible
to automatically determine the correctness of a single output,
relationships among expected outputs from related inputs can
be leveraged as test oracles [16].

Definition 1: Let f denote the system under test. A Meta-
morphic Relation (MR) is a property involving multiple inputs
⟨x1, . . . , xn⟩ and their respective outputs ⟨f(x1), . . . , f(xn)⟩,
where n ≥ 2. Formally, an MR is a logical implication (⇒) 1:

Ri(x1, . . . , xn) ⇒ Ro(f(x1), . . . , f(xn))

where Ri is the input and Ro is the output relation.

1A broader definition allows inputs and outputs to appear in both input
and output relations [16]. However, without loss of generality, we use the
conventional form as our proposed MR aligns with this definition.
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Figure 2. Logical architecture of MDPMORPH

When the input relation Ri holds true for a set of inputs,
the corresponding output relation Ro is expected to hold true
for the resulting outputs. An MR thus serves directly as a
metamorphic test oracle.

Definition 2: Given an MR (Ri ⇒ Ro), a metamorphic
test oracle is an executable Boolean expression that signals a
fault if the input relation Ri holds true for a specific input set,
but the output relation Ro does not.

Metamorphic test pairs (or groups) are typically created
by first generating a test input (the source input), and then
applying a transformation to produce additional inputs (the
follow-up test inputs) that satisfy a specified input relation.

Definition 3: Given an MR (Ri ⇒ Ro) and a test input x1,
a (metamorphic) input transformation generates a new input
x2 such that Ri(x1, x2) = true

MT executes the system under test on these pairs (or sets)
of inputs, reporting an oracle violation whenever the output
relation does not hold.

III. MDPMORPH

To alleviate the challenges outlined in Section I, we propose
MDPMORPH, a novel MT framework specifically crafted for
DRL agents. This framework is based on MDPs and focuses on
the agent’s core reasoning properties to automatically uncover
faults. Figure 2 provides an overview of MDPMORPH, which
consists of three modes: Running, Threshold Training and
MR Evaluation. In the Running mode, potential faults in the
agent are uncovered by comparing the execution outputs of
automatically-generated source and follow-up test cases to
verify whether the output relation of the MR is satisfied. The
Threshold Training mode is used to optimize MR thresholds
by analyzing the execution results of the original agent and
its mutants. The MR Evaluation mode calculates the mutant
detection rate to evaluate MR effectiveness. The workflow for
these modes is outlined as follows.

Running Mode: The objective of this mode is to compare the
execution results of source test cases and their corresponding
follow-up test cases on the DRL system, and to output the
pass or fail outcomes. First, it automatically generates source
test cases by randomly sampling the initial states from the
environment. From such test cases, it derives follow-up test
cases using the input transformations defined by the MRs. It
then executes the source and follow-up test cases on the same
DRL model under test, producing the corresponding source
and follow-up outputs. Finally, it compares the two outputs to
verify whether they satisfy the output relation defined by the
MR. Test cases that satisfy the expected relation are marked as
“Pass”, and those that do not as “Fail”. Our proposed MRs use
thresholds on the difference or similarity between source and
follow-up outputs to determine whether the output relation is
satisfied. A key factor in the effectiveness of our proposed MRs
is the selection of appropriate threshold values, which are often
sensitive to the environment under test. A MDPMORPH user
can either define these thresholds based on domain knowledge
or train them using the mode described below.

Threshold Training Mode: The goal of this mode is to
automatically adapt generic MRs (applicable to any DRL
system that satisfies the assumptions) into environment-specific
MRs. The output relations defined in the generic MRs include
multiple thresholds that specify acceptable deviation margins
(see τ in Section III-B). These thresholds help prevent mis-
judgments caused by environmental noise, ensuring the MRs
remain broadly applicable across different DRL systems.

In this mode, many different initial states are first extracted
from the environment, serving as source test cases. These tests
then undergo input transformations defined by the generic MRs
to generate follow-up test cases. For mutant generation, our
current implementation employs DEEPMUTATION [26], which
produces different mutants by applying modifications to the
architecture or parameters of the original agent. MDPMORPH
selects 80% of the source and follow-up test cases, along with
50% of the mutants, for threshold training.



It then uses the false positives (FPs) and false negatives
(FNs) identified by running each of the selected metamorphic
test pairs [19], [20], [27], [28] to train the thresholds in
the generic MRs. An FP occurs when, for a metamorphic
test pair, the original agent behaves correctly, but the oracle
mistakenly reports it as a failure [29]. An FN arises when, for
a metamorphic test pair, a mutant exhibits erroneous behavior,
yet the oracle incorrectly passes [29]. MDPMORPH then uses
stochastic gradient descent to optimize a loss function involving
FP and FN, based on the execution results of the source and
follow-up test cases on both the original agent and its mutants.
The goal is to ensure zero FP while minimizing FN [19],
[20], [27]. This process ultimately gives the optimal threshold
for each generic MR within the environment, enabling its
transformation into an environment-specific MR.

Because this training overfits the current version, these
thresholds can only be used in regression testing mode to
detect faults in future versions of the agent [21]. Indeed, this
mode assumes that the given model is correct. This approach
aligns with previous studies that generate program assertions
or MRs by minimizing FPs and FNs [19], [20], [27], all of
which also operate under the regression testing assumption.

MR Evaluation Mode: The primary objective of this mode
is to assess the effectiveness of the MRs. Although it uses
the same methods for generating test cases and mutants as
in the Threshold Training mode, the specific test cases and
mutants used here are different. It executes the remaining
20% of the source and follow-up test cases on DRL systems
containing the remaining 50% of the mutants. It then compares
the resultant data with the expected output relations defined
by the environment-specific MRs to determine whether each
mutant is killed. Finally, it calculates the mutation detection
rate for each MR.

The following sections formally define the MRs used in
MDPMORPH, along with their underlying assumptions and
definitions. Table I provides a summary of the key notations.

A. Core Assumptions and Definitions

We summarize the assumptions and definitions related to
MDPs, which serve as the necessary prerequisites to ensure
that the generic MRs in MDPMORPH satisfy their essential
properties. These assumptions and definitions have already
been applied in testing scenarios related to DRL systems [11],
[9], [30], [31], [32].

Assumption 1: The MDP is Lipschitz continuous.
This assumption is based on the concept of Lipschitz

continuity, which is defined as follows.
Definition 4: Given two metric sets (X, dX) and (Y, dY ),

where dX and dY denote the corresponding distance metrics,
a function f : X → Y is said to be L-Lipschitz continuous if:
∀(x1, x2) ∈ X2, dY (f(x1)− f(x2)) ≤ LdX(x1 − x2)

Several studies have explored the constraints imposed
by Lipschitz continuity on transition and reward functions,
providing a foundation for the study of Lipschitz continuity in

Table I
KEY NOTATIONS

Symbol Description

S, Ac, Ad State space, continuous action space, discrete action space
st, at, rt State, action and reward at timestep t.
P (st, at) State transition function at timestep t.
R(st, at) Reward function at timestep t.
π(st) The agent’s policy at timestep t.
Lp Lipschitz constant of state transition function.
Lr Lipschitz constant of reward function.

s1t , a1
t , r1t

The state, action, and reward at timestep t
during the execution of the source test case.

S1, R1 The state sequence and reward sequence of a reasoning
episode during the execution of the source test case.

s2t , a2
t , r2t

The state, action, and reward at timestep t
during the execution of the follow-up test case.

S2, R2 The state sequence and reward sequence of a reasoning
episode during the execution of the follow-up test case.

τ The threshold in MRs.
f The total number of timesteps under a reasoning episode.

MDPs [33], [34], [35]. We define the Lipschitz continuity of
MDPs by referring to these works.

Definition 5: An MDP is Lipschitz continuous if both its state
transition function P and its reward function R satisfy Lipschitz
continuous. Specifically, there exists a Lipschitz constant Lp

such that ||P (s, a) − P (s′, a′)|| ≤ Lp(||s − s′|| + ||a − a′||)
∀s, s′ ∈ S and a, a′ ∈ Ac or ||P (s, a)− P (s′, a)|| ≤ Lp||s−
s′|| ∀s, s′ ∈ S and a ∈ Ad. Moreover, there exists a Lipschitz
constant Lr such that ||R(s, a)−R(s′, a′)|| ≤ Lr(||s− s′||+
||a−a′||) ∀s, s′ ∈ S and ∀a, a′ ∈ Ac or ||R(s, a)−R(s′, a)|| ≤
Lr||s− s′|| ∀s, s′ ∈ S and ∀a ∈ Ad. Here, || · || denotes the
Euclidean distance.

A similar MDP Lipschitz continuity assumption on environ-
ment dynamics is commonly used in previous works analyzing
the theoretical guarantees of DRL algorithms [36], [37], [38],
[34], [39]. Moreover, it is a relatively mild assumption for
practical applications [40], [41].

Assumption 2: The agent is memoryless and deterministic.

An agent is memoryless if it makes decisions only based
on the current state, without relying on any past information.
An agent is deterministic if, given the same state, the agent
consistently selects the same action. These are inherently related
to policies, forming the core of MDP research [42], [43].
Additionally, this assumption distinguishes between violations
of MRs caused by errors in the agent’s policy logic and those
caused by internal randomness.

Assumption 3: The noise in the state transition process is the
sole source of randomness in the agent’s reasoning process.

We assume that the noise variables in the state transition
process during the agent’s reasoning are independent and
remain fixed throughout the sequence. At the same time,
as part of the environment, they are the sole source of
randomness in the environment. This implicitly assumes that
the state transitions are stationary and there are no unobserved



confounders [44], [45]. This assumption allows us to account
for the randomness in the environment in designing MRs.

The three assumptions above define the applicability scope
of the generic MRs in MDPMORPH. The following introduces
the relevant definition used by generic MRs.

Definition 6: Let Vπ(s) be the state-value function under
policy π. The optimal policy π∗ is defined as argmaxπVπ(s).
That is, π∗ attains the highest possible expected total reward
from every state [46], [47].

B. Generic Metamorphic Relations (MRs)

This section presents the MRs currently implemented in
MDPMORPH. Following previous work in the context of DRL
systems, we consider a test case x to represent the initial state
of the environment s0 [9], [12], [48], [49], [50]. We use s10 and
s20 to denote the source and follow-up test cases, respectively.
By considering only the initial state and leaving all subsequent
states unchanged, we ensure the generated executions remain
feasible. Indeed, subsequent states are determined by the
environment and the actions of the agent. The former cannot
be easily altered without creating infeasible executions, and
the latter is what we aim to test. The output f(x) includes
essential elements of a DRL execution, such as states, rewards,
and actions, which collectively reflect the agent’s decision-
making.

To support MDPMORPH, we propose an MR design method
tailored to the reasoning process of DRL agents. Since the
MDP precisely defines how an agent selects actions from
states, obtains rewards, and transitions between states over time,
forming a sequence of “state-action-reward” steps. Leveraging
the temporal structure of MDPs, our method decomposes the
agent’s reasoning process into two levels: local MDP and global
MDP. Local MDP MRs are related to the agent’s behavior
within a selected local MDP region, emphasizing the local
stability and consistency of the its decision-making. In contrast,
global MDP MRs focus on the entire reasoning sequence of
the agent to evaluate its overall performance.

Furthermore, local MDP can be further divided into single-
step and multi-step. Single-step MRs examine immediate,
instantaneous behavioral changes within a single step, while
multi-step MRs assess the agent’s performance and long-
term behavior over multiple steps. This method encompasses
MRs that span the agent’s reasoning process from momentary
decisions to long-term strategies. It enables a comprehensive
capture of behavioral changes under different states and
decision-making scenarios. Using this method, we propose
nine generic MRs under certain assumptions and definitions of
the MDP outlined in Section III-A. By leveraging Euclidean
distance to assess the consistency of outputs, they can verify
whether the interaction between the agent and the environment
aligns with the intended objectives. We provide both descriptive
explanations and formal representations of these MRs. We
also provide a specific example for each MR based on an
autonomous driving scenario to intuitively demonstrate the
applicability and rationale of these MRs in real-world contexts.

Due to space constraints, the detailed proofs can be found in
the appendix [22].

Local MDP - single-step
MR 1: If the follow-up test case s20 is derived from the

source test case s10 through a slight variation (perturbation
δ1, translation γ1, or scaling λ1), then, for continuous action
spaces, the distance between the action values output by the
agent should be less than a threshold τ1; and, for discrete
action spaces, their action values output by the agent should
be identical. For the slight variations (δ1d, γ1d, or λ1d) in
input transformations within discrete action MRs, we referred
to previous research [51], [52] and constrained the variation
magnitude within 0.02, which has negligible impact on the
agent’s performance.

Continuous Action Space Discrete Action Space

MR1.1 s20 = s10 + δ1c =⇒
||a1

0 − a2
0|| < τ1.1

s20 = s10 + δ1d =⇒
a1
0 = a2

0

MR1.2 s20 = s10 + γ1c =⇒
||a1

0 − a2
0|| < τ1.2

s20 = s10 + γ1d =⇒
a1
0 = a2

0

MR1.3 s20 = λ1cs
1
0 =⇒

||a1
0 − a2

0|| < τ1.3

s20 = λ1ds
1
0 =⇒

a1
0 = a2

0

Where δ1, γ1, and λ1 represent noise perturbations, constant
vectors, and constants respectively.

Example: If the vehicle’s initial position is slightly changed,
a well-trained agent should produce correspondingly minor
adjustments to the vehicle’s steering angle and throttle, with
response magnitudes remaining within a predefined threshold.
Local MDP - multi-step

MR 2: If the source test case s10 and the follow-up test
case s20 are identical, then after i steps and j steps respectively
(i > j), the difference between the cumulative rewards of the
source and follow-up test cases should exceed a threshold τ2.

MR2
∃i = 0 · · ·n, j = 0 · · ·m, s10 ≡ s20 ∧ i > j =⇒∑i

k=0 r
1
k −

∑j
k=0 r

2
k > τ2

Example: If the vehicle, tasked with lane keeping, starts
from the same lane position and speed, the difference between
the rewards accumulated over a 60 seconds driving period and
those accumulated during the first 10 seconds should exceed a
predefined threshold.

MR 3: If the follow-up test case s20 is derived from the
source test case s10 through a slight variation (perturbation δ3,
translation γ3, or scaling λ3), then there exists a time step k
such that the distance between the last k steps of the state
sequence from the source test case and the last k steps of
the state sequence from the follow-up test case is less than a
threshold τ3.

Example: If the vehicle’s initial position is slightly changed,
the final trajectory states of the vehicle, such as position and
speed in the last few steps, should remain highly consistent
with the original trajectory, with differences staying within a
predefined threshold.



MR3.1 ∃k ≥ 0, s20 = s10 + δ3 =⇒
D({s1f−k, s

1
f−k+1...s

1
f}, {s2f−k, s

2
f−k+1...s

2
f}) < τ3.1

MR3.2 ∃k ≥ 0, s20 = s10 + γ3 =⇒
D({s1f−k, s

1
f−k+1...s

1
f}, {s2f−k, s

2
f−k+1...s

2
f}) < τ3.2

MR3.3 ∃k ≥ 0, s20 = λ3s
1
0 =⇒

D({s1f−k, s
1
f−k+1...s

1
f}, {s2f−k, s

2
f−k+1...s

2
f}) < τ3.3

Where δ3, γ3, and λ3 represent noise perturbations, constant
vectors, and constants respectively.

Global MDP - entire reasoning sequence
MR 4: If the follow-up test case s20 is identical to that

of the source test case s10, then the difference between the
state sequences generated by the system from these test
cases (measured by the distance function) should be within a
threshold τ4.

MR4 s20 ≡ s10 =⇒ D(S1, S2) < τ4

Example: If the vehicle starts from the same lane position
and speed, the differences in its state trajectories in terms of
position, velocity, and direction between two repeated driving
sessions should remain within a predefined threshold.

MR 5: If the follow-up test case s20 is identical to that
of the source test case s10, then the difference between the
reward sequences generated by the system from these test
cases (measured by the distance function) should be within a
threshold τ5.

MR5 s20 ≡ s10 =⇒ D(R1, R2) < τ5

Example: If the vehicle starts from the same lane position
and speed, the differences in its reward trajectories, including
lane keeping rewards and collision penalties, between two
repeated driving sessions should remain within a predefined
threshold.

IV. EVALUATION

The primary objective of our experiments is to address the
following three research questions.
RQ1 - Assumptions Validation. To what extent are the as-

sumptions satisfied by the DRL systems under test?
RQ2 - Effectiveness. What is the mutation detection rate of

our proposed MRs?
RQ3 - Mutants Inspection. What are the characteristics and

underlying causes of the mutants that are undetected by
each MR?

RQ1 examines whether the assumption conditions of MDP-
MORPH hold in the DRL systems we use, as these conditions
form the basis for applying its MRs. To achieve this, we
performed a thorough inspection of the source code and theo-
retically validated these assumptions through formal derivations.
These inspections are not strictly necessary, as MDPMORPH
can still effectively detect faults even if the assumptions are
not met, although the lack of theoretical guarantees may result
in false positives (FPs).

RQ2 evaluates the effectiveness of the MRs in MDPMORPH.
We generated mutants and diverse metamorphic test pairs,
trained thresholds to adapt generic MRs to each environment,
and then ran the test cases on mutated DRL systems to measure
mutation detection rates and perform statistical analysis.

RQ3 analyses the mutants that were not detected by each
individual MR. We investigate their characteristics and the
underlying causes, aiming to provide developers insight into
these types of faults.

A. Subjects
The DRL environments under test are CARTPOLE, LU-

NARLANDER, and BIPEDALWALKER. These are all part of
a well-known open-source gymnasium toolkit2 developed
by OPENAI, which has been widely used in testing DRL
systems [10], [31], [53], [12], [49]. Figure 3 shows 2D visual
representations of the environments.

CARTPOLE is a pole-balancing control task. It involves
controlling a cart that moves horizontally along a track to
prevent an inverted pole, hinged to its top, from falling over.
The state vector consists of the cart’s position and velocity,
as well as the pole’s angle and angular velocity. At each time
step, the agent selects one of two discrete actions: applying
a fixed force to either the left or the right. A reward of 1 is
given for every time step the pole remains within an upright
threshold. The episode terminates if the pole falls beyond this
threshold, or if a predefined number of steps is reached.

LUNARLANDER is a classic rocket trajectory optimization
problem involving a lander. The state includes information
such as the lander’s position, velocity, and whether both legs
are in contact with the ground. The action space is composed
of two continuously varying thrusts: one for the main engine
and the other for the lateral boosters. Rewards are provided
based on engine ignition timing during landing and the final
landing status. The episode terminates if the lander crashes,
moves out of the viewport, or fails to land properly.

BIPEDALWALKER involves controlling a two-legged robot
that must traverse a rugged terrain. The walker features
articulated legs with multiple joints, and the state of the
environment comprises details such as the robot’s position,
velocity, joint angles, and foot contact sensors. The action
space consists of the movement velocities of four joints—hips
and knees—with their values continuously ranging within [-1,
1]. Rewards are provided for forward progress and efficient
movement, while penalties are imposed for instability, excessive
energy use, or falling. The episode terminates when the walker
falls, leaves the designated path, or reaches the time limit.

OPENAI provides environments that define the dynamic
properties of these three tasks and automatically generate data
for training DRL models. To train our DRL models under test,
we employed the actor-critic [54] and soft actor-critic [55]
algorithms, as these methods are widely adopted by the DRL
community. Specifically, we selected a well-tested, open-source
implementation of these algorithms3. We terminated the training

2https://github.com/OpenAI/gym
3https://github.com/UoA-CARES/cares reinforcement learning

https://github.com/OpenAI/gym
https://github.com/UoA-CARES/cares_reinforcement_learning
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Figure 3. Environments of the DRL systems under test

Table II
THE MUTATION OPERATORS WE USED (FROM DEEPMUTATION [26])

Mutation Operator Level Description

Gaussian Fuzzing (GF) Weight Fuzz weight by Gaussian Distribution
Weight Shuffling (WS) Neuron Shuffle selected weights
Neu. Eff. Block. (NEB) Neuron Block a neuron effect on following layers
Neu. Activ. Inv. (NAI) Neuron Invert the activation status of a neuron
Neuron Switch (NS) Neuron Switch two neurons of the same layer
Layer Deactivation (LD) Layer Deactivate the effects of a layer
Layer Addition (LA) Layer Add a layer in neuron network
Act. Fun. Remov. (AFR) Layer Remove activation functions

process once the DRL agent successfully completed the task
100 times, ensuring that the three DRL models under test were
sufficiently high-quality.

B. Experimental Setup

Test Case Generation. To evaluate MDPMORPH and the
proposed MRs using the simplest test generation approach, we
relied on random test generation. To ensure consistency and
fairness, all subjects under test were evaluated within the same
reachable and realistic state space. Accordingly, the source test
cases were randomly generated from the range of initial states
defined during the training of the agent under test. To account
for the stochastic nature of random generation, we created 50
distinct test suites of source test cases for each environment,
with each suite comprising 100 test cases. Of these, 40 suites
were used to train the thresholds, while the remaining 10 suites
were reserved to evaluate the effectiveness of the MRs.

Since we use initial states as test cases, we cannot directly
control the environment’s dynamics or the agent’s behavior.
Therefore, for MRs that specify input transformations based
solely on initial states (i.e., MR1 and MR3), we derive follow-
up test cases directly from the corresponding source test cases.

For MRs whose input relations depend on states other than
the initial ones (i.e., MR2, MR4, and MR5), we select follow-
up test cases from the existing pool of source test cases. We
randomly examine pairs until we find one that satisfies the
input relation defined by the MR, thereby ensuring proper
alignment between source and follow-up test cases.

Mutant Generation. To generate DRL mutants, we used
DEEPMUTATION [26], which provides source- and model-level
mutation operators. for deep learning systems. However, due
to key differences between traditional DL and DRL training,
source-level mutations are not suitable for our context. Thus,

Table III
COMPARISON OF TASK COMPLETION RATES BETWEEN THE ORIGINAL

AGENTS AND 80 MUTANTS ACROSS THREE SUBJECTS

CARTPOLE LUNARLANDER BIPEDALWALKER

Original agent (%) 95 96 90
Mutants med (%) 0 53 0
Mutants avg (%) 6.78 41.64 20.53

Mutants better or same (count) 4 0 5

we used only the model-level mutation operators. Table II lists
the eight model-level operators provided by DEEPMUTATION,
all of which were used in our experiments.

Recent mutation testing approaches for DRL systems [56],
[53], [57] also use DEEPMUTATION’s model-level mutations
and introduce additional operators applied during DRL train-
ing. We chose not to include training-related mutants (e.g.,
limited training budget) in our experiments. This decision was
motivated by two factors. First, retraining DRL models is
computationally expensive: each retraining in our experiments
required, on average, about 1.5 hours. At our experimental scale,
even a moderate number of retrains becomes computationally
infeasible. Second, the randomness in DRL training makes
training-time mutations hard to reproduce reliably.

For the weight-level and neuron-level mutation operators in
Table II, we adopt a randomized method [26] to modify either
the original agent’s weight matrices or the information within
its neurons, thereby producing mutants. The implementation of
layer-level mutation operators is more complex [58]. First,
we analyze the overall structure of the agent to identify
layers that meet the mutation conditions without disrupting
the internal data flow. Based on this, we mutate these layers
to construct a new mutant. We configured each mutation
operator to randomly generate 20 distinct DRL mutants in each
environment, resulting in a total of 160 mutants. A random
sample of 80 was used for threshold training, and the remaining
80 for MR evaluation.

We evaluated the performance of the 80 mutants for MR
evaluation to confirm that they introduced observable behavioral
differences. Specifically, we generated 100 random test cases for
each of the three subjects and calculated task completion rates
under the default settings. Compared to the original well-trained
agent, only 4, 0, and 5 mutants out of the 80 achieved the same
or higher completion rates in CARTPOLE, LUNARLANDER,
and BIPEDALWALKER, respectively. Table III shows the task



completion rates. It is worth noting that even if a mutant
outperforms the original agent in terms of completion rates,
it may still exhibit behavioral inconsistencies in certain states.
For example, in autonomous driving, a slight change in the
vehicle’s initial position may cause drastic steering changes
due to agent faults, yet the vehicle can still complete the task
through subsequent self-adjustments. Therefore, considering
all 80 mutants contributes to a more comprehensive evaluation
of the MR’s detection capability.
Experimental Procedures. As we lack the domain knowledge
required to manually define thresholds (unlike the original
developers of the OPENAI environments), we did not select
the threshold values ourselves. Instead, we relied on a Threshold
Training mode and thus evaluated our method in a regression
testing context. Our experiments involved two main steps:

Step 1: Training thresholds. We first determined the threshold
values for the nine generic MRs discussed in Section III-B
across the three different environments. That is, we transformed
these generic MRs into environment-specific MRs. To achieve
this, we use stochastic gradient descent [59] to determine the
optimal threshold for each combination of MR and environment
(see Threshold training mode in Figure 2). Specifically, stochas-
tic gradient descent first initializes the threshold of the MR to
zero and then iteratively adjusts it by executing 4,000 test cases
on the original agent: increasing it upon MR violations to relax
constraints, and slightly decreasing it otherwise to tighten them,
using a small learning rate (from 0.001 to 0.1). Additionally,
we use extra mutants (80 for each environment) to validate the
threshold values, aiming to maximize fault detection. Once the
threshold values converge, we consider the final value as the
optimized threshold for the MR.

Step 2: Evaluating MRs. Using the determined threshold,
the original agent did not exhibit any violations of the MRs
across all test cases (including the 20% reserved for evaluation),
indicating no FPs. This enabled mutation testing. We then
evaluated the performance of the MRs, focusing on their ability
to detect mutants across the three different environments, as
shown in the MR Evaluation mode in Figure 2. Specifically,
a mutant is considered detected by an MR if the execution
results of the source and follow-up test cases fail to satisfy
the expected relation defined by that MR, as illustrated in the
Running mode of Figure 2.

We conducted our experiments on a server equipped with an
AMD® Ryzen Threadripper 3990X 64-Core Processor 2.9 GHz,
an RTX® 6000 24 GiB, running Ubuntu 20.04 and Python 3.10.

Table IV reports the total time MDPMORPH takes to run
all nine MRs, averaged per test suite. Although threshold
training is done once per MR, it involves generating and running
multiple test suites. Test generation was also repeated 10 times
to account for randomness. As such, the table shows the total
time for all nine MRs but averaged by test suite. On average,
running and evaluating all MRs took 16 hours per test suite.

C. Evaluation Metrics

We use the mutation detection rate [60] to measure MR
effectiveness, defined as the proportion of detected mutants:

Table IV
AVERAGE TIME FOR THRESHOLD TRAINING AND FOR

RUNNING/EVALUATION PER TEST SUITE AND FOR ALL MRS (APPROX.)

Threshold Training Running and Evaluation

CARTPOLE 3 minutes 2 minutes
LUNARLANDER 9 hours 7 hours
BIPEDALWALKER 10 hours 9 hours

Total 19 hours 16 hours

Mkr/Mt−Me. Here, Mkr is the number of mutants detected by
the test suite derived from the MR, Mt is the total number
of mutants, and Me is the number of equivalent mutants.
Equivalent mutants refer to those who have been used for
modification, yet produce no significant differences from the
original agent during the reasoning process. If any metamorphic
test pair on a mutant violates the MR, the test suite derived
for that MR is considered to have detected (killed) the mutant.
A higher mutation detection rate means the MR detects more
mutants, showing greater effectiveness.

D. RQ1: Assumptions Validation

To answer RQ1, we thoroughly inspected the source code
and conducted theoretical analysis to verify whether the systems
used satisfy our proposed assumptions. While the environments
mostly satisfy all our assumptions, we made minor changes
(e.g., noise injection and signal filtering in the state and
reward modeling processes). These changes ensure that the
assumptions are always met during the testing process (the
experiments for RQ2 and RQ3) without altering the core
logic of the environments or models, and make them more
representative of real-world conditions.

Assumption 1 (Lipschitz continuity of MDP). We extracted and
analyzed the state transition functions and reward functions in
all three environments, focusing only on continuous physical
quantities and omitting abrupt indicators.

State transition functions:
State transition function of CARTPOLE:

st+1 = st + κg(st, at), where g(s, a) =


ẋ
ẍ

θ̇

θ̈

 (1)

where s represents the state information of the cart and the
pole; κ is the time step; ẋ and ẍ are the cart’s velocity and
acceleration; θ̇ and θ̈ are the pole’s angular velocity and angular
acceleration. Since the computation of the continuous-time
velocity field g(s, a) involves only addition, multiplication, and
trigonometric functions [61], and the state variables are always
confined within a bounded set (as exceeding the bounds triggers
termination), it follows that the state transition of CARTPOLE
is Lipschitz continuous.

State transition function of LUNARLANDER:

st+1 = P (st, at) (2)



Table V
RQ2 - MUTATION DETECTION RATES FOR EACH MR ACROSS TEN TEST SUITE RUNS

MR CARTPOLE LUNARLANDER BIPEDALWALKER

Min Max Med Avg Min Max Med Avg Min Max Med Avg
MR1.1 0.76 0.79 0.78 0.77 0.86 0.89 0.88 0.88 0.91 0.96 0.94 0.94
MR1.2 0.76 0.81 0.79 0.77 0.75 0.86 0.85 0.84 0.74 0.83 0.80 0.79
MR1.3 0.73 0.76 0.74 0.74 0.85 0.86 0.85 0.86 0.86 0.91 0.88 0.88
MR2 0.67 0.69 0.68 0.68 0.91 0.98 0.96 0.96 0.69 0.73 0.71 0.70
MR3.1 0.58 0.61 0.60 0.59 1.00 1.00 1.00 1.00 0.90 0.93 0.91 0.91
MR3.2 0.61 0.64 0.63 0.63 1.00 1.00 1.00 1.00 0.88 0.91 0.90 0.90
MR3.3 0.51 0.58 0.55 0.54 1.00 1.00 1.00 1.00 0.90 0.93 0.91 0.91
MR4 0.84 0.90 0.85 0.87 0.69 0.95 0.81 0.83 0.76 0.84 0.81 0.80
MR5 0.95 0.98 0.96 0.96 0.95 0.98 0.96 0.97 0.95 0.96 0.96 0.96

where s denotes the normalized position, velocity, angle, and
angular velocity; and a is the linear and angular torques
from the main and side engines. This is composed of a
series of operators (including sine, hyperbolic tangent, linear
combination, and Box2D body dynamics [62]), all of which
are continuously differentiable. Therefore, the state transition
of LUNARLANDER is Lipschitz continuous.

State transition function of BIPEDALWALKER:

st+1 = P (st, at) (3)

where s includes the walker’s position, velocity, angle, angular
velocity, linear velocity, and joint states; and a is the motor
speed values of the joints. The transition mapping in Equation
3 is composed of a combination and superposition of 1-
Lipschitz functions (such as “clip” function) and continuously
differentiable functions (such as mechanical equations and
Euler integration). Therefore, the state transition of BIPEDAL-
WALKER is Lipschitz continuous.

Reward functions:
Reward function of CARTPOLE:

R(st, at) = 1 (4)

Since this is a constant function that outputs the same value for
all inputs, it exhibits no variation across the entire state-action
space and thus is Lipschitz continuous.

Reward function of LUNARLANDER:

R(st, at) = shaping(st+1)− shaping(st)− 0.3(m+ s) (5)

where shaping(s) = −100(
√

x2 + y2 +
√

v2x + v2y + |θ|); x
and y denote the position of the lander; vx and vy represent
its velocity components; θ indicates the lander’s orientation
angle; m represents the main engine power; and s denotes the
side engine power. Since the square root function, the absolute
value function, and discrete variables with finite changes are
all Lipschitz continuous over a bounded domain, the overall
shaping function is Lipschitz continuous within the bounded
state space. Moreover, both the main engine and the side engine
take continuous values within the range (-1, 1). Therefore, the
reward function of LUNARLANDER is Lipschitz continuous.

Reward function of BIPEDALWALKER:

R(st, at) = shaping(st+1) − shaping(st) − β
k∑

i=1

min(|at,i|, 1) (6)

where shaping(s) = 130x
α − 5|θ|; x is the forward distance; θ

is the tilt angle of the head; α and β are constants; and k is the
number of actions. Since this consists solely of continuously
differentiable linear terms, absolute values, and the summation
of action values within a specified range (each term is Lipschitz
continuous), the overall function is therefore also Lipschitz
continuous.

Assumption 2 (memoryless and deterministic of the agent).
According to the Markov property of DRL systems, the
current state encapsulates all the information necessary for
the agent’s decision-making. As a result, the agent’s decisions
are memoryless. To achieve deterministic behavior of the
agent during testing, we adopt a deterministic action selection
strategy, which is implemented at the code level by replacing
the potentially stochastic action sampling with always selecting
the action with the highest output probability. This ensures that
the agent’s decisions remain consistent under identical states.
Importantly, this modification does not alter the architecture or
parameters of the trained model and thus preserves the original
policy’s expressive capacity.

Assumption 3 (randomness of the environment). Code in-
spection of LUNARLANDER showed that noise is introduced
only through wind_idx and torque_idx during state
transitions. Both undergo trigonometric transformation and
remain within [–1, 1], satisfying Assumption 3. As CARTPOLE
and BIPEDALWALKER lack inherent stochastic noise, we added
bounded noise to their state transitions to meet Assumption 3.

RQ1 in summary: The three environments mostly
satisfy our assumptions. We made small adjustments
to ensure conformity during testing.

E. RQ2: Effectiveness
To address RQ2, we first train the thresholds of the generic

MRs across the three environments, yielding environment-
specific MRs. Subsequently, we test these MRs against mutants



generated by the mutation operators listed in Table II, using ten
test suites, each comprising 100 test cases. Finally, following
the evaluation metrics outlined in Section IV-C, we evaluate
the effectiveness of the MRs across the three environments.

To calculate the mutation detection rate, we recorded the
failure rate of each test suite derived from an MR when
executed on mutants—that is, the proportion of test cases within
the suite that successfully detected mutants. If the failure rate
of a test suite exceeds zero, we consider that the test suite has
detected the mutant. We observed that these test suites yielded
a failure rate of zero when executed on the original agents
across all three environments. When executed on the mutants,
the average failure detection rates for each environment are as
follows: In CARTPOLE, the average failure rate of MRs ranges
from 0.22 (MR1.1) to 0.45 (MR5), with an overall average of
0.32. In LUNARLANDER, the range spans from 0.10 (MR4) to
0.51 (MR3.3), with an average of 0.31. For BIPEDALWALKER,
the average failure rates vary from 0.05 (MR1.2) to 0.66 (MR5),
with an average of 0.37. Overall, whether in relatively simple
tasks like the cart pole problem or more complex scenarios
such as bipedal walking, the proportion of test cases derived
from MRs that successfully detect mutants remains relatively
stable across the test suites. This indicates that the MRs we
designed possess generalizability across different environments.

Based on these failure rates, we found that all mutants across
the three environments are detected by the test suites derived
from the MRs. This indicates that none of the mutants are
equivalent. Therefore, all mutants were taken into account
when calculating the mutation detection rate. This avoided the
challenge of detecting equivalent mutants.

Additionally, the proportion of the same mutants detected by
all test suites derived from all MRs accounts for 62% of the
total number of mutants, demonstrating the powerful mutation
detection capability of the MRs.

Table V shows the mutation detection rates of each MR
across the ten test suites. Columns “Min”, “Max”, “Med” and
“Avg” represent the minimum, maximum, median and average
mutation detection rates across the ten test suites, respectively.
The results show that the MRs based on the global MDP are the
most effective. MR5 in particular achieves a minimum mutation
detection rate above 0.95 across all three environments, with
minimal min/max variation, indicating it is a highly effective
MR. The single-step MRs in the local MDP also achieved
relatively high mutation detection rates; however, there was
a noticeable degree of fluctuation in the BIPEDALWALKER,
indicating that the mutants in this environment are more
sensitive to input variations. Finally, the mutation detection rates
of the multi-step MRs in the local MDP exhibited significant
variability across different environments.

For the environments, the average mutant detection rates in
the CARTPOLE, LUNARLANDER, and BIPEDALWALKER are
0.73, 0.93, and 0.87, respectively. Specifically, the MRs exhibit
the highest detection rates in the LUNARLANDER environment,
with all median detection rates above 0.81 and three MRs even
reaching 1.0. The detection rates in BIPEDALWALKER are also
relatively high, with most MRs showing median values around

Table VI
RQ3 - THE NUMBER OF MUTANTS AT DIFFERENT LEVELS THAT CAN BE

DETECTED BY EXACTLY n MRS (n = 1, 2, . . . , 9)

1 2 3 4 5 6 7 8 9

Weight-level 0 0 0 0 2 3 2 5 18
Neuron-level 7 0 2 4 3 2 8 15 79
Layer-level 0 2 11 1 2 12 2 8 52

Total 7 2 13 5 7 17 12 28 149

0.9. In contrast, the detection rates in CARTPOLE vary widely,
ranging from 0.55 to 0.96. This variation may be attributed
to the nature of decision-making in complex control tasks,
where agents must coordinate multiple submodules within
the environment. Any minor fault in the decision-making
process can trigger a cascading amplification effect in the
MDP, manifesting in various forms. The MRs we designed are
capable of effectively capturing these nuanced differences. In
simpler scenarios, however, the agent’s decision-making tends
to rely on more singular factors, and only certain MRs are
directly relevant to the core decisions in such environments.
As a result, the detection rates fluctuate more significantly.

RQ2 in summary: All mutants under MDPMORPH
were detected at least once by the test suites derived
from these MRs. These MRs also achieved an average
mutant detection rate of 0.84 and demonstrated robust
detection performance in complex environments.

F. RQ3: Mutants Inspection

To address RQ3, we analyzed the detection results for all
240 generated mutants across the three environments and all
ten test suites, focusing on which mutants were not detected
by each individual MR. These undetected mutants were then
categorized according to the three mutation levels: weight,
neuron, and layer (see Table II).

Table VI summarizes the number of mutants at different
levels that can be detected by exactly n (n = 1, 2, . . . , 9) MRs
(considering all ten test suites). The results show that weight-
level mutants are relatively easy to detect, with five MRs being
sufficient to detect all weight-level mutants. In contrast, neuron-
level and layer-level mutants are more difficult to detect, with
some mutants being detectable by only one or two MRs.

When considering each test suite individually, the results are
quite consistent: different test suites generated for the same
MRs detected exactly the same mutants. The only exception is
the BIPEDALWALKER, where two neuron-level mutants went
undetected by some suites.

In addition, we also recorded the distribution of undetected
mutants across different levels under each MR. Figure 4
illustrates the undetected rates of these levels across different
MRs. It shows that, within the single-step of the local MDP, the
undetected rate for neuron-level and layer-level mutants was
significantly higher than that for weight-level mutants. The root
cause is that single-step state-action mapping validation uses
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Figure 4. RQ3 - The level distribution of undetected mutants under each MR

only generic initial test cases, often failing to activate specific
neurons or entire layers. Typical state inputs may fail to activate
critical paths when mutations alter only a neuron’s activation
function or replace an entire layer’s mapping. As a result, the
output differences remain subtle and fall below the detection
threshold defined by MR1. For the multi-step MRs of the local
MDP, the undetected rate remains roughly consistent across
weight-level, neuron-level, and layer-level mutations. Extending
the validation window to fixed-length trajectories causes all
mutation types (parameter tweaks, single-neuron failures, or
layer-level alterations) to accumulate similar deviations in
decision sequences. Over several steps, such deviations tend to
accumulate, resulting in significant differences in the final state
sequences or rewards. Since the same distance metrics and
threshold criteria are applied to all three mutation levels, their
undetected rates naturally converge. Furthermore, we find that
global MRs exhibit strong detection capabilities and capture
a broader range of mutant types. However, MR4 shows a
higher proportion of undetected mutants compared to MR5.
This is because the state space relied upon by MR4 is typically
high-dimensional, and the source test cases fail to sufficiently
trigger its detection of subtle anomalies. In contrast, MR5
leverages cumulative rewards, allowing even minor anomalies
to be aggregated into a single value, thereby enabling it to
detect nearly all mutants.

These results reveal that, when constructing test cases, it
would be beneficial to adopt activation maximization techniques
to trigger potential mutations at the neuron or layer level.
Moreover, future work should generate test cases capable of
covering a broader range of states in high-dimensional state
spaces, thereby compensating for the limited sensitivity to
subtle anomalies.

RQ3 in summary: Compared with weight-level mu-
tants, neuron-level and layer-level mutants are more
difficult to detect. This suggests that greater attention
should be given to strategies such as maximizing neuron
activation in the construction of test cases.

V. THREATS TO VALIDITY

Construct. The mutation detection rate used to evaluate
the effectiveness of MRs is based on a statistical comparison
of agent performance, following the method proposed by Hu
et.al [60]. While our evaluation metric provides a principled
way to quantify behavioral differences, it relies on threshold-
based distinctions, which may not capture all the differences
between the original and mutant agents. Moreover, the configu-
ration space of mutation operators introduces variability in how
mutant detection is defined. Therefore, the mutation detection
rate may be sensitive to the choice of metrics, thresholds, and
operator configurations, potentially affecting the accuracy of
MR effectiveness assessments.

External. A potential threat to the external validity is the
generalization of the results. We mitigated this threat by
carefully selecting three widely used subjects for validation
ensuring that they cover diverse tasks, action space types, and
application domains. These are all part of the well-known
open-source gymnasium toolkit developed by OPENAI.

VI. RELATED WORK

This section discusses related work divided into two main
groups: testing for DRL systems and MT.

Testing for Deep Reinforcement Learning (DRL) systems
primarily involves search-based testing [10] and fuzzing
techniques [9], [50], [49]. To highlight some representative
techniques: Zolfagharian et al. [10] introduced STARLA,
which leverages genetic algorithms to efficiently identify policy
failures and extract failure rules for safety risk assessment. Pang
et al. [9] proposed MDPFUZZ, a black-box MDP fuzzing
framework that uses Gaussian mixture models and local
sensitivity to discover state sequences that lead to crashes.
Wang et al. [49] proposed SEQDIVFUZZ, a black-box testing
framework for sequence decision problems modeled as MDPs.
Wan et al. [50] proposed DRLFUZZ, a coverage-guided fuzz
testing framework specifically designed for DRL systems,
addressing issues such as environmental distribution biases
during DRL system training.

Similarly, MDPMORPH also uses MDP models, takes initial
states as test inputs, and shares some of the same assumptions
and the general goal of exposing bugs in DRL agents. However,
these techniques all rely on human-written oracles. In contrast,
MDPMORPH employs MT to automate the oracle problem,
thereby eliminating the need for manual oracle construction.

Metamorphic Testing (MT) [14] has seen significant ad-
vances in both traditional [15], [16] and ML-based software
systems [17], [18], [63], [64], [65]. In the context of traditional
software, recent techniques [19], [20], [21] have explored the
automated generation of MRs using search-based methods and
evolutionary algorithms, guided by the minimization of false
positives and/or false negatives (the latter obtained through
mutation testing like MDPMORPH). MDPMORPH draws
inspiration from these approaches, not to generate new MRs,
but to optimize the threshold values of our proposed MRs.



Although MT has been extensively applied to testing ML
systems [16], existing MT methods and MRs are not specifically
designed for RL or DRL systems. In particular, RL systems
involve unique elements such as policies, reward functions,
and state transitions, which require tailored MRs and testing
approaches [11]. To the best of our knowledge, the work by
Eniser et al. [11] is the most closely related to ours and the
only existing approach that applies MT for action-policy testing
in RL. They proposed a relaxed MR that permits minor policy
deviations under environment variations to detect decision
inconsistencies. Our work differs substantially in several key
aspects: (i) we introduce nine generic MRs designed across mul-
tiple semantic levels, (ii) we present a method to automatically
instantiate these MRs in specific environments via threshold
training, and (iii) our framework automatically generates test
cases, enabling end-to-end automation of metamorphic testing
for DRL systems. Nonetheless, our MR2 is similar in nature
to the one they proposed, so we did not consider a comparison
necessary. In addition, our approach is based on MDP, ensuring
that the MRs reflect fundamental properties of agent behavior.

VII. CONCLUSION

This paper presented MDPMORPH, a Metamorphic Testing
(MT) framework for Deep Reinforcement Learning (DRL)
agents. Grounded in the theoretical foundations of Markov
Decision Processes (MDPs), MDPMORPH introduces a sys-
tematic approach to designing Metamorphic Relations (MRs)
specifically tailored for DRL agents. Based on this approach, we
propose nine MRs, whose necessity properties are theoretically
proven (see Appendix [22]). Our experimental results on three
popular OPENAI environments demonstrate that all generated
mutants were successfully detected by at least one of our MRs.

Our nine proposed MRs do not aim to be a comprehensive
set of MRs that capture all characteristics of DRL systems.
Ensuring the completeness of a set of MRs remains a well-
known open challenge in the field. However, we believe they
capture the essence of DRL reasonably well because they are
considering both local and global MDP and they predicate on
actions, rewards, and states, which are specific to DRL systems.
We hope that our work will inspire the research community to
define additional MRs to capture the characteristics of DRL
systems more comprehensively.

This work is among the first to explore MT for DRL. Based
on our findings, we identify four promising directions for future
research: First, based on the results of RQ3, techniques like
maximizing neuron activation could be explored to generate test
cases more effectively than random methods. Second, designing
new MRs tailored to DRL systems remains an important area
for future work. Third, our high average failure rate (i.e.,
number of failing tests) suggests that future work could reduce
MDPMORPH’s computational cost by generating fewer test
cases and evaluating the impact on fault detection. Fourth,
extending MDPMORPH to support a broader range of RL
systems (not limited to DRL) would allow us to evaluate its
effectiveness in a more general RL context.
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[11] H. F. Eniser, T. P. Gros, V. Wüstholz, J. Hoffmann, and M. Christakis,
“Metamorphic relations via relaxations: An approach to obtain oracles
for action-policy testing,” in ACM International Symposium on Software
Testing and Analysis, 2022, pp. 52–63.

[12] Z. Li, X. Wu, D. Zhu, M. Cheng, S. Chen, F. Zhang, X. Xie, L. Ma, and
J. Zhao, “Generative model-based testing on decision-making policies,” in
IEEE/ACM International Conference on Automated Software Engineering,
2023, pp. 243–254.

[13] A. Sunba, J. Hassine, and M. Ahmed, “Testing reinforcement learning
systems: A comprehensive review,” Journal of Systems and Software,
2025.

[14] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A new
approach for generating next test cases,” 1998.

[15] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey
on metamorphic testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 9, pp. 805–824, 2016.

[16] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. Tse, and Z. Q.
Zhou, “Metamorphic testing: A review of challenges and opportunities,”
ACM Computing Surveys, vol. 51, no. 1, pp. 1–27, 2018.

[17] X. Xie, J. W. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Testing
and validating machine learning classifiers by metamorphic testing,”
Journal of Systems and Software, vol. 84, no. 4, pp. 544–558, 2011.

[18] F. U. Rehman and M. Srinivasan, “Metamorphic testing for machine
learning: Applicability, challenges, and research opportunities,” in IEEE
International Conference On Artificial Intelligence Testing, 2023, pp.
34–39.



[19] J. Ayerdi, V. Terragni, A. Arrieta, P. Tonella, G. Sagardui, and M. Arrat-
ibel, “Generating metamorphic relations for cyber-physical systems with
genetic programming: an industrial case study,” in ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 1264–1274.

[20] J. Ayerdi, V. Terragni, G. Jahangirova, A. Arrieta, and P. Tonella,
“GenMorph: Automatically generating metamorphic relations via genetic
programming,” IEEE Transactions on Software Engineering, vol. 50,
no. 7, pp. 1888–1900, 2024.

[21] J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and H. Mei,
“Search-based inference of polynomial metamorphic relations,” in
ACM/IEEE International Conference on Automated Software Engineering,
2014, pp. 701–712.

[22] J. Li, Z. Zheng, Y. Xing, D. Ren, S. Cho, and V. Terragni, “Open source
implementation of MDPMORPH,” https://github.com/tissten/MDPMorph,
2025.

[23] ——, “MDPMORPH: experimental data,” https://doi.org/10.5281/zenodo.
16908139, 2025.

[24] R. S. Sutton, A. G. Barto et al., Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[25] E. A. Feinberg and A. Shwartz, Handbook of Markov decision processes:
methods and applications. Springer Science & Business Media, 2012,
vol. 40.

[26] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li, Y. Liu,
J. Zhao et al., “Deepmutation: Mutation testing of deep learning systems,”
in IEEE International Symposium on Software Reliability Engineering,
2018, pp. 100–111.

[27] V. Terragni, G. Jahangirova, P. Tonella, and M. Pezzè, “Evolutionary
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automated tool to improve assertion oracles,” in IEEE/ACM International
Conference on Software Engineering Companion, 2021, pp. 85–88.

[29] G. Jahangirova, D. Clark, M. Harman, and P. Tonella, “Test oracle as-
sessment and improvement,” in ACM SIGSOFT International Symposium
on Software Testing and Analysis, 2016, p. 247–258.
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