Metamorphic Testing of Deep Reinforcement
Learning Agents with MDPMORPH

Jiapeng Li*, Zheng Zheng*, Yuning Xing', Daixu Ren*, Steven Cho' and Valerio Terragnif
*Beihang University, Beijing, China
Email: {jp_li, zhengz, rendaixu}@buaa.edu.cn
JfUniversity of Auckland, Auckland, New Zealand
Email: {yxin683, scho518, vter674} @aucklanduni.ac.nz

Abstract—We present MDPMORPH, a tool for metamorphic
testing of Deep Reinforcement Learning (DRL) agents. MDP-
MORPH is based on the Markov Decision Process (MDP) and
targets the core reasoning properties of DRL agents to automati-
cally uncover potential faults. It can generate metamorphic test
suites and corresponding mutants directly from the DRL system
under test. MDPMORPH uses a subset of the metamorphic test
suite and models to train the thresholds of the nine proposed
Metamorphic Relations (MRs) using stochastic gradient descent.
These MRs are based on the temporal characteristics of the MDP,
and the training aims to determine the optimal threshold for
each MR. After obtaining the optimal threshold, MDPMORPH
leverages the MRs to compare the execution results of different
metamorphic test suites on the model under test and reports
whether each test passes or fails. Finally, by collecting the
execution results, MDPMORPH calculates the mutant detection
rate of MR to validate its effectiveness. Experimental results show
that MDPMORPH and the proposed MRs are highly effective in
automatically detecting seeded faults (mutants).

Index Terms—SE4Al, deep reinforcement learning, metamor-
phic testing, mutation testing

I. INTRODUCTION

Deep Reinforcement Learning (DRL) agents have demon-
strated remarkable performance across a variety of domains,
including autonomous driving [1], [2], and large language
model [3], [4]. Their ability to learn from high-dimensional
observations and adapt to complex systems has led to their rapid
adoption in both academic and industrial settings [5]. Therefore,
to prevent catastrophic failures in real-world applications,
safety-critical DRL agents must be extensively tested against
various edge and failure scenarios to expose and resolve
latent weaknesses. Recent efforts in testing DRL agents have
explored various methods such as fuzzy testing [6], search-
based testing [7], and mutation testing [8], [9]. While these
techniques have advanced the state of DRL testing, they still
rely heavily on human defined oracles, leaving the oracle
problem a persistent challenge for automated verification.

Metamorphic Testing (MT) [10], as a promising approach,
has demonstrated significant effectiveness in alleviating the
oracle problem. By leveraging domain-specific Metamorphic
Relations (MRs), which are properties that define how the

Corresponding authors: Zheng Zheng (zhengz@buaa.edu.cn) and Valerio
Terragni (v.terragni @auckland.ac.nz)

output of the system should change or remain invariant under
certain input transformations, MT enables automated, oracle-
free validation of DRL agents. Such relations provide a
foundation for detecting erroneous or unstable behavior without
requiring labeled ground truth. However, effectively applying
MT to DRL systems presents its own set of challenges. These
include defining effective MRs suitable for agent reasoning,
choosing appropriate output comparison metrics, and handling
the stochasticity inherent in DRL systems. Furthermore, as
DRL agents learn from dynamic environments, testing should
assess both single-step reasoning and multi-step trajectories.

We have addressed the above challenges by proposing
MDPMOoORPH [11], a novel MT framework for testing DRL
agents, recently accepted to the main research track of ISSRE
2025. Our framework is grounded in the principles of Markov
Decision Processes (MDPs) and targets the core reasoning
behaviors of DRL agents to automatically uncover potential
faults. To support MDPMORPH, we proposed a systematic
methodology, based on MDP characteristics, for designing MRs
tailored to DRL agents. Using this approach, we defined nine
generic MRs that capture commonly expected properties of
agent decision-making. We theoretically justified the soundness
of these MRs using formal MDP assumptions and definitions.

This paper extends our recent work [11] with details about
the design, implementation, and usage of MDPMORPH. The
source code is publicly available on https://github.
com/tissten/MDPMorph, and a demo is available on
https://youtu.be/IwMalUfQ2xnQ.

MDPMORPH is a tool capable of automatically testing
DRL systems through metamorphic testing. It extracts initial
states from the environment as source test cases, generates
metamorphic test pairs via input transformations, and creates
mutants by applying mutation rules. MDPMORPH tunes MR
sensitivity via threshold training, executes test pairs to identify
behavioral inconsistencies, and evaluates the effectiveness of
each MR based on the observed results. The envisioned users of
MDPMORPH are machine learning engineers and researchers
working with DRL. MDPMORPH is designed to help engineers
automatically test their DRL models using metamorphic testing.
It also provides researchers with the flexibility to define and
experiment with new MRs.

https://github.com/tissten/MDPMorph
https://github.com/tissten/MDPMorph
https://youtu.be/IwMaUfQ2xnQ

Input: @ Input Generation -------------- © Threshold Training --------- -© Running ------------ O MR Evaluation
e ~

(Automatically generate ‘i P T s -~
é | Mutant | | I
. eneration : N
o | Agent —2 Mutants | i g BRR I
O I | . Execution on :
Agent | ot : | DRL system = |
n _ .
transfo,:/‘;ation Foll I |:>1 FP_,O . Ny Collect execution |
Source ollow-up |: I Training information !

test cases test cases I

I A

Initial |
Source test case states :
|‘ generation)

Environment I

Environment-
specific MRs

Output relation |

Fail

Pass .
Mutation

detection rate

Figure 1. Logical workflow of MDPMORPH

II. MDPMORPH

MDPMORPH is based on MDPs and focuses on the agent’s
core reasoning properties to automatically uncover faults.
Figure 1 illustrates its logical workflow. The MDPMORPH
comprises four components: Input Generation, Threshold
Training, Running and MR Evaluation.

Inputs. The inputs of MDPMORPH are agent and environ-
ment, where the agent is used for mutant generation and the
initial states from the environment are extracted as test cases.

Outputs. In MDPMORPH, different components have dif-
ferent outputs. Specifically, 1) the output of the Threshold
Training is a set of environment-specific MRs with optimized
thresholds. 2) the output of the Running is the execution result
(pass or not). 3) the output of the MR Evaluation is the mutation
detection rate.

How MDPMORPH works. Currently, MDPMORPH imple-
ments nine MRs [11] grounded in the sequential properties of
MDPs. They are designed to capture variations in key aspects
of DRL systems, such as states, actions, and rewards, while
examining action outputs, cumulative rewards, and decision
sequence stability. Considering the inherent stochasticity of
DRL systems, we set threshold for each MR to maximize
adaptability across different systems, acknowledging that these
thresholds may vary depending on the specific DRL system. We
use the original agent and its mutants to search for the optimal
thresholds for the MRs and to evaluate their effectiveness. It
is worth noting that, under certain assumptions, we provide
theoretical proofs of the necessary properties of these MRs. If
the DRL system does not satisfy these assumptions, users can
still obtain optimal thresholds for the MRs using the Threshold
Training component provided by MDPMORPH, but this may
potentially lead to false positives. In addition, MDPMORPH
is designed with flexibility in mind. During its usage, users
are not limited to the predefined set of MRs. Instead, they are
encouraged to define and incorporate new MRs that align with
the characteristics of their specific domains, environments, or
agent behaviors.

The following example illustrates how MDPMORPH detects
the faulty behavior of a mutant. In our experiments, a

representative violation discovered by an MR occurred in
the CARTPOLE system using MR4 [11]. The CARTPOLE
system simulates a classic control problem where the goal
is to balance a pole on a moving cart by applying forces
to the cart [12]. This MR mandates similar decision-making
when source and follow-up test cases are identical, ensuring
differences between resulting trajectories remain minimal.
However, mutant “NEB_03" violated this MR: the mutant
successfully maintained pole balance in the source test case
but consistently pushed the cart incorrectly in the follow-up
test case. Consequently, the pole rapidly fell, terminating the
task prematurely. This clearly demonstrates an unreasonable
decision by the mutant, highlighting its vulnerability to minor
environmental perturbations and indicating a clear flaw in its
decision making policy.

III. TooL USAGE

Implementation Details. MDPMORPH is implemented
in PYTHON. It leverages the GYMNASIUM! library and the
CARES? platform to construct an automated metamorphic
testing tool for testing and evaluating DRL agents.

Installation instructions. MDPMORPH requires Python
3.10 for compatibility. All necessary dependencies can be
installed via pip install -r requirements.txt.

In a nutshell, MDPMORPH has four main components:

@ Input Generation. MDPMORPH generates source test
cases by randomly sampling from the range of initial states
defined during the training process of the agent under test,
and applies input transformations to generate follow-up test
cases, thereby forming metamorphic test pairs. Meanwhile,
it generates mutated agents by applying predefined mutation
rules to the original agent. These mutation rules are derived
from the model-level mutation rules in DEEPMUTATION [13].
These metamorphic test pairs and mutants are generated as
output and used in subsequent components.

@ Threshold Training. MDPMORPH continuously adjusts
the thresholds in generic MRs by minimizing False Nega-

Uhttps://gymnasium.farama.org
Zhttps://github.com/UoA-CARES/cares_reinforcement_learning

https://gymnasium.farama.org
https://github.com/UoA-CARES/cares_reinforcement_learning

tives (FNs) while ensuring zero False Positives (FPs) [14],
[15], thereby generating environment-specific MRs as output.

® Running. MDPMORPH executes metamorphic test pairs
on the model and compares their outputs to evaluate whether the
expected output relation defined by each MR holds, generating
execution results as output.

@® MR Evaluation. MDPMORPH collects execution results
and outputs the mutation detection rate to evaluate the effec-
tiveness of the MR.

To support modularity, each component can run indepen-
dently. If needed, users can easily create a simple script to
invoke all components in a pipeline. The following subsections
describe how to use MDPMORPH.

A. Input Generation

The Input Generation component of MDPMORPH is respon-
sible for automatically generating metamorphic test pairs and
mutants, which serve as inputs to the subsequent components.

First, run generate_tests.py to randomly sample
valid states from the state space and generate the specified
number of source test cases and test suites. For example,
for the BIPEDALWALKER system, MDPMORPH randomly
samples from 13 dimensions of the state space. Then, based
on the input transformation defined in MR.py, the source
test case is transformed into a follow-up test case, forming
a metamorphic test pair. By running different mutant gen-
eration files, a specified number of mutants can be gener-
ated by mutating the trained agent. For example, running
Gaussian_Fuzzing_operator.py generates mutants
related to weight fuzzing.

B. Threshold Training

The goal of the Threshold Training component is to de-
termine the optimal thresholds for the nine predefined MRs.
To achieve this, MDPMORPH uses the execution results of
metamorphic test pairs on both the original agent and its
mutants to train the thresholds in predefined MRs. Specifically,
run run_threshold_training.py, providing the path
to the model to be used and the path to the MR whose threshold
needs to be trained. During the threshold training process, we
save the threshold values at two levels for detailed observation:

o Test case level. After executing each test case,
the updated threshold value is recorded in the
threshold_training_test_case.csv file.

o Test suite level. After completing the execution of each
full test suite, the updated threshold value is recorded in
the threshold_training_test_suite.csv file.

Once the threshold converges, meaning it remains stable over
several evaluation iterations, the resulting value is selected as
the optimized threshold for the environment-specific MR.

It should be noted that threshold training in our tool is
an optional component, allowing users to specify custom
thresholds. The thresholds obtained after training can only
be used in regression testing mode to detect faults in future
versions of the agent.

C. Running

The main goal of the Running component is to execute
the metamorphic test pairs and verify the results to determine
whether the predefined MRs are violated. Run the run.py
file and provide the path to the pre-trained model along with
the path to the MR to be evaluated. The tool then determines
pass/fail outcomes by checking whether the output relation
defined by the MR is satisfied.

In our current implementation, MDPMORPH supports the

following types of output relations:

« Trajectory distance: Compute the total step-by-step
Euclidean distance between state sequences.

« Cumulative reward difference: Compute the difference
in cumulative rewards between the source and follow-up
test cases.

« Action distribution divergence: Compute the difference
between the action probability distributions output by
the policy under similar test cases before and after
transformation.

MDPMORPH also allows users to select the appropriate
comparison metric based on the definition of the MR.

In addition, if the user needs to add new MRs, they
only need to provide the path to store the corresponding
MRs when running the run.py file. Note that MRs must
implement essential system functions such as env.reset (),
env.step(), agent.select_action (), and others.

By default, each metamorphic test pair is executed only
once. Meanwhile, MDPMORPH retains support for repeated
executions, enabling users to optionally activate multiple
runs when necessary to suit broader application scenarios.
The number of repeated executions can be configured by
modifying the number_eval_episodes parameter in the
train_config. json file.

D. MR Evaluation

To evaluate the effectiveness of MRs, the MR Evaluation
component gathers the execution results of metamorphic test
pairs on both the original agent and its mutants, produced by
the Running component, and calculating the mutation detection
rate of each MR. It is worth noting that to ensure a fair
evaluation, the MR Evaluation component uses a different
set of metamorphic test pairs and mutants from those used in
Threshold Training.

After the execution of run. py, the tool automatically gener-
ates a file that records the violations of a specific MR by a partic-
ular mutant across multiple test suites during execution. The file
is named accordingly (e.g., MR3_1_output_WS_3.csv).
These files record two key metrics:

« Violation rate: the percentage of test cases within a test

suite that violate the expected MR.

« Input: the number of executed test cases in the suite.

This component is also optional and not mandatory, as it
enhances confidence in the tool’s results and model’s robustness,
especially when high mutation scores are achieved despite no
detected faults.

Table I
AVERAGE MUTATION DETECTION RATES PER MR (SEE DEF. IN [11])
MR CARTPOLE | LUNARLANDER | BIPEDALWALKER
MRI1.1 0.77 0.88 0.94
MR1.2 0.77 0.84 0.79
MR1.3 0.74 0.86 0.88
MR2 0.68 0.96 0.70
MR3.1 0.59 1.00 0.91
MR3.2 0.63 1.00 0.90
MR3.3 0.54 1.00 0.91
MR4 0.87 0.83 0.80
MRS5S 0.96 0.97 0.96

IV. EVALUATION

We evaluated MDPMORPH on three environments: CART-
POLE, LUNARLANDER, and BIPEDALWALKER, all provided
by the OpenAl GYMNASIUM. For each environment, we
conducted threshold training and evaluation of the nine MRs
using 50 test suites (40 for threshold training and 10 for
evaluation), where each test suite consists of 100 distinct test
cases, and 160 mutants (80 for threshold training and 80 for
evaluation). These mutants were generated using model-level
mutation operators provided by DEEPMUTATION [13]. Table I
shows the average mutant detection rate for each MR. We found
that under these MRs, all mutants were detected at least once,
with an average detection rate of 0.84, demonstrating strong
performance in complex systems. In addition, we analyzed the
characteristics of undetected mutants under each MR. For more
information about the experimental setup and results, please
refer to our ISSRE paper [11].

V. RELATED WORK

Testing for Deep Reinforcement Learning (DRL) systems
primarily involves search-based testing [7] and fuzzing tech-
niques [6]. Similarly, MDPMORPH also uses MDP models,
takes initial states as test inputs, and shares some of the same
assumptions and the general goal of exposing bugs in DRL
agents. However, these techniques all rely on manually crafted
test oracles. In contrast, MDPMORPH employs MT to automate
the oracle problem, thereby eliminating the need for and cost
of manual oracle construction.

The work most closely related to ours is the study by
Eniser et al. [16], who proposed a relaxed MR to detect
decision inconsistencies under environment variations, using
MT to validate action policies in RL system. Their MR
focuses solely on tolerance based policy deviations, whereas
MDPMORPH incorporates nine generic MRs spanning multiple
semantic levels. In addition, MDPMORPH introduces threshold
training for automatic MR instantiation, and supports end-to-
end automation from test generation to mutant evaluation.

VI. CONCLUSION

While there are various testing methods for DRL systems,
Metamorphic Testing (MT) in this domain remains in its
early stages. MDPMORPH is among the first techniques to

explore MT for DRL, pioneering research in this emerging area.
Techniques like MDPMORPH can encourage developers to
adopt more rigorous testing practices, ultimately improving the
quality and reliability of DRL systems over time. We identify
three promising future research directions: (i) enhancing
automated source test case generation to better cover complex
behaviors, (ii) developing richer and more varied MRs to
capture subtle faults, and (iii) diversifying mutation strategies
to capture a wider range of erroneous behaviors.

ACKNOWLEDGEMENTS

This work was supported in part by the National Key R&D
Program of China under Grant 2024YFB3311503, and the
National Natural Science Foundation of China under Grant
62372021.

REFERENCES

[1] Z. Huang, J. Wu, and C. Lv, “Efficient deep reinforcement learning with
imitative expert priors for autonomous driving,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 34, no. 10, pp. 7391-7403, 2022.

[2] C.-J. Hoel, K. Wolff, and L. Laine, “Ensemble quantile networks:
Uncertainty-aware reinforcement learning with applications in au-
tonomous driving,” IEEE Trans. Intell. Transp. Syst., vol. 24, no. 6,
pp. 6030-6041, 2023.

[3] M. Hariharan, “Reinforcement learning: Advanced techniques for 1lm

behavior optimization,” ESP Int. J. Adv. Comput. Technol., vol. 2, no. 2,

pp. 84-101, 2025.

K. Liu, D. Yang, Z. Qian, W. Yin, Y. Wang, H. Li, J. Liu, P. Zhai, Y. Liu,

and L. Zhang, “Reinforcement learning meets large language models: A

survey of advancements and applications across the llm lifecycle,” arXiv

preprint arXiv:2509.16679, 2025.

[5] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint
arXiv:1701.07274, 2017.

[6] Q. Pang, Y. Yuan, and S. Wang, “MDPFuzz: testing models solving

markov decision processes,” in ACM SIGSOFT Int. Symp. Softw. Test.

Anal., 2022, pp. 378-390.

A. Zolfagharian, M. Abdellatif, L. C. Briand, M. Bagherzadeh et al., “A

search-based testing approach for deep reinforcement learning agents,”

IEEE Trans. Softw. Eng., vol. 49, no. 7, pp. 3715-3735, 2023.

[8] D.-G. Thomas, M. Biagiola, N. Humbatova, M. Wardat, G. Jahangirova,
H. Rajan, and P. Tonella, “x4PRL: A mutation testing pipeline for deep
reinforcement learning based on real faults,” in IEEE/ACM Int. Conf.
Softw. Eng., 2025, pp. 2238-2250.

[9] J. Li, Z. Zheng, X. Du, H. Wang, and Y. Liu, “DRLMutation: A

comprehensive framework for mutation testing in deep reinforcement

learning systems,” ACM Trans. Softw. Eng. Methodol., 2025.

T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: a new

approach for generating next test cases,” HKUST Technical Report, 1998.

J. Li, Z. Zheng, Y. Xing, D. Ren, S. Cho, and V. Terragni, “MDPMORPH:

an MDP-based metamorphic testing framework for deep reinforcement

learning agents,” in /EEE Int. Symp. Softw. Reliab. Eng., 2025.

A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive

elements that can solve difficult learning control problems,” IEEE Trans.

Syst., Man, Cybern., no. 5, pp. 834-846, 2012.

L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,

Y. Liu, J. Zhao et al., “DeepMutation: mutation testing of deep learning

systems,” in IEEE Int. Symp. Softw. Reliab. Eng., 2018, pp. 100-111.

J. Ayerdi, V. Terragni, G. Jahangirova, A. Arrieta, and P. Tonella,

“GenMorph: automatically generating metamorphic relations via genetic

programming,” IEEE Trans. Softw. Eng., vol. 50, no. 7, pp. 1888-1900,

2024.

V. Terragni, G. Jahangirova, P. Tonella, and M. Pezze, “Evolutionary

improvement of assertion oracles,” in ACM Int. Sympo. on the Found. of

Soft. Eng., 2020, pp. 1178-1189.

H. F. Eniser, T. P. Gros, V. Wiistholz, J. Hoffmann, and M. Christakis,

“Metamorphic relations via relaxations: An approach to obtain oracles for

action-policy testing,” in ACM SIGSOFT Int. Symp. Softw. Test. Anal.,

2022, pp. 52-63.

[4

=

[7

[10]

[11]

[12]

[13]

[14]

[15]

[16]

	Introduction
	MDPMorph
	Tool Usage
	Input Generation
	Threshold Training
	Running
	MR Evaluation

	Evaluation
	Related Work
	Conclusion
	References

