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Abstract—Following code style conventions in software projects
is essential for maintaining overall code quality. Adhering to
these conventions improves maintainability, understandability, and
extensibility. Additionally, following best practices during software
development enhances performance and reduces the likelihood
of errors. This paper analyzes 1,036 popular open-source JAVA
projects on GITHUB to study how code style and programming
practices are adopted and evolve over time, examining their
prevalence and the most common violations. Additionally, we study
a subset of active repositories on a monthly basis to track changes
in adherence to coding standards over time. We found widespread
violations across repositories, with Javadoc and Naming violations
being the most common. We also found a significant number of
violations of the GOOGLE Java Style Guide in categories often
missed by modern static analysis tools. Furthermore, repositories
claiming to follow code-style practices exhibited slightly higher
overall adherence to code-style and best-practices. The results
provide valuable insights into the adoption of code style and
programming practices, highlighting key areas for improvement
in the open-source development community. Furthermore, the
paper identifies important lessons learned and suggests future
directions for improving code quality in JAVA projects.

Index Terms—Software quality, Code style conventions and
standards, Software maintainability, Open-source software, JAVA
programming, Static analysis, Software evolution, Mining software
repositories, Software development practices, Software metrics.

I. INTRODUCTION

Following code style conventions is essential for maintaining
high-quality software [1]. Proper code style improves readabil-
ity, maintainability, and consistency, making it easier for devel-
opers to collaborate and extend software projects [2]. Given the
prominent role of open-source software [3], understanding the
degree to which projects adhere to established style conventions
is increasingly important.

Previous studies on code style and programming practice
adoption [3]–[8] have been limited in scale. Many focused
on small datasets and small number of code-style checkers.
Additionally, it remains unclear how adherence to code-style
evolves over time or whether explicitly claiming adherence in
documentation leads to better code-style.

To address these gaps, this paper presents a large-scale
empirical study on JAVA code style and best programming
practice adherence. Specifically, we rely on GOOGLE’s JAVA
Style Guide [9], which is widely considered the most popular
JAVA coding convention. To conduct this study, we extended

GRADESTYLE [10], an open-source tool we previously de-
veloped as a style checker for assessing the code style of
student assignments. Our extension allows the tool to analyze
open-source repositories. We also implemented eight new code
style and programming practice checkers based on GOOGLE’s
JAVA Style Guide to improve the tool’s ability to assess real-
world projects. To the best of our knowledge, the extended
version of GRADESTYLE provides the most comprehensive
detection of GOOGLE JAVA code style violations available.
Indeed, commercial tools like PMD and CHECKSTYLE miss
important violations [10].

We analyzed 1,036 open-source JAVA repositories from
GITHUB, selected based on their popularity (ranked by stars).
By running GRADESTYLE on these repositories, we studied
the adoption of nine code style and seven programming
practices, identifying key areas for improvement. Additionally,
we distinguished between repositories that explicitly claim to
follow a style guide and those that do not, allowing us to
examine whether stated intent correlates with actual adherence.
Moreover, from this dataset, we selected 41 mature and actively
maintained repositories for further analysis. Each repository
was analyzed 12 times—once per calendar month over the
past year. This allowed us to track how adherence to coding
standards evolves over time.

The results of our study reveal several key findings: First,
code-style and best-practice violations are widespread, with
naming conventions and Javadoc documentation being among
the most frequently violated categories. Second, repositories
that explicitly claim to follow a coding standard exhibit slightly
better adherence. Third, over time, adherence to programming
best practices shows modest improvement, while certain code
style violations, such as method and variable naming, become
more prevalent.

In summary, this paper makes the following contributions:

• We present a large-scale empirical study of 1,036 popular
open-source JAVA repositories, providing a comprehensive
overview of code style and best programming practice
adherence.

• We bring a series of important insights into the adoption
and evolution of code style and best programming practice
adherence. Our findings provide actionable insights for
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open-source maintainers, tool developers, and researchers
seeking to improve coding standards in JAVA projects.

• We propose a new version of GRADESTYLE for analyzing
open-source repositories, with eight new violation checks
based on GOOGLE’s JAVA Style Guide. We released the
new version of the tool [11] and all experimental data [12]
to foster future work in this area.

II. EXPERIMENTAL DESIGN

Our study investigates the adoption and evolution of code
style, programming practices in popular open-source JAVA
projects in GITHUB. Specifically, our empirical study addresses
the following four research questions (RQs):

RQ1 Violation Prevalence. How prevalent are different code
style and programming practice violations in open-source
JAVA projects?

RQ2 Claimed vs. Actual Code Style Adherence. Do reposito-
ries that explicitly claim to follow a code style guide (e.g.,
GOOGLE’s JAVA Style Guide) exhibit better adherence to
coding standards than those that do not?

RQ3 Evolution of Code Style and Best Programming
Practices. How does code style and programming practice
adherence evolve over time in actively maintained and
mature JAVA repositories?

RQ4 Common Orderings of Class Elements. Is there a
common ordering of JAVA elements in a class that is
widespread in open-source repositories?

RQ1 aims to understanding the extent to which code style
and programming practice violations occur, providing insights
into common issues that developers face. Identifying frequent
violations can highlight areas where better enforcement or
improved tooling may be needed.

RQ2 investigates whether explicit mentions of code style in
documentation or configuration files correlate with better com-
pliance, providing insights into the effectiveness of declaring
coding style adherence.

RQ3 analyzes the historical data (i.e., git commits) of well-
maintained and actively developed JAVA repositories to assess
how adherence to code style and programming practices evolves
over time. This investigation helps determine whether long-
term maintenance leads to improvements in best practices and
overall code quality.

RQ4 aims to understand the prevalence of common orderings
of JAVA elements within a class. While JAVA style guides, such
as GOOGLE’s, recommend consistency, they do not prescribe
a specific order. As a result, there is no universally accepted
standard. Identifying popular orderings can help developers
identify and follow commonly used, but not strictly enforced
standards for ordering Class elements.

A. Code Style Violations and Best Practices

We now explain the code style violations and programming
best practices analyzed in this study. The two most widely
known coding conventions for JAVA are ORACLE’s (Sun’s) JAVA
Code Conventions [13] and GOOGLE’s JAVA Style Guide [9].

These conventions are mostly similar, with minor differences.
We selected GOOGLE’s JAVA Style Guide because ORACLE’s
conventions have not been updated since April 20, 1999 (over
23 years ago). GOOGLE’s guide, last updated in 2018, covers
modern JAVA features introduced after 1999 and reflects how
JAVA code style has changed over time [14].

We did not consider every possible violation or programming
practice specified in the GOOGLE’s JAVA Style Guide [9],
as some of them vary depending on tools and developer
preferences. For example, indentation, brace placement, and
whitespace formatting usually follow GOOGLE’s JAVA Style
Guide, but formatting tools in IDEs may produce slightly
different results [15]. These minor differences do not signif-
icantly impact code quality, so we excluded them from our
study. Another example is the order of elements within a class.
Although the order is crucial for code readability, as emphasized
in GOOGLE’s JAVA Style Guide [9], GOOGLE’s guide does not
enforce a specific order. Thus, we did not include ordering as a
violation but still analyzed in RQ4 different ordering patterns to
find common practices. Moreover, we incorporated additional
checkers for JAVA best programming practices violations that
we consider important, common, and interesting to analyze.

Table I summarizes the violations analyzed in this study,
categorized into two groups according to the GOOGLE JAVA
Style Guide.

• Code style violations: These violations focus on how
code is written, particularly regarding naming conventions
and formatting standards. Adhering to these guidelines
enhances readability and maintainability, making future
modifications easier.

• JAVA best programming practices violations: Unlike
general code style, these violations relate specifically to
JAVA coding practices. Although following these practices
can also improve readability, their primary goal is to
enhance maintainability, security, and performance.

Code style violations:
Class Names. Class and enum names must be in Upper-
CamelCase (each internal word starts with a capital letter).
Class names should be nouns or noun phrases, such as
Customer or DataManager. GOOGLE’s JAVA Style Guide
allows class names to start with adjectives followed by nouns,
like SortedMap or ImmutableSet. Any class declaration
not following these naming rules counts as a violation.
Package Names. Package names must be lowercase and match
the directory structure. For example, a class User.java
located in src/org/project/User.java must declare
the package as package org.project;. Package names
violating this rule count as violations.
Method Names. Method names should be verb phrases using
lowerCamelCase (the first word starts lowercase, with each
following word capitalized). Method declarations that break
this rule count as violations.
Variable Names. Variable names, including instance fields,
parameters, and local variables, should use lowerCamelCase



and not start with an underscore ( ) or dollar sign ($). Static
final variables must use uppercase letters with underscores sep-
arating words (e.g., TOTAL_COUNT, COLOR_BLUE). Variable
names breaking these conventions count as violations.
Javadoc. Every public class, method, enum, and constructor
must have a Javadoc comment, and these comments should
contain a minimum number of words. While GOOGLE’s
JAVA Style Guide does not explicitly mention how long
Javadocs should be, we required a minimum of 10 words to
ensure clarity and depth in Javadoc comments. This promotes
detailed documentation across projects. Method Javadocs must
also include appropriate tags like @param, @return, and
@throws, matching their method signatures. Specifically:

• Classes and Enums: Must have a Javadoc comment above
the declaration, with at least 10 words.

• Constructors: Must have a Javadoc comment above the
declaration, with at least 10 words.

• Methods: Must have a Javadoc comment above the
declaration, with at least 10 words.

JAVA best programming practices violations:
Missing Override. Methods overriding or implementing super-
class or interface methods must include the @Override anno-
tation, unless the parent method is marked as @Deprecated.
This annotation prevents errors, improves readability, and
ensures refactoring safety.
Empty Catch Blocks. Caught exceptions should never be
silently ignored. Typical actions include logging the error or
rethrowing an exception. If intentionally left empty, the reason
must be clearly explained with a comment:
1 try {
2 int value = Integer.parseInt(input);
3 processNumber(value);
4 } catch (NumberFormatException ok) {
5 // Non-numeric input is expected; continue normally
6 }

In test methods, exceptions with names starting with
expected may be ignored without a comment, as shown
below:
1 try {
2 emptyStack.pop();
3 fail();
4 } catch (NoSuchElementException expected) {}

Unqualified Static Access. Static class members must be
accessed using the class name, not through an instance or
method return value:
1 // doWork() is a static method
2 Utils.doWork(); // good
3 utilInstance.doWork(); // bad
4 getUtils().doWork(); // very bad

Finalize Override. Methods should never override
Object.finalize(), since JAVA has scheduled
finalization for removal due to reliability issues.
Private Instances. To support encapsulation, instance fields
should be declared private or protected. External access
to these fields should use public getter and setter methods.
String Concatenation. Frequent string concatenation, es-
pecially in loops, reduces performance significantly. The
following pattern should be avoided:

1 String result = "";
2 for (int i = 0; i < 50000; i++) {
3 result += i + " ";
4 }

Instead, use a StringBuilder:

1 StringBuilder sb = new StringBuilder();
2 for (int i = 0; i < 50000; i++) {
3 sb.append(i).append(" ");
4 }
5 String result = sb.toString();

The first example can be over 500 times slower than the
second1. Each instance of string concatenation in loops counts
as a violation.

Useless Code. High-quality code should not contain unused
imports, methods, variables, or commented-out code. Every
line containing such unused or commented-out code counts as
a violation.

B. Implementation

To detect code style violations, we evaluated several existing
tools, initially focusing on well-known commercial tools
such as CHECKSTYLE [16], PMD [17], SONARQUBE [18],
ERRORPRONE [19], and SPOTBUGS [20]. However, these tools
do not aim to detect many violations described in GOOGLE’s
JAVA Style Guide. For instance, although these tools can
detect class and method naming conventions (UpperCamelCase
and lowerCamelCase), they do not apply natural language
processing (NLP) to ensure correct noun or verb usage,
which is required by GOOGLE’s JAVA Style Guide. Indeed,
CHECKSTYLE marks GOOGLE’s rules “5.2.2-Class-names”
and “5.2.3-Method-names” as partially supported [21].

These existing tools also struggle detecting violations
which require context specific information. For example,
CHECKSTYLE cannot detect violations requiring context from
multiple files simultaneously, such as Missing Override and
Unqualified Static Access. This is because CHECKSTYLE
analyses one file at a time, and is therefore unable to deduce
the class hierarchy needed to detect such violations. Indeed,
GOOGLE’s JAVA style guide rules 6.1 and 6.3 are explicitly
marked as “cannot be detected by Checkstyle due to its
limitation: multiple file checking is not supported” [21].

We then turned our attention to research tools and selected
GRADESTYLE [10], our own open-source tool, originally de-
veloped for educational purposes [10]. GRADESTYLE leverages
existing static analysis libraries like PMD and CHECKSTYLE
but proposes additional checks using static analysis and NLP
techniques. This tool can detect 12 significant categories of
JAVA code style and best-practice violations [10]. To the best
of our knowledge, GRADESTYLE is the most comprehensive

1While the Java Just-In-Time (JIT) compiler may optimize simple string
concatenations using StringBuilder, this optimization often does not
apply to repeated concatenation in loops. Each iteration creates a new String
object, leading to significant performance overhead due to the immutability of
String. Using StringBuilder avoids this by reusing a mutable buffer.



TABLE I
ENABLED VIOLATION CHECKERS (✰ INDICATES NEWLY IMPLEMENTED VIOLATIONS NOT ORIGINALLY SUPPORTED BY GRADESTYLE [10])

Violation Description Impl. GRADESTYLE GOOGLE Novel

Code Style Violations
Class Names Class names should have a noun, follow UpperCamelCase. custom ✓ ✓ ✗
Method Names Method names should have a verb, follow camelCase. custom ✓ ✓ ✗
Variable Names Variable names should follow camelCase. custom ✓ ✓ ✗
Package Names Package names should match the project structure and be all lowercase. CS [16] ✓ ✓ ✗
Javadoc Formatting Javadoc comments should be there, with comments for all tags. CS [16] ✓ ✓ ✗
Class Javadocs Classes should have a Javadoc comment above the class declaration. custom ✰ ✓ ✗
Constructor Javadocs Constructors should have a Javadoc comment above the constructor declaration (min 10 words). custom ✰ ✓ ✗
Method Javadocs Methods should have a Javadoc comment above the method declaration (min 10 words). custom ✰ ✓ ✗
Field Javadocs Fields should have a Javadoc comment. custom ✰ ✓ ✗

Programming Practices Violations
Private Instances All fields within a class should be private to prevent outside access; getters/setters should be used. custom ✓ ✗ ✗
Useless For exmaple, fields and methods that are not used are flagged as unnecessary. custom ✓ ✗ ✗
String Concatenation Strings should not be concatenated within loops to boost performance; StringBuilder should be used. custom ✓ ✗ ✓
Missing Override @Override annotations should be placed wherever a method is overridden for readability. PMD [17] ✰ ✓ ✓
Empty Catch Block Empty catch blocks can hide errors and make debugging difficult. PMD [17] ✰ ✓ ✗
Unqualified Static Access Static methods should be called using the class name to avoid confusion. custom ✰ ✓ ✓
Finalize Override Object.finalize() should not be overridden, as it is scheduled for removal. custom ✰ ✓ ✓

tool currently available for detecting GOOGLE JAVA style
violations2.

While GRADESTYLE already handles several violations
targeted in our study, it misses some key checks listed in
GOOGLE’s JAVA best practices [9], such as Missing Override
and Empty Catch Block. GRADESTYLE is also built for
an educational context where student repositories follow a
predictable skeleton structure given by instructors, and is less
suitable for open-source analysis where file structure varies
considerably. Therefore, we extended GRADESTYLE to more
comprehensively cover these missed checks, and to improve
ease of use for research.

We also improved GRADESTYLE’s granularity in detecting
Javadoc violations. Originally, GRADESTYLE had a single
configuration for Javadocs [10]. We modified GRADESTYLE
to separately evaluate constructor, method, field, and class
Javadocs. This improvement allows a more detailed and accu-
rate analysis of Javadoc compliance. These additional violation
checkers are crucial because adhering to them significantly
enhances code readability and understandability, particularly
valuable in open-source projects where many contributors
collaborate without centralized oversight.

However, certain original GRADESTYLE violation checkers
were intentionally excluded from our analysis due to limited
relevance for open-source projects or because the results
depend heavily on parameter choices, which are difficult to set
universally for all projects (e.g., amount of comments [10]).

Table I summarizes each violation analyzed in this study
(see Section II-A), indicating whether GRADESTYLE originally
supported it or if we implemented it as a new extension
in GRADESTYLE (marked with ✰). It also indicates which
violations are specified in the GOOGLE JAVA Style Guide and
which are not (Column “GOOGLE”). We also indicate which
violation checkers are novel and, to the best of our knowledge,

2Although CHECKSTYLE appears to support many rules from the GOOGLE
JAVA Style Guide (see [21]), this is misleading. The site lists sub-rules individ-
ually, creating the impression of broader coverage. Conversely, GRADESTYLE
groups related checks together.

has not been investigated in open-source repositories before
(e.g., [3], [4]), by marking them in the “Novel” column.

The original GRADESTYLE integrates directly with CHECK-
STYLE [16] (v. 10.3.2) for PackageNames and Javadoc vi-
olations. For detecting naming violations (ClassNames and
MethodNames), GRADESTYLE uses regular expressions com-
bined with NLP through EXTJWNL [22] (v. 2.0.5). Regular
expressions check for correct camel-case notation, while
EXTJWNL ensures class names contain appropriate nouns and
method names contain appropriate verbs by performing Part-
of-Speech (PoS) tagging. For other violations GRADESTYLE
implements custom static analyses using JAVAPARSER [23]
(v. 3.23.1), a library designed for static analysis of JAVA
source code, which helps to precisely identify specific language
constructs.

To add new violation checkers to GRADESTYLE, we relied
on PMD [17] (v. 6.52.0) for detecting the programming practice
violations @Override annotations and empty catch blocks.
For the other new violation checkers, we implemented custom
static analyzers using JAVAPARSER.

Furthermore, we adapted GRADESTYLE to better suit open-
source projects. Originally, GRADESTYLE searched for JAVA
files exclusively within the src/main/java directory at the
project’s root, a standard setup for student assignments. Open-
source repositories, however, often follow different and non-
standard directory structures (e.g., with MAVEN submodules).
Therefore, we modified the tool to recursively search for JAVA
files across multiple src/main/java directories located
anywhere within the project’s hierarchy.

C. Repository Mining

In this study, we aimed to collect a representative set of high-
quality JAVA repositories from GITHUB by selecting projects
in descending order based on their number of stars. Following
previous research on mining repositories [24], the number of
stars is widely regarded as the best proxy for popularity and,
consequently, quality [24]. Popular repositories are expected to
have higher code quality, a larger number of contributors, and



better overall maintenance [25]. To balance generalizability
with computational efficiency, we set a threshold of 1,036
repositories. We retrieved the top-starred JAVA repositories
using the GITHUB API [26] and stopped after obtaining 1,036
valid repositories.

To ensure meaningful analysis, a valid repository had to
meet three selection criteria:

1) Repository Size Repositories larger than 2 GB were
excluded to avoid excessive processing overhead.

2) JAVA Codebase Size We also excluded repositories with
excessively large JAVA codebases. The GITHUB API
provides a heuristic estimate of total bytes written in Java,
which we used as an approximation of the codebase size.
Repositories exceeding 2 million bytes of JAVA code were
filtered out to ensure smooth execution of our analysis.

3) Tool Compatibility To verify compatibility, we initially
conducted a preliminary check using CHECKSTYLE.
Repositories containing JAVA files with syntax errors
that caused tool failures were excluded from the dataset.
We chose CHECKSTYLE for this initial check be-
cause it is computationally less expensive compared to
GRADESTYLE. If a repository successfully passed the
CHECKSTYLE test, we then ran our modified version of
GRADESTYLE to ensure it operated without crashes.

The final dataset included 1,036 repositories with the
following characteristics:

• Stars – Average: 4,816; Min: 1,814; Max: 49,470; Median:
3,098

• Lines of Code (LOC) – Average: 19,672; Min: 29; Max:
8,873,014; Median: 5,364

Due to the filtering criteria, our dataset does not consist
solely of the top 1,036 GITHUB repositories ranked by stars.
Instead, it includes the first 1,036 repositories that met all
selection criteria. Despite this, all selected repositories have at
least 1,814 stars, indicating significant popularity. Therefore,
our dataset remains representative of popular open-source JAVA
projects. We then ran our extended version of GRADESTYLE
for all the 1,036 repositories.

D. Manual Validation of Violation Detection

To validate the accuracy of GRADESTYLE’s violation
detection and to quantify the amount of false positives, the
first author performed a manual validation of the results using
stratified random sampling. Indeed, manually verifying all
detected violations would not be possible. Stratification ensures
a more representative evaluation across different violation
categories [27]. We determined the required sample size using a
standard calculator [28] with a 15% margin of error and a 90%
confidence level, resulting in a sample size of 31 violations
per category.

For stratification, we divided the 1,036 repositories into 31
evenly sized groups. From each group, we randomly selected
one violation per category. We selected the first violation for
the category found within the group.

TABLE II
MANUAL VALIDATION RESULTS OF THE DETECTED VIOLATIONS

Violation Category # Violations Checked False Positives

Class Names 36 None
Method Names 42 None
Variable Names 39 None
Package Names 31 None
Javadocs Class 43 None
Javadoc Method 44 None
Javadoc Constructor 45 None
Javadoc Formatting 43 None
Private Instances 36 None
Useless 40 None
String Concatenation 31 None
Missing Override 31 None
Finalize Override 31 None
Unqualified Static Access 33 None
Empty Catch Block 35 None

GRADESTYLE provides direct links to flagged violation
locations, facilitating the verification process. To verify a
violation, the first author opened the file and line location
specified by the violation report, and then performed a visual
inspection to confirm both the presence of the violation, and
whether the violation description accurately reflected the code.

Table II summarizes the number of violations manually
checked for each category. The manual validation confirmed
high accuracy of the GRADESTYLE: zero false positives were
found, indicating that all detected violations matched the
reported issues.

III. EXPERIMENTAL RESULTS

A. RQ1 - Violation Prevalence

RQ1: How prevalent are different code style and program-
ming practice violations in open-source JAVA projects?

Absolute number of violations. Table III provides statistical
insights into the absolute numbers of violations detected across
the analyzed 1,036 JAVA repositories. The data highlights
significant variability across different categories of code style
and programming practice violations. All categories also had
minimum values of 0, meaning every category had at least 1
repository with no violations.

Notably, Javadoc-related violations occur most frequently.
For instance, Javadoc Formatting violations have the highest
average (380.18) and the maximum number (6,213), indicating
widespread inconsistencies in documenting code. Similarly,
Javadoc Method violations also have a high average (303.26),
reflecting substantial issues in method documentation across
repositories.

Violations related to naming conventions, such as Variable
Names, Method Names, and Class Names, also appear fre-
quently. Variable Names show the highest average (88.34)
among naming conventions, suggesting common issues with
variable naming standards across repositories.

Programming practice violations generally show lower
averages compared to code style violations. For example, String
Concatenation (0.56), Finalize Override (0.09), and Empty
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Fig. 1. Distribution of normalized violation counts across categories (RQ1)

TABLE III
ABSOLUTE VIOLATION STATISTICS ACROSS THE 1,036 REPOS (RQ1)

Violation Category Min Max Avg Median

Class Names 0 231 9.45 3.0
Method Names 0 385 26.45 9.0
Variable Names 0 2,514 88.34 28.0
Package Names 0 308 4.30 0.0
Javadoc Class 0 768 56.53 25.0
Javadoc Method 0 5,159 303.26 144.0
Javadoc Constructor 0 516 55.91 29.0
Javadoc Formatting 0 6,213 380.18 124.0
Private Instances 0 1,025 30.02 8.0
Useless 0 920 36.09 13.5
String Concatenation 0 88 0.56 0.0
Finalize Override 0 15 0.09 0.0
Unqualified Static Access 0 135 2.76 0.0
Empty Catch Block 0 215 2.50 0.0
Missing Override 0 321 3.17 0.0

Catch Block (2.50) appear far less frequently. The particularly
low frequency of String Concatenation violations suggests that
developers of popular JAVA repositories on GITHUB are aware
of the (very serious) performance issues of string concatenation
in loops and actively avoid it, or that there tends to be few
scenarios of string concatenation in loops.

Normalized number of violations. It is important to highlight
that GRADESTYLE calculates violations both in absolute
values and as normalized metrics relative to project size [10].
Specifically, violations are normalized based on the total
number of relevant constructs (e.g., variables, classes, methods).
For example, VariableNames violations are adjusted according
to the total number of declared variables in a repository. This
normalization ensures fairness, preventing larger projects from
being disproportionately penalized simply due to their size. We
argue that normalized values provide a more meaningful metric
for comparing code quality across repositories of different sizes.
Indeed, as previously reported the JAVA LOC of the projects
ranges from 29 to ∼9M.

Figure 1 presents the distribution of all non-Javadoc-related
violations in their normalized form.

All categories exhibit a top-skewed distribution, where most
repositories have relatively few normalized violations, while a
smaller subset of repositories show significantly high violation
counts. This indicates that while the majority of repositories
adhere to coding standards, a fraction of them exhibit poor
compliance with code style and programming best practices.

The results largely align with the absolute violation counts,
with one key exception: the Empty Catch Block category shows
a notably higher violation rate in the normalized distribution.
While its median remains at 0 (indicating that at least half
of the repositories have no violations of this type), the upper
quartile reaches 0.0588, much higher than other programming
practice violations. In contrast, other programming violations
such as Unqualified Static Access (0.0066), Missing Override
(0.0014), and Finalize Override (0.0) have considerably lower
upper quartile values. This means that the worst 25% of
repositories contain empty catch blocks in over 5.8% of their
catch statements. Notably, one repository had a normalized
violation rate of 1, indicating that every single catch block in
the project was empty.

Despite this, programming practice violations remain less
frequent than code style violations, suggesting better adherence
to best practices in JAVA development. However, two notable
exceptions stand out: Private Instances and Empty Catch Blocks.
These two categories show violation rates comparable to the
more frequently occurring code style violations.

Javadoc-related violations stand apart due to their sig-
nificantly higher normalized values, as shown in Figure 2.
The medians of Javadoc categories are 0.52, 0.47, 0.97, and
0.29, which are much higher than those of other categories.
Notably, all Javadoc categories except Javadoc Formatting
have a maximum normalized value of 1, meaning that some
repositories lack Javadoc documentation entirely. Javadoc



TABLE IV
NORMALIZED VIOLATION THRESHOLDS BY CATEGORY AND TYPE (RQ2)

Category Type 25% 20% 15% 10% 5% 4% 3% 2% 1% 0%

Class Names Code Style 93.34 89.77 83.69 73.17 55.41 50.77 44.98 39.09 34.27 30.98
Method Names Code Style 98.94 98.36 96.24 92.37 73.07 62.64 52.12 35.04 22.10 13.03
Variable Names Code Style 96.53 93.05 85.91 73.17 59.07 55.21 49.42 41.12 28.09 9.65
Package Names Code Style 93.53 92.95 92.28 91.51 89.19 88.42 87.16 85.42 83.49 80.98

Finalize Override Programming Practice 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.90 99.90 95.37
Unqualified Static Access Programming Practice 99.03 98.84 97.97 96.72 93.15 91.70 89.09 86.10 79.15 67.18
Empty Catch Block Programming Practice 94.21 91.89 88.71 83.20 73.07 70.75 66.80 64.67 61.97 60.33
Missing Override Programming Practice 99.81 99.61 99.42 99.03 97.01 96.24 95.56 94.02 89.48 71.14
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Fig. 2. Prevalence of Javadoc Violations (RQ1)

Formatting violations, however, exceed this threshold, with
some repositories having normalized values greater than 1.
This occurs because a single Javadoc comment can have
multiple associated violations. One extreme outlier had a
Javadoc Formatting violation rate of 6, meaning that, on
average, each Javadoc comment contained six violations—the
maximum possible number. These findings suggest that Javadoc
compliance is a major issue in open-source JAVA repositories.

RQ1 in Summary: Our analysis of 1,036 open-source
JAVA repositories reveals that Javadoc violations are the
most frequent, while naming and programming practice
violations occur less often. Empty Catch Blocks and Private
Instances stand out as key areas for improvement.

B. RQ2 - Claimed vs. Actual Code Style Adherence

RQ2: Do repositories that explicitly claim to follow a code
style guide exhibit better adherence to coding standards than
those that do not?

RQ2 investigates whether repositories that claim adherence
to a specific code style, particularly GOOGLE’s JAVA Style
Guide [9], exhibit higher compliance with coding standards
than those that do not. Additionally, it examines whether
repositories that strictly follow a code style explicitly document
their adherence or if it remains implicit.

To identify repositories claiming adherence, we performed
keyword searches on all markdown (.md) files located at the
project’s root using regular expressions to detect references

to code style. We used two sets of regular expressions; one
searches for general code-style references, such as “code style”
and “coding standards”. The other is more specific, and searches
for GOOGLE JAVA Style mentions, such as ”GOOGLE Java
Style” or the official URL of the guide. We included all root
markdown (.md) files to ensure we covered common files
such as README.md and CONTRIBUTING.md where code-
style and best-practice expectations are typically conveyed to
contributors. We also checked for the presence of PMD or
CHECKSTYLE configuration files, as these are the two most
widely used static analysis tools for enforcing JAVA coding
standards. While this automated approach cannot guarantee
complete precision, it represents a best-effort solution. Indeed,
manually analyzing all 1,036 repositories would be too costly.

The repositories were classified into three categories:
• Mention of Code Style (140 repositories): A root

documentation file contains general references to code
style, such as “code style” or “code-style”.

• Explicit Mention of GOOGLE’s JAVA Style Guide
(16 repositories): The repository explicitly references
GOOGLE’s JAVA Style Guide, includes a link to its
official documentation in a root markdown (.md) file,
or contains configuration files for automated GOOGLE
style enforcement (e.g., checkstyle.xml).

• No Mention (880 repositories): The repository does not
explicitly reference any coding standard.

Next, we analyzed the prevalence of violations by defining
a threshold to determine when a repository can be considered
adherent. Table IV presents the percentage of repositories
falling below specific normalized violation thresholds. For
instance, 94.21% of repositories have normalized Empty Catch
Block violations below 0.25. Note that Table IV only includes
violations explicitly defined in the GOOGLE JAVA Style Guide
(see the GOOGLE column in Table I). As a result, we excluded
Private Instances, Useless, and String Concatenation, since
these are not part of the official style guide. Additionally, we
excluded Javadoc-related violations because RQ1 shows high
frequency, making them less informative for characterizing
code style adherence.

Based on this analysis, we set a threshold at 5% (0.05
normalized violations) to classify repositories as adherent, as
the number of repositories passing this threshold stabilizes
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beyond this point. Setting the threshold to 0 would be
unrealistic, as it assumes that repositories are entirely free
of violations, which is rarely the case in practice. Instead, a
repository is considered adherent to a code style category if
its normalized violations fall below the chosen threshold.

To assess whether claimed adherence aligns with actual
adherence, we analyzed the distribution of programming
practice and code style violations across repositories. Figure 3
presents a Venn diagram illustrating how adherence rates
compare to repositories’ self-reported compliance.

The Venn diagram reveals that 12 out of 16 repositories
(75%) that explicitly claim adherence to GOOGLE’s JAVA
Style Guide meet the 5% threshold for programming practice
categories. This adherence rate is higher than the 65% observed
among repositories that mention code style and the 66% among
those with no explicit reference to coding standards.

RQ2 in Summary: Repositories that explicitly reference
GOOGLE’s JAVA Style Guide demonstrate the highest
adherence rates to code style and programming practices,
with 75% meeting the 5% compliance threshold. However,
adherence remains relatively high (65–66%) even among
repositories that do not explicitly claim compliance, sug-
gesting that many projects follow best practices implicitly.

C. RQ3 - Evolution of Code Style and Best Programming
Practices

RQ3: How does code style and programming practice
adherence evolve over time in actively maintained and mature
JAVA repositories?

To answer RQ3, we examined the 1,036 repositories to
identify those that are both mature and actively maintained.
We analyzed commit histories over multiple time intervals,
collecting timestamps of all commits made in the past year and
counting how many intervals contained at least one commit. We
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Fig. 5. Variation of Total Normalized Violations with Time (RQ3)

then examined the results to identify repositories with consistent
activity. Figure 4 illustrates the distribution of monthly commits
over a one-year period for the 1,036 repositories.

From this analysis, we found that 43 repositories have at
least one commit every calendar month in the past year. Active
maintenance was a crucial selection criterion, as regularly
updated repositories with frequent commits provide a more
reliable dataset for tracking code evolution over time. To further
refine the selection, we filtered for mature repositories: those
that are at least 36 months old. This criterion ensures that
projects have had enough time to refine their coding standards.
After applying this filter, 41 repositories were retained.

For each of these 41 repositories, we sampled 12 commits
from the past year, selecting one commit per calendar month.
The commit chosen for each month was the one closest to the
middle of the month. For example, if a repository had commits
on January 2nd, 10th, and 27th, the commit on January 10th
was selected as it is closest to the median day of the month
(15th). We considered only the last year to avoid analyzing
repositories too early in their lifecycle, as early-stage projects
may exhibit immature coding practices or function as proof-
of-concept projects rather than mature projects.

To prevent selecting commits that were too close in time,
we computed the smallest differences between commit dates
and manually inspected them. The analysis confirmed that no
two commits from the same repository were closer than 10
days apart, ensuring a well-distributed selection.

Finally, we ran the tool on each commit across all selected
repositories. Each repository was analyzed 12 times, starting
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Fig. 6. Trend of Programming Practice Normalized Violations (RQ3)
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Fig. 7. Trend of Class Names Normalized Violations (RQ3)
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Fig. 8. Trend of Variable Naming Normalized Violations (RQ3)
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Fig. 9. Trend of Method Naming Normalized Violations (RQ3)

from the oldest commit (February 2024) to the most recent
(January 2025). For each commit, the repository was checked
out to the corresponding commit hash, restoring the codebase to
its exact state at that point in time. Figure 5 shows the average
normalized score for each commit across all 41 repositories.
Overall, the total normalized score remains relatively stable
over the 12-month period, with a slight increase of 0.0068 from
February 2024 to January 2025. The variation is minimal, with
a maximum fluctuation of 0.037, suggesting that code style and
programming practice adherence remains largely unchanged.

Breaking down the results by category, we observe:

• Programming practice violations (Figure 6) show a
slight downward trend, decreasing from 0.0074 to 0.0066
over the 12 months, suggesting gradual improvement in
programming best practices.

• Class name violations (Figure 7) also decrease, with a
small drop of 0.0014

• Variable and method naming violations (Figures 8
and 9) exhibit a slight upward trend, indicating a gradual
decline in adherence to naming conventions.

Other categories showed no clear trends.

RQ3 in Summary: Our analysis of actively maintained and
mature repositories suggests that code style programming
practice adherence remains relatively stable. Notably,
class name and programming practices violations slightly
decrease, whereas variable and method naming violations
slightly increase.

D. RQ4 - Common Orderings of Class Elements

RQ4: Is there a common ordering of JAVA elements in a
class that is widespread in open-source repositories?

The order of elements inside a class significantly impacts
code readability [9]. While GOOGLE’s JAVA Style Guide
acknowledges its importance, it does not enforce a specific
ordering [9]. Although we did not include ordering violations
in our primary study, we want to know if a most common one
exists. To achieve this, we analyzed the 1,036 repositories,
evaluating different class element arrangements, including
fields, constructors, instance methods, and static methods. This
check is not implemented in CHECKSTYLE (see Section 3.4.2
in [21]), presumably due to the lack of general agreement on a
standard ordering. In contrast, it is supported by GRADESTYLE.
We extended GRADESTYLE by adding configurable ordering
checks and evaluated four commonly used conventions.

Ordering 1: Inner Classes, Static Fields, Static Methods,
Instance Fields, Constructors, Instance Methods (original order
used in the GRADESTYLE paper [10]).

Ordering 2: Static Fields, Static Methods, Instance Fields,
Constructors, Instance Methods, Inner Classes.

Ordering 3: Static Fields, Static Methods, Instance Fields,
Instance Methods, Constructors, Inner Classes

Ordering 4: Instance Fields, Constructors, Instance Meth-
ods, Static Fields, Static Methods, Inner Classes.

Figure 10 presents the normalized scores for each ordering
across the 1,036 repositories.
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Fig. 10. Comparison of Ordering Rules (RQ4)

The results show that Orderings 2 and 4 are the most
commonly followed, with medians of 0.070 and 0.071, re-
spectively—lower than Orderings 1 and 3 (0.10 and 0.13).
This suggests that developers prefer structuring classes with
static members grouped together or prioritizing instance-related
elements first. A key actionable insight from our study is that
open-source repositories should adopt either Ordering 2 or 4.

RQ4 in Summary: Our analysis revealed two popular
orderings of JAVA Class elements being used in the
repositories. One places static fields and methods at the
beginning of the class, while the other places them at the
end. We also found that no one ordering was universal
among the repositories.

IV. DISCUSSION

This section provides a discussion of the key findings, analyz-
ing their implications for code style adherence, programming
best practices, and the broader impact on open-source software
development

A. Code Style Adoption

Our findings highlight a need for better adherence to code
style conventions in open-source JAVA projects. Figure 1
shows high normalized scores for key categories such as class
names, package names, variable names, and private instances,
suggesting these areas require more attention from developers.

Conversely, normalized scores for programming practice and
useless code categories indicate that these practices are largely
followed. The primary exception is the Empty Catch Block
category, which exhibits relatively high violation rates. This
is concerning as empty catch blocks hide errors and make
debugging harder, which is why it is part of the GOOGLE
JAVA Style guide. Therefore more attention needs to be paid
to properly make use of catch statements.

B. Explicit vs. Implicit Adherence

Interestingly, repositories that explicitly reference GOOGLE’s
JAVA Style Guide [9] exhibit the best adherence to programming
practice violations. However, only 16 repositories made such
claims, highlighting a lack of formal adoption. Encouraging

more projects to reference and enforce established style guides
could improve overall code quality.

Our results may also encourage owners of open-source JAVA
projects to actively push good practices more than they do
currently. Further standardizing of JAVA programming practices
could also help to push this, for example by seeing common
agreement on the ordering of elements within a JAVA class.
Furthermore, enforcement of more novel violations should be
overseen by managers, such as missing @Override annotations.
These are especially important due to the annotation helping
other developers to understand where subclasses are used.
We hope that by releasing our tool with enhanced violation
checkers, we can contribute to improving code style adherence
within the JAVA community.

V. THREATS TO VALIDITY

Tool Effectiveness. The manual validation step focused only
on false positives (i.e., incorrectly flagged violations) but did
not systematically evaluate false negatives (i.e., undetected
violations). If present, false negatives would indicate our
results under-report the prevalence of violations, meaning the
violations analysed in this study may be even more widespread.
Despite these limitations, the existence of false negatives can
only increase the number of true violations, not decrease. This
means that our tool can still confidently serve as a lower limit
for the number of violations, as we found zero false positives
in our manual analysis. While we conducted limited testing
for false negatives when extending the tool, a thorough false
negative evaluation remains an important future work.
Time Frame for Evolution. Our study analyzed code evolution
over the last one-year period, which may not be sufficient to
capture long-term trends. Future research could extend this
analysis to cover longer periods (e.g., 5–10 years) to better
understand how code style adherence evolves in mature projects.
Additionally, we sampled one commit per month, a granularity
that may be too coarse for highly active repositories. This
approach may have missed sudden bursts of code style activity
or finer-grained changes in coding behavior. Future studies
could employ more refined sampling strategies (e.g., sliding
windows or multiple commits per month) to uncover subtler
temporal dynamics in coding practices.
Selection Bias. The study focused on 1,036 of the most starred
repositories on GITHUB. While this selection ensures popularity
and relevance, it may introduce bias, as highly starred repos-
itories may not be representative of the broader open-source
JAVA ecosystem, including smaller or less-maintained projects.
Exploring repositories with fewer stars remains an important
direction for future work to achieve a more comprehensive
understanding of the ecosystem.
Threshold Sensitivity. The results are influenced by the chosen
5% violation threshold, and a different threshold could lead to
varying conclusions about adherence rates. We mitigate this
threat by employing a data-driven approach to determine this
threshold (See Table IV). We believe it effectively distinguishes
adherence from non-adherence.



VI. RELATED WORK

To the best of our knowledge, our study is the first of its
kind in terms of scale, analyzing a large number of repositories
and detecting coding violations that have not been examined
in previous research. Moreover, we address novel research
questions and provide new insights into code style adherence,
its evolution over time, and the gap between claimed and actual
adherence in open-source JAVA projects. We now discuss the
most related work.

Coding style conventions and best programming practices
are well-established principles that enhance software readability
and maintainability [4]. Many programming languages offer
official style guides, such as PYTHON’s PEP8 and GOOGLE’s
coding standards. However, studies on open-source projects
suggest that adherence is inconsistent [29]. Beller et al. [5]
conducted a study of static analysis tools (including linters for
style) across popular projects in JAVA, JAVASCRIPT, PYTHON,
and RUBY [5]. They found that roughly half of the studied
projects employ at least one automated static analysis tool to
enforce best practices, but usually in an ad-hoc manner. Notably,
coding style rules are not always strictly enforced—many teams
use these tools to flag issues but do not mandate a zero-violation
policy. Similarly, Boogerd et al. [6] observed that although
style checkers raise a significant portion of build warnings,
they rarely cause build failures, suggesting lenient enforcement.
Our study builds on these insights by examining adherence
trends specifically in JAVA and investigating whether explicit
claims of compliance translate to actual adherence (RQ2).

The GRADESTYLE study [10] investigated coding style in
student repositories, showing improvement in adherence after
receiving automated feedback. Brown et al. [7] similarly studied
novice programmers, observing slight increases in Javadoc
use over time. While these works analyze controlled learning
environments, our study extends this approach to real-world
open-source projects.

Jonsson et al. [3] examined adherence to ORACLE’s JAVA
conventions in a limited set of open-source projects, using PMD
and CHECKSTYLE for violation detection. Similarly, Elish and
Offutt [4] analyzed 100 JAVA projects and found that only 4%
of classes fully adhered to coding conventions. Both of these
studies mainly focus on naming, commenting, and structure.
Among naming related violations, Elish and Offutt found that
28 out of their 100 investigated JAVA classes had field naming
violations, and 18 out of 100 classes had method naming
violations. While it is hard to directly compare our results
due to a different normalisation approach, these results line up
roughly with those of our study, with most field and method
names following convention. Our results also agree that field
violations are generally more common than method violations.
However, Elish and Offutt found no violations of class naming,
a strong contrast to our findings, where class naming violations
were the most frequent of the naming violations. This suggests
that our NLP-based tool can detect naming violations missed
by tools limited to camelCase checks.

While our study includes some of these aspects, we also
consider violations that were not covered, or only partially
addressed. For example, we check whether class names are
nouns/noun phrases and method names are verbs/verb phrases,
something not checked in either study. Our study also differs
by including novel violation checks not covered by previous
research, such as Missing Override and Unqualified Static
Access. We also use a significantly larger dataset of 1,036
repositories and cover a broader range of violations, providing
a more comprehensive view of modern JAVA coding practices.

VII. CONCLUSIONS AND FUTUE WORK

We provided a comprehensive and novel analysis of adher-
ence of code style and best programming practices in 1,036
open-source JAVA projects on GITHUB. Our findings reveal
that Javadoc-related violations are the most prevalent. We
also observe that there is still room for improvement in other
categories, such as naming conventions, private instances and
other programming practices, such as empty catch blocks.
Repositories that explicitly claim adherence to GOOGLE’s
JAVA Style Guide demonstrate noticeably better compliance.
This highlights the importance of formalizing coding standards
and expectations in open-source projects. By releasing the
updated GRADESTYLE [11] and all experimental data [12],
we aim to foster further research and encourage the open-
source community to prioritize consistent coding standards.
We submitted 14 pull requests fixing violations detected by
our tool. One has been confirmed3, and another merged4.

While this study provides valuable insights into code style
adherence and programming practice violations in open-source
JAVA projects, several areas remain open for future research.
We now highlight the three most promising ones.

First, our study examined code style evolution over a one-
year period. Future research could extend this analysis to longer
time frames to better understand long-term trends and the
factors influencing adherence over time.

Second, while our study focuses on the most starred JAVA
open-source repositories on GITHUB, future work could
explore the adoption of code style and programming practices
in repositories with a wider range of star counts. This is
important because highly starred repositories may not be fully
representative of the open-source ecosystem, where smaller or
less popular projects may exhibit different adherence patterns
and challenges in maintaining coding standards.

Third, although our dataset likely includes a variety of project
types (such as libraries, frameworks, and applications) we
did not explicitly classify them. Differentiating between these
categories could uncover domain-specific adherence patterns
and help identify which types of projects are more or less
compliant with established coding standards. This represents
an interesting direction for future work.

3https://github.com/x-ream/sqli/pull/61
4https://github.com/Aliucord/Aliucord/pull/521

https://github.com/x-ream/sqli/pull/61
https://github.com/Aliucord/Aliucord/pull/521
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