
Empirical Software Engineering (2024) 29:70
https://doi.org/10.1007/s10664-023-10406-8

Semantic matching in GUI test reuse

Farideh Khalili1 · Leonardo Mariani2 · Ali Mohebbi3 · Mauro Pezzè3,4 ·
Valerio Terragni5

© The Author(s) 2024

Abstract
Reusing test cases across apps that share similar functionalities reduces both the effort
required to produce useful test cases and the time to offer reliable apps to the market. The
main approaches to reuse test cases across apps combine different semantic matching and test
generation algorithms to migrate test cases across Android apps. In this paper we define a
general framework to evaluate the impact and effectiveness of different choices of semantic
matching with Test Reuse approaches on migrating test cases across Android apps.
We offer a thorough comparative evaluation of the many possible choices for the compo-
nents of test migration processes. We propose an approach that combines the most effective
choices for each component of the test migration process to obtain an effective approach. We
report the results of an experimental evaluation on 8,099 GUI events from 337 test config-
urations. The results attest the prominent impact of semantic matching on test reuse. They
indicate that sentence level perform better than word level embedding techniques. They sur-
prisingly suggest a negligible impact of the corpus of documents used for building the word
embedding model for the Semantic Matching Algorithm. They provide evidence
that semantic matching of events of selected types perform better than semantic matching
of events of all types. They show that the effectiveness of overall Test Reuse approach
depends on the characteristics of the test suites and apps. The replication package that we
make publicly available online (https://star.inf.usi.ch/#/software-data/11) allows researchers
and practitioners to refine the results with additional experiments and evaluate other choices
for test reuse components.

Keywords Software testing · Testing Android apps · Test reuse · Semantic matching for
testing · Automatic test generation · Word Mover · Universal sentence encoder · Word2vec ·
Glove · Fast

Communicated by: Hadi Hemmati

B Mauro Pezzè
mauro.pezze@usi.ch

Extended author information available on the last page of the article

0123456789().: V,-vol 123

Accepted: 10 October 2023 / Published online: 9 May 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10406-8&domain=pdf
http://orcid.org/0000-0002-4844-4351
http://orcid.org/0000-0001-5193-7379
http://orcid.org/0000-0001-5885-9297
https://star.inf.usi.ch/#/software-data/11

Empirical Software Engineering (2024) 29:70

1 Introduction

GUI applications offer rich sets of GUI interactions that often result in huge execution spaces.
A main challenge of testing GUI applications consists of effectively sampling the execution
space, to thoroughly test the application within time and budget constraints. Automatic test
case generators (Google 2017;Machiry et al. 2013; Amalfitano et al. 2012; Anand et al. 2012;
Ermuth andPradel 2016;Mirzaei et al. 2015;Gu et al. 2019;Mao et al. 2016;Dong et al. 2020)
largely reduce the human effort required to generate GUI test cases; However they generate
many test cases that execute meaningless combinations of actions thus missing combinations
of events that can reveal faults, and rely on implicit oracles (Memon et al. 2003a; Moran et al.
2016; Zhao et al. 2019) that cannot reveal failures related to the semantics of the app under
test.

The recent Test Reuse approaches that automatically migrate GUI test cases across
similar applications (Behrang and Orso 2019; Lin et al. 2019; Rau et al. 2018b, a; Behrang
andOrso 2020; Qin et al. 2019) address themain limitations of automatic test case generators,
by inheriting the purpose and effectiveness of test cases across applications.

They generate a test case for a newapplication, hereafter target application, froma test case
of an already tested applications, hereafter source application. Test Reuse approaches
generate semantically relevant target test cases, that is test cases for target applications to
be tested, by adapting source test cases, that is test cases designed to effectively test source
applications.

Test Reuse approaches can effectivelymigrate test cases across applications that share
some functionalities, which is a common practice in many domains, and everyday routine in
many cases, like in the the extremely relevant domain of mobile apps: Hu et al. report that
196 (63.4%) of the top 309 non-game mobile apps in the Google Play Store can be clustered
into 15 groups, each sharing many common functionalities (Hu et al. 2018); Ebrahimi et
al. classify the 1.8M apps of Apple App Store in 23 categories, and the 2.87M apps of
Google Play in 35 distinct categories (Ebrahimi et al. 2021). In this paper, we target Test
Reuse approaches for the extremely relevant domain of Android applications.

The currently available Test Reuse approaches for Android apps are ATM (Behrang
and Orso 2019), CraftDroid (Lin et al. 2019) and AdaptDroid (Mariani et al. 2021).
These three approaches successfully migrate non-trivial test cases, showcasing the potential
of Test Reuse.

They combine a Semantic Matcher procedure with a Test Generator. The
Semantic Matcher procedures identify pairs of semantically similar events between
the source and target apps, by recognizing semantic similarities among the textual descrip-
tors associated with the GUI widgets by means of word embedding techniques (Mikolov
et al. 2013b). The Test Generator exploits the similarities between events to generate
the target test cases, according to specific strategies: ATM and CraftDroid sequentially
migrate the events in the source test case, while AdaptDroid uses a search-based process
to derive the migrated test.

The usefulness of Test Reuse approaches strongly depends on the effectiveness of
semantic matching: Pairing semantically similar events is a necessary condition for suc-
cessful migration, regardless of the implemented migration strategy. Thus, assessing the
impact and effectiveness of semantic matching both in isolation and in the Test Reuse
process is extremely important to improve Test Reuse approaches. Zhao et als FrUITeR
framework (Zhao et al. 2020) empirically compares Test Reuse approaches as a whole;

123

70 Page 2 of 58

Empirical Software Engineering (2024) 29:70

However there exist no frameworks to assess the effectiveness of semantic matching tech-
niques in the context of Test Reuse, and their impact on the Test Reuse process.

In this paper, we present the first complete empirical study on both the effectiveness
of semantic matching of GUI events in the context of Test Reuse and the impact of
semantic matching on Test Reuse. We identify four main components that character-
ize the semantic matching procedures of all Test Reuse approaches for Android apps:
Corpus of Documents, Word Embedding, Event Descriptor Extractor,
Semantic Matching Algorithm, and we comparatively evaluate the impact of the
different choices for each component. The study offers a thorough empirical comparison
of the impact of the various implementations of the semantic matching components on
Test Reuse approaches, and proposes SemFinder, a new Semantic Matching
Algorithm that outperforms existing ones.

The results reported in this paper show that SemFinder finds similar events that other
approaches miss, thanks to an original combination of the way SemFinder both selects
events for matching and uses semantic matching. Thus, SemFinder reuses a larger set of
test cases than the state-of-the-art approaches. For instance, the running example that we
introduce in Section 2 shows a test case that only SemFinder correctly migrates from a
source appMoney Tracker to a target app EasyBudget. All state-of-the-art approaches do not
generate valid test cases, since they do not select the suitable candidate events, as discussed
in this paper.

In this paper, we study semantic matching of GUI events both in isolation and in the
context of Test Reuse, that is, independently from the Test Reuse process, and with
respect to the quality of the migrated test cases, respectively. We report the results of a study
of semantic matching in isolation on 8,099 GUI events by 337 semantic matching
configurations from 30 Android applications, thus offering important evidence for
defining effective semantic matching procedures. We report the results of a study of seman-
tic matching in the context of both the ATM and CraftDroid Test Generator on
6,000 test migrations from 68 configurations. The results that we report in this paper show
that (i) Semantic Matching Algorithm and Event Descriptor Extractor
are the most impactful components on Test Reuse; (ii) sentence level word embedding
techniques (Word Mover, Universal Sentence Encoder) perform better than word level ones
(Word2vec, Glove, Fast); (iii) semantic matching of events of a carefully selected subset of
types performs better than semantic matching of events of all types.

The work presented in this paper extends our preliminary study (Mariani et al. 2021) by
(i) extending the study of semantic matching in isolation with the Semantic Matching
Algorithm of AdaptDroid, that was not included in the former study, (ii) presenting
the empirical results of a large study of semantic matching in the context of Test Reuse
(research questions RQ3-RQ6) on 68 semantic matching configurations of 29
mobile applications, 89 test scenarios, and more than 6,000 migrated test cases (iii) defining
a publicly available framework to assess semantic matching and its components, both in
isolation and in the context of Test Reuse1, (iv) discussing new relevant findings that
extend the empirical evidence about the impact of semantic matching in Test Reuse, and
(v) identifying a detailed and rigorous presentation of both the semanticmatching components
and their role in the Test Reuse process.

This paper contributes to the research on Test Reuse approaches by

A) identifying the core components and the workflow that characterize all Test Reuse
approaches,

1 The framework is available as replication package at https://star.inf.usi.ch/#/software-data/11

123

Page 3 of 58 70

https://star.inf.usi.ch/#/software-data/11

Empirical Software Engineering (2024) 29:70

B) defining a publicly available framework to evaluate the semantic matching of GUI events
both in isolation and in the context of Test Reuse,

C) defining and evaluating SemFinder, a new Semantic Matching Algorithm
that outperforms the state-of-the-art approaches

D) presenting and discussing the results of the empirical evaluation of semantic matching
in isolation on 337 configurations,

E) presenting and discussing the empirical evaluation of semantic matching in the con-
text of Test Reuse with both the ATM and CraftDroid Test Generator on
68 semantic matching configurations,

F) discussing several findings that influence future research and practice in Test Reuse.

The results presented in this paper help both testers optimize the testing effort and
researcher refocus the research plans. The evaluation framework, Test Migration
Evaluator, and the Semantic Matching Algorithm, SemFinder, that we
present in this paper, indicate the strengths and limitations of test migration approaches, and
largely improve automatic test migration, respectively. They lay the foundation for effectively
and efficiently migrating test cases. Testers can optimize the testing effort by automatically
migrating test cases from similar apps, and focusing on the new features of the apps. The
results of the empirical evaluation presented in this paper reveal a substantial gap that remains
between the best semantic matching configuration and the perfect matching, despite the rel-
evant progresses with respect to the pioneer work. It shows the researchers the main research
directions to further improve test reuse.

This paper is organized as follows. Section 2 introduces the terminology, and illustrates
the Test Reuse approach. Section 3 presents the core components that characterize the
workflow of the different Test Reuse approaches proposed in the literature, presents the
main choices for each component, discusses the choices that characterize existing approaches
to Test Reuse, and introduces SemFinder, an Semantic Matching Algorithm
that we define in this paper. Section 4 presents the results of an extensive experimental
campaign that we carried on to answer six research questions. Section 5 discusses the main
related work. Section 6 summarizes the main contribution of this paper, and highlights the
research directions that the results reported in this paper open.

2 Test Reuse Approach

Our study focuses on Test Reuse of Graphical User Interface (GUI) applications. In
particular, we target GUI applications for the Android platform as current GUI Test
Reuse approaches target Android apps. However, the idea of GUI Test Reuse could
be applied to any pairs of GUI apps that share similar functionalities. Indeed, most of the
concepts and definitions presented in this paper are general enough to be applied to GUI
applications belonging to other platforms.

A GUI is a forest of hierarchical windows where only a window is active at any
time (Memon et al. 2003b). Windows host widgets, which are atomic GUI elements char-
acterized by attributes (such as, text and resource-id). At any time, the active window has a
state S that encompasses the attribute values of the displayed widgets. Some widgets expose
user-actionable events to let users interact with the app (Dix 2009). An event is an atomic
interaction on a widget. GUI events are human-computer interactions, for instance, click on
widgets of type Button, or fill widgets of type EditText. Following previous Test Reuse
approaches, we abstract the implemented widget type and group GUI events into two types:

123

70 Page 4 of 58

Empirical Software Engineering (2024) 29:70

Fig. 1 Test reuse example, the target test case (B) is obtained by migrating the source test case (A)

clickable and fillable. Oracle events are checks on the state of the widgets, for instance
exist(text). More formally, an event is a triple 〈widget, t ype, input〉. Widget indicates the
GUI element the event is executed on. Type can be clickable, fillable or oracle. Input is the
string that fills a widget, if it is a fillable event, the string that needs to be checked, if it is a
an oracle event, empty otherwise.

AGUI test t is an ordered sequence of events 〈e1, ..., en〉 onwidgets of the activewindows.
A test execution induces a sequence of state transitions S0

e1−→ S1
e2−→ S2 . . .

en−→ Sn , where
Si−1 and Si denote the states of the active window before and after the execution of ei ,
respectively. AGUI test case can have one ormore assertion oracles that check the correctness
of the state Si obtained after the execution of an event ei (Barr et al. 2015). For example, by
checking for the absence or presence of widgets with specific attributes values.

Test Reuse approaches for GUI applications (Zhao et al. 2020) automatically migrate
GUI test cases (including oracles) across apps that share similar functionalities. More for-
mally, given two apps As (source) and At (target), and a “source” test t s for As , Test
Reuse approaches generate “target” test case t t that tests At as t s tests As . They create t t

by searching At for events that are semantically similar to events in t s .
Figure 1 shows an example that we have taken from the experiments of ATM, and that we

use as running example through the paper. The figure shows a migration from a test designed
for the source app Money Tracker (A) to the target app EasyBudget (B). The two test cases
verify the same feature, namely adding an expense item. The migration process generates the
test case for the target app EasyBudget by finding the events that correspond to the events
in the test case of the source app Money tracker. It determines the events of the target app
that correspond to the events in the source app through a semantic similarity relation ∼.
It completes the sequence of corresponding events with additional events that are needed
to produce a feasible test, and that we refer to as ancillary events later in the paper. In the
example the migration process finds two pairs of clicks with semantically similar attributes

123

Page 5 of 58 70

Empirical Software Engineering (2024) 29:70

Fig. 2 Test Reuse Overview

(es1 ∼ et2 and e
s
4 ∼ et5), two pairs of events that fill fields with similar semantics (es2 ∼ et3 and

es3 ∼ et4), and a pair of events with similar text attribute (es4 ∼ et5). It generates the test case
for the target app EeasyBudget by completing the sequence of events that correspond to the
events in the source appMoney Tracker with an ancillary event (et1) that is needed to build a
feasible test case for EeasyBudget.

Current Test Reuse approaches define the semantic similarity relation ∼ as a one-to-
one mapping between a source and a target event. The notion of semantic similarity of GUI
events largely influences the ability of Test Reuse techniques to recognize corresponding
events, thus impacting on the whole migration process.

Figure 2 overviews the GUI Test Reuse process, which is shared by all current tech-
niques. GUI Test Reuse combines semantic matching of GUI events with test generation.
Semantic matching of GUI events identifies semantically similar events across source and
target apps. Test generation exploits the similarities identified with semantic matching to
migrate GUI test cases from the source to the target app. More specifically, Test Reuse
can be abstracted into two coarse grain components: Test Generator and Semantic
Matcher. We give a detailed description of the two components in Section 3.

Test Reuse approaches need to match semantically similar GUI events across apps.
Such a semantic matching should capture the event semantics, while abstracting the imple-
mentation details. Indeed, two different apps might implement the same logical action with
different widgets (for instance, a button in one case and an image button in another). Intu-
itively, Test Reuse approaches aim to generate test cases for the target app that maximize
the number of semantically similar events, possibly in the order prescribed by the source test.

Current approaches characterize the semantics of events by relying on the textual attributes
found in theGUI. In particular, they associate each event with its descriptor that encompasses
the textual attributes of the widget associated with the event. For instance, both events es3
and et4 in Money Tracker and EasyBudget example in Fig. 1 are associated with an attribute
neighbor-text with values “Title” and “Description”, respectively. They then identify similar
semantics by querying a Word Embedding Model that recognizes words or sentences
that express similar concepts. For instance, a Word Embedding Modelwould recognize
that “Title” and “Description” are semantically similar.

123

70 Page 6 of 58

Empirical Software Engineering (2024) 29:70

Fig. 3 Test Reuse Workflow

3 Test ReuseWorkflow

In this section, we define a Test Reuseworkflow that characterizes Test Reuse across
Android applications. We discuss the implementation of the different components, and
report the choices that we used in our experimental study. We indicate the alternative
implementation of each component, and discuss the choices that characterize the current
approaches, ATM, CraftDroid and AdaptDroid. The general workflow allows us to
identify and compare combinations of different choices for each component, and iden-
tify SemFinder, a new Semantic Matching Algorithm that supersedes current
approaches.

Figure 3 shows the workflow of Test Reuse. Given a test case t s = {es0, es1, · · · esn}
from a source application, the Test Generator explores the target application At to find
amatch for each event in t s , and it generates a test case t t for the target application. The Test
Generator retrieves a set Et = {et0, et1, · · · etn} of candidate events from both the current
state and Target Application Model, and queries the Semantic Matcher to
sort events according to their similarity with the events es ∈ t s . The Semantic Matcher
sorts the candidate events eti according to the similarity score 〈es, eti 〉 that it computes by
aggregating the scores that it retrieves from the Word Embedding Model for each pair of
attributes in the events descriptors (Score(t xts , t xt t) in Fig. 3). TheTest Reuseworkflow
combines five main components:

(C1) Corpus of Documents is the set of documents that Word Embedding uses to
build a Word Embedding Model.

(C2) Word Embedding creates a Word Embedding Model that encodes the seman-
tic space of words and sentences, by mapping words and sentences to vectors
that encode the semantic distance of corresponding elements in the Corpus of
Documents.

(C3) Event Descriptor Extractor extracts the (textual) descriptors D of both the
source event es and the set of candidate target events Et = {et0, et1, · · · etn} from the
GUI state.

123

Page 7 of 58 70

Empirical Software Engineering (2024) 29:70

(C4) Semantic Matching Algorithm returns the set Et of elements sorted accord-
ing to the similarity score of the descriptors of the target {Dt

0, D
t
1, · · · Dt

n} and source
Ds events.

(C5) Event Selector returns a test case t t = 〈et0 . . . etn〉 for the target application At ,
where the event eti eithermatches an event esi in the test case t

s of the source application
As or complete the sequence of events to obtain an executable test.

The glossary in Table 1 summarizes few core terms that we use in this paper.

3.1 Corpus of Documents

The quality of a Word Embedding model depends on the Corpus of Documents
used to train the model. There are two characteristics that the Corpus of Documents
should have to obtain an effective Word Embeddingmodel. The corpus shall both include
as many distinct words as possible, as the model cannot compute similarity scores of words
not represented in the vector space (Out-of-Vocabulary issue Bojanowski et al. 2017), and
reflect the way mobile apps commonly use words. Indeed, a word can have a different
meaning depending on the context of usage, and Word Embedding models trained with
domain-specific corpora often outperform those trained with general corpora (Li et al. 2018).

We considered both general and mobile apps specific corpora, to study and quantify the
importance of the context of usage. Our study considers three corpora of English documents
that are available in our replication package:

Table 1 Glossary

test reuse approach An approach that generates test cases for a target
application by migrating test cases of a source
application with semantic matching

semantic matching configurations A four-tuple 〈Training Set, Word Embedding,
Descriptor Extractor, Semantic Matching Algorithm〉
that defines the configuration for a semantic matching
algorithm for instance 〈SemFinder, Intersection, WM,
GooglePlay〉

semantic matcher A component of Test Reuse that computes the
semantic similarity of target events to a given source
event

test generator A component of Test Reuse that explores the target
application to find a match for each event in ts , and it
generates a test tt for the target application

semantic matching evaluator The framework that we use to evaluate semantic
matching queries

fidelity plug-in Measures the fidelity of the source and migrated test
cases with respect to the ground truth

test migration evaluator The framework that integrates the Semantic
Matching Evaluator with both the ATM and
CraftDroid Test Generator, as well as with a
Fidelity plug-in

scenario A test case ts of the source application with the ground
truth t gt , and a target application

123

70 Page 8 of 58

Empirical Software Engineering (2024) 29:70

Blog Authorship Corpus (Blogs) (Schler et al. 2006) that consists of 681,288 posts from
19,320 bloggers. This is a well-known corpus often used by the NLP and information science
communities (Schwartz et al. 2013; Abbasi et al. 2008).

User Manuals of Android apps (Manuals) (Behrang and Orso 2019) that consists of
the user manuals of 500 Android applications. This corpus was built by the authors of
ATM (Behrang and Orso 2019), who used it to train a Word2vec Word Embedding
model for running ATM.

Apps Descriptions (Google-play) that consists of the English descriptions of 900,805
Android apps in the Google Play Store. We constructed this corpus by crawling the list of
similar apps of each crawled page. We used as seeds of the crawler the pages of the apps
returned by searching random words in the Google Play search bar. We stopped crawling
Google Play when the crawler could not find any new application in 24 hours.

3.2 Word Embedding

Word Embedding (Mikolov et al. 2013a) is a class of unsupervised languagemodeling and
feature learning techniques thatmapwords and sentences fromaCorpus of Documents
to vectors of real numbers (Turian et al. 2010).

A Word Embedding model assigns each word in the corpus to a unique vector in the
space.Words that share common contexts in the corpus are close in the space. Test Reuse
approaches use Word Embedding models to identify semantically similar, although syn-
tactically different words that independent developers may use to name actions with similar
semantics. We experimented with the Word Embedding techniques that are most com-
monly used in software engineering (Jiao and Zhang 2021).

Word2Vec (W2V) Mikolov et al. (2013a): one of the most popular Word Embedding
techniques developed in 2013 in Google. It implements a two-layer neural network that is
trained to reconstruct linguistic contexts of words.

Global Vectors (GloVe) Pennington et al. (2014): a probabilistic technique that learns
vectors or words from their co-occurrence information (how frequently they appear together
in the corpus).

Word Mover’s distance (WM) Kusner et al. (2015): a Word Embedding technique
based on the observation that semantic relationships are often preserved in vector opera-
tions on Word2vec models. For instance, vector(London) - vector(England) +
vector(Germany) is close tovector(Berlin).WMexploits this property by finding
the minimum traveling distance between strings (Kusner et al. 2015). As such, WM consid-
ers distance between strings (one or more words) (Turian et al. 2010) and not only among
pairs of words like the distances based on Word2vec or GloVe (Turian et al. 2010). In
the context of Test Reuse this could be useful, because event descriptors often contain
multiple words (Behrang and Orso 2019; Lin et al. 2019). WM returns an integer greater than
zero, that we normalize from 0 to 1, with a standard normalization 1/(1 + WM(txts, txtt)).

FastText (Fast) (Bojanowski et al. 2017): an extension of Word2vec developed in
Facebook. While Word2vec treats words as the smallest unit to train on, FastText
learns vectors for the n-grams that are found within each word. FastText computes the
vector of a word as the sum of its n-grams. For example, the word “aquarium” has the n-
grams: “aqu/qua/uar/ari/riu/ium”. FastText is designed to alleviate the Out-of-Vocabulary
issue (Bojanowski et al. 2017). In fact, even if theword “aquarius” is not present in the corpus,
FastText would embed “aquarius” near to "aquarium" because they share five n-grams.

123

Page 9 of 58 70

Empirical Software Engineering (2024) 29:70

Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al.
2018): a context-sensitive Word Embedding technique that infers the meaning of words
from its surroundings, by training a model on 15% of masked words in sentences. While
directional models read the text input sequentially either left-to-right or right-to-left, BERT
reads the entire sequence of words at once, thus allowing the model to learn the context of a
word in its left and right surrounding.

Neural Network Language Model (NNLM) (Arisoy et al. 2012): a family of neural net-
work techniques that learn Word Embedding models jointly with a language model. The
model is expressed as a function that captures the distribution of sequences of words in a
natural language. The language model estimates the probability of words occurring after a
prefix. Thus NNLM are context-sensitive.

In our study we consider the NNLM technique proposed by Hub (2020).
Universal Sentence Encoder (USE) (Cer et al. 2018): a context-sensitive Word

Embedding technique that Google proposes in two variants, Transformer-based and Deep
Averaging Network-based, that privilege accuracy and consumption of computing resources,
respectively. We used the Deep Averaging Network variant in our study.

Both ATM and CraftDroid rely on models built with Word2vec, AdaptDroid
works with Word Movers Distance.

3.3 Event Descriptor Extractor

TheEvent Descriptor Extractorgets the descriptors of the events thatSemantic
Matching Algorithm needs to compute the similarity among the source es and candi-
date target events 〈et0, et1, · · · etn, 〉.
An event descriptor D is a set of textual attributes {a1, a2 · · · am} in the GUI states.

Each attribute is a 〈t ype, value〉 pair, for instance 〈text, press ok〉. Our study considers
all the attribute types used in ATM, CraftDroid, and AdaptDroid (Lin et al. 2019;
Behrang and Orso 2019; Mariani et al. 2021). All approaches consider both primitive and
derived attributes. Primitive attributes are directly associated with the widget of the event
under consideration. Derived attributes are attributes that are not directly associated with
the widget itself, but to some near widgets (Becce et al. 2012). For instance in the second
window of Fig. 1 (A), the attributes of widget es2 are empty, the corresponding field in the
window is blank, and we infer the semantics of the widget from the text attribute “Price” of
a neighbor widget in the same window.

The primitive attributes of a widget w are:
text, the visible label associated with w (xml attribute android:text).
content-description, a textual description of w that is not visible in the GUI. It is often
used by Android Accessibility APIs as alternate text for describing the widget to visually
impaired users (xml attribute android:contentDescription).
hint, a textual description of w that is used in editable widgets to help the user to fill the
correct content (xml attribute android:hint).
resource-id, the unique identifier of w that developers assign to each widget to reference
them in the code (xml attribute android:id).
file-name, the name of the file associated with w. For example, the name of the image file
associated with a widget.
activity-name, the name of the Android activity of the widget w.

Both ATM and AdaptDroid define derived attributes from the spatial positions of
the widgets (Behrang and Orso 2019; Mariani et al. 2021). CraftDroid defines derived

123

70 Page 10 of 58

Empirical Software Engineering (2024) 29:70

attributes from the hierarchical structure of the Android GUI states (Lin et al. 2019), in
which widgets have a parent-child-sibling relationship. The parent element directly precedes
the child element in the hierarchy, and siblings elements share the same parent.

The derived attributes of a widget w are:
parent-text, the text attribute of the parent widget of w.
sibling-text, the text attribute of the sibling widget before w in the widget hierarchy.
neighbor-text, the text attribute of thewidget closest tow in the page, within a given distance.
If there are no widgets within the given distance or the attribute of the closest widget is empty,
the value of the derived neighbor-text is also empty.

Some attributes of a widget can be undefined (empty). For example, most widgets lack
the hint or content-desc attributes.

In our experiments we consider the groups of attributes of ATM (“A” in Table 2),
CraftDroid (“C” in the table), their intersection (A∩C) and union (A∪C). The attributes
of AdaptDroid are the sameof ATM, except forhint thatATM considers, andAdaptDroid
does not, and that is empty in our case studies. These groups allow us to evaluate also the
impact of sets attributes that are used by an approach only. For example, we can evaluate the
impact of the descriptors neighbor-text and file-name, by comparing the results of groups
“A” and “A ∩ C”.

3.4 Semantic Matching Algorithm

Semantic Matching Algorithm returns the set of candidate target events Et that
correspond to a source event es , sorted according to the similarity scores between Ds and
Dt
i , where D

s is the descriptor of the source event es , and Dt
i are the descriptors of the event

eti ∈ Et .
In our study we consider the Semantic Matching Algorithm of ATM, Craft-

Droid, AdaptDroid, as well as SemFinder, a novel Semantic Matching Algo-
rithm that we propose in this paper. All the algorithms compute the semantic similar-
ity scores among the attribute values of the source and target descriptors using a Word
EmbeddingmodelM. All algorithms compute the semantic similarity of values of the tex-
tual attributes of the source and target descriptors, txts and txtt , with Algorithm 1 (Function
getSimScore). Function getSimScore computes a real number that expresses the simi-

Table 2 Groups of event descriptors

Attribute Attribute ATM Craftdroid Intersection Union
category type A C A ∩ C A ∪ C

Primitive Text ✓ ✓ ✓ ✓

Resource-id ✓ ✓ ✓ ✓

Content-desc ✓ ✓ ✓ ✓

Hint ✓ ✓ ✓ ✓

File-name ✓ ✓

Activity-name ✓ ✓

Derived Neighbor-text ✓ ✓

Parent-text ✓ ✓

Sibling-text ✓ ✓

123

Page 11 of 58 70

Empirical Software Engineering (2024) 29:70

Algorithm 1 Semantic similarity calculator.

Input: two sentences txts and txtt , a word embedding model M, aggregator aggr ∈ {avg, sum}
Output: similarity score between txts and txtt

1 function getSimScore

2 〈txts , txtt 〉 ← preprocessing(txts , txtt);
3 switch M do
4 case model at "word" level (Word2vec, Glove, FastText)
5 score[][] ← ∅;
6 for each word wd1 ∈ txts do
7 for each word wd2 ∈ txtt do
8 score[wd1][wd2] ← cosineSim(M(wd1),M(wd2));

9 mappedScores ← getMatchedWords(score[][]) ;
10 return aggr{mappedScores}
11 case model at "sentence" level (WMD, BERT, NNLM, USE)
12 return sim(M(txts),M(txtt))

larity score between txts and txtt . Function getSimScore first pre-processes the strings by
removing stop words, lemmatizing the strings, and splitting words originally in camel case
notation (Line 2). It then scores the similarity of the pre-preprocessed strings with respect to
either a word (Word2vec, GloVe, FastText) or a sentence (WM, BERT, NNLM, USE)
level model M.

Word Level Models Function getSimScore computes the cosine similarity of vector
(wd1) and vector(wd2) for all possible pairs ofwords of the two strings 〈wd1 ∈ txts, wd2 ∈
txtt 〉 (Lines 6–8). Then it identifies the best match among the pairs as the pair with the high-
est cosine similarity, where every word is matched only once (Line 9). It finally returns the
similarity score computed with the input aggregation function (Line 10). ATM aggregates by
summing the scores (sum), while CraftDroid, AdaptDroid, and SemFinder aggre-
gate by averaging the scores (avg).

Sentence Level Models Function getSimScore queries the modelMwith the strings as
a whole. Notably, both ATM and CraftDroid use models at word level, we add Lines 10
and 12 tomake the algorithm compatiblewith the sentence levelWord Embeddingmodels
that we considered in our study.

Table 3 summarizes the key differences among the four algorithms that we described in
details. SemFinder scores the similarity of the pre-preprocessed strings with respect to
sentences (value N/A in column Similarity score aggregation of attributes) and aggregates
words by average, like AdaptDroid, while ATM and CraftDroid score the similarity
of the pre-preprocessed strings with respect to words and aggregate attributes by sum and

Table 3 Synopsis of the semantic matching algorithms

Semantic matching
algorithm

Type of considered
attributes

Similarity score aggregation
of attributes

Similarity score aggregation
of words

ATM Prioritized set Sum Max

CraftDroid Same type Mean Average

AdaptDroid Prioritized set N/A Average

SemFinder All N/A Average

123

70 Page 12 of 58

Empirical Software Engineering (2024) 29:70

max, and words by max and average, respectively (columns Similarity score aggregation
of attributes and Similarity score aggregation of words). ATM and AdaptDroid select the
type of considered attributes between source and target app by priority, while CraftDroid
considers only attributes of the same type in both source and target app, and SemFinder
considers all attributes that are in the target app (column Type of considered attributes). The
results that we discuss in Section 4 show that widening the set of considered attributes as
in SemFinder enhances the chances of finding a corresponding event, and improves over
previous approaches when combined with the words scored with respect to sentences and
aggregated by average as in both AdaptDroid and SemFinder.

Semantic Matching of ATM (Behrang and Orso 2019) Lines 13 to 26 of Algorithm 2
encode the Semantic Matching Algorithm of ATM. The algorithm collects two tex-
tual representations of the source event: labels1 (Line 15) and label

s
2 (Line 16). The algorithm

initializes labels1 to the first defined attribute among 〈neighbor-text, resource-id + file-name〉
in Ds . If all of such attributes are undefined, the algorithm initializes labels1 to the empty
string.ATM extracts the neighbor-text attribute only for filling events,while for clicking events
it considers the attribute as undefined. The algorithm initializes labels2 to the first defined
attribute among 〈text, content-desc, hint〉 in Ds (Line 16). For each event eti ∈ Et that has the
same type of es (either both filling or both clicking events), the algorithm collects labelt1 and
labelt2 in the same way it collects labels1 and label

s
2, respectively. Then, the algorithm invokes

Function getSimScore (Algorithm 1) for each combination of 〈labels ∈ {labels1, labels2},
labelt ∈ {labelt1, labelt2}〉, using "sum" as aggregation function. The algorithm assigns the
highest returned value to the score of the current target event (score[Dt

i] Line 25), and sorts
Et based on the final scores (Line 26).

Semantic Matching of CraftDroid (Lin et al. 2019) Lines 27 to 36 of Algorithm 3
encode the Semantic Matching Algorithm of CraftDroid. For each target event
eti of the same type of es CraftDroid gets the similarity scores of their descriptor attributes
(Line 32) and adds them toList scores. The algorithmonly compares corresponding attributes.
For example, it compares resource-id of the source descriptor only to resource-id of the

Algorithm 2 Semantic matching algorithm of ATM.

Input: source descriptor Ds , set of target descriptors {Dt
0, D

t
1, · · · Dt

n}
Output: sorting of Et based on the semantic similarity with es

13 function ATM
14 descScores[] ← ∅ ;
15 labels1 ← getFirstDef(Ds [neighbor-text], Ds [resource-id] + Ds [file-name]) ;
16 labels2 ← getFirstDef(Ds [text], Ds [content-desc], Ds [hint]) ;
17 for each i from 1 to n do
18 if type(es) = type(eti) then
19 labelt1 ← getFirstDef(Dt

i [neighbor-text], D
t
i [resourse-id] + Ds [file name]);

20 labelt2 ← getFirstDef(Dt
i [text], D

t
i [content-desc] or D

t
i [hint]);

21 scores ← ∅;
22 for each labels ∈ {labels1, labels2} do
23 for each labelt ∈ {labelt1, labelt2} do
24 add getSimScore(labels , labelt , M, "sum") to scores

25 descScores[Dt
i] ← max{ scores };

26 return Et sorted by descScore

123

Page 13 of 58 70

Empirical Software Engineering (2024) 29:70

Algorithm 3 Semantic matching algorithm of CraftDroid.

Input: source descriptor Ds , set of target descriptors {Dt
0, D

t
1, · · · Dt

n}
Output: sorting of Et based on the semantic similarity with es

27 function CraftDroid
28 descScores[] ← ∅ ;
29 for each i from 1 to n do
30 if type(es) = type(eti) then
31 scores ← ∅;
32 for each ai ∈{ text ∪ hint, resource-id, content-desc, actitivty-name, parent-text, sibiling-text}

do
33 add getSimScore(Ds [ai], D

t
i [ai],M, "avg") to scores

34 ;
35 descScores[Dt

i] ← avg{ scores } ;

36 return Et sorted by descScore

Algorithm 4 Semantic matching algorithm of AdaptDroid.

Input: source descriptor Ds , set of target descriptors {Dt
0, D

t
1, · · · Dt

n}
Output: sorting of Et based on the semantic similarity with es

37 function AdaptDroid
38 descScores[] ← ∅ ;
39 for each i from 1 to n do
40 if type(es) = type(eti) then
41 〈txts , txtt 〉 ← 〈∅, ∅〉;
42 for each j ∈{s, t} do
43 txt j ← D j [text] ∪ D j [neighbor-text];
44 if txt j = ∅ then
45 txt j ← D j [file-name];
46 if txt j = ∅ or D j [file-name]! = ∅ then
47 txt j ← txt j ∪ D j [resource-id] ∪ D j [content-desc];
48 txt j ← txt j ∪ D j [activity-name] ∪ D j [hint] ∪ D j [parent-text] ∪ D j [sibling-text];
49 descScores[Dt

i] ← getSimScore(txts , txtt , M, "avg") ;

50 return Et sorted by descScore

target descriptor. CraftDroid computes the final score of the current target descriptor as
the average of List scores (Line 35).

Semantic Matching of AdaptDroid (Mariani et al. 2021) Lines 37 to 50 ofAlgorithm 4
encode the Semantic Matching Algorithm of AdaptDroid. For each event eti ∈
Et that has the same typeof es AdaptDroidbuilds two strings txts and txtt , by concatenating
the values of the attributes of Ds (separated by a white space) and Dt as follows: (step i)
It adds 〈text, neighbor〉 in Ds to txts (Line 43);(step ii) If txts is still empty, it adds 〈file-
name〉 to the txts (Line 45); (step iii) If either txts remains empty or there is an associated
file (file-name not empty), it adds 〈resource-id, content-desc〉 to the txts (Line 47); (step
iv) It adds 〈activity-name, hint, sibling-text, parent-text〉 (Line 48). It computes the score
of the current target descriptor by averaging the similarity scores between txts and txtt

(Line 49). AdaptDroid Semantic Matching Algorithm balances the effect of too
many attributes thatmay lead to a noisy text and too few attributes thatmay lead to insufficient

123

70 Page 14 of 58

Empirical Software Engineering (2024) 29:70

Algorithm 5 Semantic matching algorithms of SemFinder.

Input: source descriptor Ds , set of target descriptors {Dt
0, D

t
1, · · · Dt

n}
Output: sorting of Et based on the semantic similarity with es

51 function SemFinder
52 descScores[] ← ∅ ;
53 for each i from 1 to n do
54 if type(es) = type(eti) then
55 〈txts , txtt 〉 ← 〈∅, ∅〉;
56 for each ai ∈{ text, resource-id, content-desc, hint, file-name, neighbour-text} do
57 txts ← txts ∪ Ds [ai];
58 txtt ← txtt ∪ Dt [ai];
59 descScores[Dt

i] ← getSimScore(txts , txtt , M, "avg") ;

60 return Et sorted by descScore

semantic information, by adding attributes in a specific order, only if necessary. For example,
a non empty 〈file-name〉 attribute usually indicates the presence of an ImageButton, and
consequently the need of additional textual information to get an accurate semantics.

Semantic Matching of SemFinder Lines 51 to 60 of Algorithm 5 encode the
Semantic Matching Algorithm SemFinder that we propose in this paper. For
each event eti ∈ Et that shares the type of es SemFinder builds two strings txts and txtt .
It (i) builds txts by concatenating all the values of the attributes of Ds (separated with a
space), (ii) builds txtt with the values in Dt

i , (iii) prunes words repeated in the same string,
(iv) aggregates the similarity score between txts and txtt using average, and (v) assigns the
result to the final score of the current target descriptor (Line 59). The SemFinder intuition
is that even though some attributes could be sometime more important than others, strict
prioritization could result information loss. While collecting the values of a fixed subset of
attributes and concatenating them without prioritization could be a safer option.

ATM,CraftDroid,AdaptDroid, and SemFinder share the general framework, and
differ in three main aspects: the type of attributes they consider, as we discuss in Section 3.3,
the way they aggregate the similarity scores of multiple pairs of attributes, and the way they
aggregate the similarity scores of word-level models.

We illustrate how ATM, CraftDroid, AdaptDroid and SemFinder differ with the
three pairs of matching events of Fig. 4 that we excerpt from Fig. 1. Figure 4 reports three
events of the source test case (es1, e

s
2 and es4) in the corresponding windows, and three pairs

of target candidate events in the corresponding windows (et2a and et2b, e
t
3a and et3b, e

t
5a and

et5b), being etxa the correct candidate. All approaches consider a possibly large number of
candidate events. In this example, we limit the number of candidate events for each source
event to two events.

Type of Considered Attributes of Source and Target Descriptors The algorithms com-
pare attributes by considering either specific combinations of types of source and target
attributes or a priority between attributes. CraftDroid selects attributes by type only, and
compares only attributes with the same type. ATM selects attributes by both type and prior-
ity, and compares attributes of a subset of combinations of types, and prioritizes attributes
according to their order, by considering the first not-empty attribute. AdaptDroid selects
attributes by priority only, according to the types of the attributes. SemFinder compares
the set of attributes as a whole.

123

Page 15 of 58 70

Empirical Software Engineering (2024) 29:70

Fig. 4 Excerpt of test reuse example, the target test cases (B) is obtained by migrating the source test case (A)

Table 4 summarizes how the Semantic Matching Algorithms calculate the similarity score
of the two target events, et3a and et3b with respect to the event es2, by using the Word2vec
model trained on Manuals corpus. The footnotes in the table indicate the descriptors of
the events, Ds = [text : price] for et3a , Dt

3a = [neighbor: amount, id: cost] for et3a , Dt
3b =

[neighbor: date, id: calendar] for et3b. The table reports the pairs of attributes that each
algorithm considers for similarity score with the individual scores for the pairs of attributes
(column Pairs for similarity score), the aggregation function (column Aggregation) and the
computed score for the pairs of events (column Score).

CraftDroid does not compare any pairs of attributes, since source and target events
have different type of attributes, thus it scores zero for both target events.

ATM computes a similarity greater than zero only for a pair of labels for each of the twopairs
of events: 〈labels2 : price, labelt1 : amount〉 = 0.58 for 〈es2, et3a〉, 〈labels2 : price, labelt1 :
date〉 = 0.61 for 〈es2, et3b〉.2. ATM scores zero for all other pairs of labels, since they contain
at least an empty label: neighbor-text, resource-id, file-name attributes for labels1, text,
content-desc, hint for labelt2.

In the last step, ATM uses max aggregation function and chooses the only non-zero com-
bination of labels as the final score.

2 ATM abstracts attributes into labels, as indicated in the algorithms described above.

123

70 Page 16 of 58

Empirical Software Engineering (2024) 29:70

Table 4 Selection of attributes for event es2 with each Semantic Matching Algorithm

Sourcea

Event
Algorithm Targetb

Event
Pairs for similarity score Aggregtion Scorec

es2 CraftDroid et3a No pairs average 0

et3b No pairs average 0

ATM et3a 〈labels2:price, labelt1:amount〉= 0.58,
other pairs get score of 0

max 0.58

et3b 〈labels2:price, labelt1:date〉= 0.61,
other pairs get score of 0

max 0.61

AdaptDroid et3a 〈txts :price, txtt :amount〉= 0.58 NA 0.58

et3b 〈txts :price, txtt :date〉= 0.61 NA 0.61

SemFinder et3a 〈txts :price, txts :amount cost〉= 0.67 s NA 0.67

et3b 〈t xts :price, txtt :date calendar〉 = 0.61 NA 0.61

a The descriptor of es2 is Ds = [text: price]
b The descriptor of et3a and et3b are Dt

3a = [neighbor: amount, id: cost] and Dt
3b = [neighbor: date, id:

calendar], respectively
c Semantic Matching Algorithms used Word2vec pre-trained model to calculate similarity scores

AdaptDroid combines the attributes with highest priority of each event into a text
txt, and scores only the resulting pairs of text: 〈txts : price, txtt : amount〉 = 0.58 and
〈txts : price, txtt : date〉 = 0.61.

SemFinder also combines the attributes of each event in text, but it considers all
attributes, differently from AdaptDroid. In this example, SemFinder produces different
texts for both target events that are associated with the two attributes. Consequently the final
score is also different.

In this example, SemFinder is the only Semantic Matching Algorithm that
computes the highest score for the correct candidate et3b.

Similarity Score Aggregation of Multiple Pairs of Attributes ATM and CraftDroid
aggregate similarity score of attributes, while AdaptDroid and SemFinder do not, since
they combine the attributes in a single txt.ATM aggregates the similarity score ofmultiple pairs
of attribute types by maximum (Line 25 of Algorithm 2), while CraftDroid aggregates
them by average (Line 34 of Algorithm 3). ATM aggregation by maximum misses pairs of
attributes that may be relevant but with low score while CraftDroid.s aggregation by
average does not.

In the running example of Fig. 4, the source event es1 has the descriptor D
s
1= [resource-id:

“button”, content-desc: “expense”], and the two target events et2a and e
t
2b have the descriptors

Dt
2a =[resource-id: “button”, content-desc: “expense”] and Dt

2b=[resource-id: “button”,
content-desc: "exit"], respectively. ATM and CraftDroid computes the score of four pairs
of attributes, two for each pair of events. In both cases three of the four pairs of attribute
score 1, 〈expense, expense〉 and 〈button, button〉, twice, thus both pairs of events score 1.
With the aggregation by maximum (ATM), both 〈es1, et2a〉 and 〈es1, et2b〉 score 1, thus it does
not provide useful information to chose the target event. With the aggregation by average
(CraftDroid), 〈es1, et2a〉 scores 1 and 〈es1, et2b〉 scores 0.56, thus it identifies the correct
matching.

123

Page 17 of 58 70

Empirical Software Engineering (2024) 29:70

Similarity Scores Aggregation of Word Embedding Models ATM aggregates the sim-
ilarity scores of words in a string by summing the similarity scores of words (Line 24 of
Algorithm 2). CraftDroid aggregates the scores of words by average (Line 33 and 49 of
Algorithm 3). Both AdaptDroid and SemFinder use average as well. Aggregation by
sum privileges (assign high score to) strings with many words, and may assign a higher score
to two attributes with many unrelated words than to two attributes with fewer highly related
(semantically similar) words, as the semantic score of two words in the model is always
positive.

In the running example of Fig. 4, the source event es4 has the descriptor D
s
4 = [resource-id :

“save expense entry”], and the two candidate events et5a and et5b have the descriptors
Dt
5a = [resource-id: set expense"] and Dt

5b = [resource-id: set expense type"], respectively.
The Word2vec model trained with Manuals computes a score for the three pairs from
the three words that occur in the attribute of the source event combined with the three words
that occur in the attributes target events as: 〈expense, expense〉 = 1, 〈save, set〉 = 0.66,
〈entr y, t ype〉 = 0.65. CraftDroid aggregates the scores by average: score(et5a) = 0.83,
score(et5b) = 0.73, while ATM aggregates by sum score(et5a) = 1.66, score(et5b) = 2.31.
In this case, CraftDroid assigns higher score to the correct candidate event, while ATM
does not.

3.5 Event Selector

The Event Selector builds a test case t t for the target application At by chaining
the candidate events that the Semantic Matching Algorithm suggests as semantic
matches of the events in the source test case t s . The Event Selector incrementally
processes the events esi of the source test case t s . It retrieves a set Et of candidate events
that correspond to the current event esi from both the current state of the target application
At and the Target Application Model. The Target Application Model is
the GUI model used in ATM, CraftDroid and AdaptDroid. It is a directed graph where
nodes correspond to the states of the GUI, and edges are labelled with the events that lead
from the state that corresponds to the source to the state that corresponds to the target node
of the edge, respectively.

ATM retrieves the candidate events from the current state of the appunder test, and considers
the events in the Target Application Model only if the Semantic Matcher
does not find any event in the current state with a semantic similarity score above a constant
threshold.

CraftDroid retrieves the candidate events from both the current state and the Target
Application Model. AdaptDroid retrieves events from the current state, and selects
the candidate events as the events with a semantic similarity score above a constant threshold.
If AdaptDroid does not find events with a semantic similarity score above the threshold in
the current state, the Event Selector looks for an event that belongs to a state different
from the current state, and it selects a sequence of events that head to the candidate event,
from the Target Application Model (ancillary events in Fruiter Zhao et al. 2020,
leading events in CraftDroid Lin et al. 2019.)

Once identified a matching event et for esi , Event Selector adds the event (and
the leading events, if any) to the test case for the target application t t , and computes the
next current state of the target application At by executing the added events. When ATM
and CraftDroid do not find a matching event, they skip esi and proceed with esi+1,
while AdaptDroid randomly selects an event as next candidate. AdaptDroid improves

123

70 Page 18 of 58

Empirical Software Engineering (2024) 29:70

the migrated test cases t t with a genetic algorithm that uses the test cases as the initial
population and the Target Application Model to repair infeasible tests that the
crossover operations generate during the evolution. In our study we considered the imple-
mentations of Event Selectorof bothCraftDroid andATM.Weexcluded theEvent
Selector of AdaptDroid from our study as its genetic algorithm is too computationally
expensive, which would have drastically limited the scale of our experiments. Nevertheless,
CraftDroid and ATM are two state-of-the-art approaches, which are representative of
Test Reuse for Android applications.
ATM Event Selector Lines 62 to 83 of Algorithm 7 encode the ATM Event Selector
algorithm that initializes a Target Application Model (Line 63), and iteratively
looks for next events that match the input source events, until either a matching event is
found or a timeout expires (call Function findNextEvent at Line 69).

Function findNextEvent selects the next event that corresponds to esi (Line 84) by (i)
looking for a matching event in the current state (Lines 88-95), (ii) looking for a matching
event in the Target Application Model (WTG in ATM terminology), if it does not
find a matching event in the current state and the source event is a GUI event (and not an
oracle event) (Lines 96-103), (iii) randomly selecting an event in the current state, if it does
not find a matching event in the Target Application Model (Lines 105-107), (iv)
moving back to the former page, after a maximum number of randomly selected events
(Lines 108-110).

It computes the next current state by executing the events that findNextEvent

selects (Line 70), adds the events to a buffer (Line 70), and updates both the Target
Application Model (Line 71) and the target test case t t (Lines 73-76). It updates the
target test case t t by adding the events (Line 76) after simple syntactic checks if the events
are oracle events (Line 74). If Event Selector cannot find a matching event within a
timeout, it rolls back to the state of previous matched event, and restarts from an alternative
event.

CraftDroid Event Selector Lines 110 to 129 of Algorithm 7 encode the CraftDroid
Event Selector algorithm. CraftDroid initializes the Target Application
Model (UITG in CraftDroid terminology) (Line 111), and iteratively generates test
cases that correspond to the input source test case t s (Lines 112-129), aiming to maximize
a test similarity score, computed as the average similarity score of the events in the test.
It terminates either when the test similarity score does not improve (Line 129) or when a
timeout expires.

It generates the tests by scanning the events esi in the input source test case t
s , and looking

for events that match the current event in t s . It selects all GUI events in both the current state
and the Target Application Model (Line 116) and all oracle events in the current
state only (Line 119), and sorts them by semantic similarity with respect to the current event
esi in the source test cases t s (Line 120).

It computes the leading events for the candidate events (at the top of the sortedCandidate
list), that is, the sequences of events that lead to a state in which the event is executable (call
to getLeadingEvents at Line 122), and adds the non-empty leading event sequence to the
target test case t t (Line 126), after few simple syntactic checks for oracle events (Line 124).

Function getLeadingEvents retrieves all paths in the Target Application
Model that lead to the event et (Line 132), and incrementally executes them starting from the
shortest ones, till it finds an executable sequence of leading events to return (Lines 133-137).

123

Page 19 of 58 70

Empirical Software Engineering (2024) 29:70

Algorithm 6 ATM Event Selector Algorithm.
Input: source test case ts , set of source events {es1, es2, . . . esn }
Output: migrated test case t t , set of target events {et1, et2, . . . etm }

62 function ATMEventSelector

63 WTG ← static GUI model of target app ;
64 for each i from 1 to n do
65 executedEvents ← ∅ ;
66 matched ← false ;
67 randomEventCounter ← 0
68 while ! timeout do
69 eti , matched ← findNextEvent(esi) ;

70 execute(eti) ;

71 add eti to executedEvents ;
72 update(WTG) ;
73 if matched = true then
74 if type(esi) = oracle and !extraChecks(esi , e

t
i) then

75 break ;

76 add executedEvents to t t ;
77 break ;

78 if matched = false and type(es) = GUI and hasAlternative(eti−1) then
79 i ← i - 1 ;
80 eti ← getFirstAltrenative(eti) ;
81 execute t t ;
82 ;

83 return t t

Input: A source event es

Output: A target event et , A boolean that indicates if the et is a match for es

84 function findNextEvent

85 et ← ∅ ;
86 matched ← false ;
87 randomEventCounter ← 0 ;
88 currentState ← current GUI state of the target application ;
89 candidates ← getCandidates(currentState, es) ;
90 sortedCandidates ← Semantic Matcher(candidates, es);
91 sortedCandidates ← getAboveThreshold(sortedCandidates) ;
92 if sortedCandidates
= ∅ then
93 et ← firstItem(sortedCandidates) ;
94 setAltrenatives(et , sortedCandidates − et);
95 matched ← true ;

96 if et = ∅ and type(es) = GUI then
97 candidates ← getCandidates(WTG, es) ;
98 sortedCandidates ← Semantic Matcher(candidates, es);
99 sortedCandidates ← getAboveThreshold(sortedCandidates) ;

100 if sortedCandidates
= ∅ then
101 temp ← firstItem(sortedCandidates) ;
102 path ← shortestPathTo(WTG, temp) ;
103 et ← fistItem(path) ;

104 if et = ∅ then
105 if randomEventCounter ≤ RANDOM_EVENT_THRESHOLD then
106 et ← selectRandomEvent(currentState) ;
107 randomEventCounter ← randomEventCounter + 1 ;

108 else if type(es) = GUI then
109 et ← back ;
110 randomEventCounter ← 0 ;

111 return et , matched

123

70 Page 20 of 58

Empirical Software Engineering (2024) 29:70

Algorithm 7 CraftDroid Event Selector Algorithm.
Input: source test case ts , set of source events {es1, es2, . . . esn}
Output: migrated test case t t , set of target events {et1, et2, . . . etm }

110 function CraftDroidEventSelector

111 UITG ← static GUI model of target app ;
112 while true do
113 t t ← ∅;
114 for each i from 1 to n do
115 currentState ← current GUI state of the target application ;
116 if type(esi) = GUI then
117 candidates ← getCandidates([currentState, UITG], esi) ;

118 else
119 candidates ← getCandidates(currentState, esi) ;

120 sortedCandidates ← SemantiMatching(candidates, esi) ;
121 for each et in sortedCandidates do
122 leadingEvents ← getLeadingEvents(et) ;
123 if leadingEvents
= ∅ then
124 if type(esi) = oracle and ! extraChecks(esi) then
125 continue ;

126 add leadingEvents to t t ;
127 break ;

128 if delta-fitness(t t) < threshold or timeout then
129 return t t

Input: A target event et

Output: A set of target events Et ′ that leads to a GUI state in which et can be excuted

130 function getLeadingEvents

131 pathes ←allPathesTo(UITG, et) ;
132 sortedPathes ← sort pathes by length ascendingly ;
133 for each path in sortedPathes do
134 isValid ← execute(path) ;
135 update(UITG) ;
136 if isValid then
137 return path + et

138 return ∅

4 Experiment

We evaluate semantic matching both in isolation and in the context of Test Reuse. The
evaluation in isolation (research questions RQ1, RQ2, RQ3) investigates the effectiveness of
semantic matching for a broad set of configurations in controlled scenarios, without refer-
ring to a specific Test Reuse approach. The evaluation in the context of Test Reuse
(research questions RQ4, RQ5, RQ6) investigates the effectiveness and impact of semantic
matching when used with the test generation process. We empirically evaluated semantic
matching in isolation and in the context of Test Reusewith 95 and 89 pairs of source and

123

Page 21 of 58 70

Empirical Software Engineering (2024) 29:70

target test cases 〈ts, tt 〉 from the test migration scenarios provided byATM and CraftDroid
for 30 apps, respectively.

Semantic Matching in Isolation

RQ1 Baseline Comparison: Do semantic approaches based on word embedding out-
perform syntactic and random approaches?
RQ2 Component Effectiveness in Isolation: What are the most effective instances of
each component on the semantic matching of GUI events?
RQ3 Component Impact Analysis in Isolation:Which component types have the great-
est impact on the semantic matching of GUI events?

RQ1 validates the usefulness of semantic matching for Test Reuse by comparing the
effectiveness of semantic approaches to both syntactic (Edit Distance Similarity
and Jaccard Similarity) and random approaches. Syntactic and random approaches
are agnostic to the semantics of textual information, thus the comparison with these
approaches well indicates the contribution of the semantic approaches. RQ2 studies the
implementations of different components of semantic matching approaches, and identifies
the implementations that perform best. RQ3 studies the impact of the component types on
the effectiveness of semantic matching, and identifies the most impactful ones. We report the
results of experimenting with 337 different configurations in controlled scenarios.

Semantic matching in the context of test reuse

RQ4 Impact of Semantic Matching in the Context of Test Reuse: Does the effective-
ness of semantic matching impact on test reuse?
RQ5 Component Effectiveness in the Context of Test Reuse: What are the most
effective instances of each component for test reuse?
RQ6 Component Impact Analysis in the Context of Test Reuse: Which component
types have the most relevant impact on test reuse?

RQ4 studies the correlation between semantic matching and Test Reuse, and iden-
tifies the combinations of configurations that achieve the most effective Test Reuse.
RQ5 studies the impact of the implementations of different components on Test Reuse,
and identifies the implementations with the best impact on Test Reuse. RQ6 studies the
impact of the component types on Test Reuse, and identifies the critical component types.
We report the results of experimenting semantic matching with two state-of-the-art Test
Reuse approaches: ATM and CraftDroid.

4.1 Subjects

For our experiments, we considered all publicly available test migration scenarios of both
ATM and CraftDroid: 248 scenarios, from 42 Android apps. Each scenario is a test case
t s of the source application with the ground truth t gt (i.e., the migrated version of t s) of a
target application. We considered the 147 scenarios of the 30 Android apps that we could
compile and execute. We could not experiment with 12 apps, since some of ATM apps are
available in new versions that do not compile any more with the ATM scenarios, and some
CraftDroid apps both require communication with a server and are available with new
API or Security protocol not compatible with the CraftDroid scenarios. We pruned 52
redundant scenarios, that is, scenarios that occur in other scenarios, and experimented with

123

70 Page 22 of 58

Empirical Software Engineering (2024) 29:70

the 95 unique and compatible scenarios.We addressed RQ1, RQ2 and RQ3with experiments
on all the 95 scenarios. We addressed RQ4, RQ5 and RQ6 with experiments on 89 scenarios
for 29 out of 30 Android apps, since the FirefoxFocus app includes a key widget with
an unconventional type incompatible with Appium, the test automation tool that we used
in the experiments with the Test Reuse tools. We experimented CraftDroid on all
scenarios, and ATM on ATM scenarios only, because ATM instruments the source code of the
apps, and the instrumentation logic designed in the tool works only for the scenarios in the
original study. Instrumenting different apps results in compilation errors. Thus, we identify
two sets of scenarios:

• Shared Scenarios: 27 scenarios that both ATM and CraftDroid can process. We refer
to these scenarios to comparatively evaluate semantic matching in the context of the two
approaches applied to the same scenarios.

• All Scenarios: All 89 scenarios.We refer to these scenarios to investigate semanticmatch-
ing with a wide range of applications.

Table 5 summarizes the scenarios we use in our experiments.

4.2 Semantic Matching in Isolation: Experimental Setting

We evaluated semantic matching in isolation (RQ1, RQ2, RQ3), by systematically evaluat-
ing all possible configurations against every individual query produced with any of the 95
subjects.

4.2.1 Configurations

Figure 5 shows the 337 configurations that we considered for answering RQ1, RQ2
and RQ3. We built the set of configurations as all the feasible combinations of the
Semantic Matcher instances that we discussed in Section 3. The figure illustrates
how we combined the instance to obtain 337 configurations. For example, 〈C1 =
Manuals,C2 = Word2vec,C3 = I ntersection,C4 = SemFinder〉 is a configura-
tion out of the 337 semantic matching configurations. We experimented with
19 Word Embedding models (components C1, C2), 12 of which obtained by training
four Word Embedding techniques, with three corpora of documents, seven pre-trained
models, and two syntactic approaches. We combined the 19 embedding models and the two
syntactic approaches with four Event Descriptor Extractor (component C3) and
four SemanticMatchingAlgorithms (component C4).We also experimentedwith the random
baseline.

We cleaned the corpora of documents with a standard preprocessing step (Line 2 of
Algorithm 1). We considered seven Word Embedding techniques (Word2vec, WM,
GloVe, FastText, BERT, USE, NNLM) pre-trained with the models that are provided by
the authors of such techniques, and that are obtained with not-publicly-available corpora of
documents (such as, different versions ofGoogleNews andTwitter datasets).We built models
by training four (Word2vec, WM, GloVe and FastText) of the seven models with three
corpora of documents (Manuals, Blogs, and gp). We did not build models with BERT,
USE and NNLM, because these techniques require a non-trivial parameter tuning that goes
beyond the scope of this paper.

We considered two canonical syntactic approaches that compute the syntactic similarity
of words/sentences: Edit Distance Similarity, and Jaccard Similarity.

123

Page 23 of 58 70

Empirical Software Engineering (2024) 29:70

Table 5 Subjects of our experiment

Subject from Category Test case description App name # of DLa

ATM Expense Tracker Add an expense
entry to expense list

EasyBudget (Letondor
2021)

100k

Expenses (Ferreira
2021)

1K

Daily Budget (Kvannli
2021)

50K

Open Money (xorum
2021)

1K

Note Taking Add a note and save Swiftnotes (Chifor
2021)

−

Writely Pro (plafu
2021)

−

Pocket Note (roxrook
2021)

−

Shopping List Add a shopping item Shop.List1 (Grzyb
2021)

−

Shop.List2 (Vansuita
2021)

100K

Shop.List3 (SECUSO
Research Group 2021)

5K

OI Shop. List (Open-
Intents 2021)

1M

CraftDroid Browser Lightning (Restaino
2021)

10K

Go to an URL, go to
another URL

Privacy (Stoutner
2021)

1K

go back to the first
URL

FOSS (Gaukler 2021) −

FirefoxFocus (Mozilla
2021)

5M

To-Do List Minimal (Roy 2021) −
Add a todo task and
save

Clear List (douzifly
2021)

−

Remove the recent
task

Todo List (SECUSO
Research Group 2021)

−

Simply Do (Kildare
2021)

−

Shop. List (Kildare
2021)

−

Shopping 1) Sign up Rainbow (rainbow-
shops 2021)

0.5M

2) Sign in

123

70 Page 24 of 58

Empirical Software Engineering (2024) 29:70

Table 5 continued

Subject from Category Test case description App name # of DLa

Yelp (Yelp Inc 2021) 50M

Mail Client 1) Search for an
email

Mail.ru (Mail.Ru
Group 2021)

50M

2) Send an email

myMail (Mycom BV
2021)

10M

AnyMail (Craigpark
Limited 2021)

10M

Tip Calculator Add a bill with infor-
mation of the tip

TipCalculator (Apps
By Vir 2021)

then calculate the
share of tip

per person

TipCalc (Apps By Vir
2021)

500

Simple Tip (TLe Apps
2021)

1K

TipCalc.Plus (ZaidiS-
oft 2021)

500

FreeTipCalc. (JPStu-
diosonline 2021)

1K

a Number of downloads

Edit Distance Similarity computes the distance of two words wd1 and wd2 as

ES(wd1, wd2) = max(|wd1|, |wd2|) − LD(wd1, wd2)

max(|wd1|, |wd2|) ∈ [0; 1]

where LD(wd1 wd2) is the “Levenshtein distance” (Levenshtein 1966) of wd1 and wd2,
that is, the minimum number of operations (deletion, insertion and substitution) required
to transform wd1 into wd2 and vice versa. Edit Distance Similarity returns 1 if
the words are identical. Edit Distance Similarity operates at word level, and thus
replaces the query of the Word Embedding model at line 8 of Algorithm 1.

Jaccard Similarity computes the similarity of two sentences txt1 and txt2 as the
number of elements that belong to both strings over the number of elements that occur in
either or both strings:

JS(txt1, txt2) = |txt1 ∩ txt2|
|txt1 ∪ txt2| ∈ [0; 1]

Jaccard Similarity returns 1when txt1 and txt2 have all identicalwords, regardless
of their position in the sentences. Jaccard Similarity operates at sentence level, and
thus replaces the interrogation of the Word Embedding model at line 12 of Algorithm 1.

We experimented with the four sets of Event Descriptor Extractors summa-
rized in Table 2 combined with the four SemanticMatching Algorithms instances.We denote
descriptors and algorithms with the suffixes “_d” and _a, respectively. For instance, ATM
denotes the descriptor set and ATM the algorithm of ATM, respectively. We modified the
Semantic Matching Algorithms to work with sets of descriptors different from the ones used

123

Page 25 of 58 70

Empirical Software Engineering (2024) 29:70

Fi
g.
5

T
he

33
7
co
nfi

gu
ra
tio

ns
of

co
m
po

ne
nt
s’
in
st
an
ce
s
co
ns
id
er
ed

in
ou

r
st
ud

y

123

70 Page 26 of 58

Empirical Software Engineering (2024) 29:70

in the original algorithms, by either pruning the attributes that do not belong to the set from
the algorithm or appending the new attributes at the end of the text attribute in the algorithm.
For instance, we combine the “intersection” set with CraftDroid, by removing activity-
name, parent-text and sibling-text from the set of attribute types at Line 32 of Algorithm 2;
We combine the CraftDroid set with ATM, by appending activity-name, parent-text and
sibling-text to the attribute text at Lines 16 and 20 of Algorithm 2. By appending the attributes
at the end of the text attribute, we comply with both ATM and CraftDroid: ATM prioritizes
attributes by position, with highest priority to text, and CraftDroid handles text jointly
with the hint attribute (line 32 of Algorithm 2).

The random baseline assigns a random score between 0 and 1 to each pair of events. We
repeated the experiments 100 times, to copewith the stochastic nature of the random baseline,
and report the median.

4.2.2 Experimental Setup

We experimentedwith 95 unique scenarios, defined as pairs of source target test cases 〈t s, t t 〉.
Each scenario is paired with the ground truth that is defined as the events etgt ∈ t t that match
the events es ∈ t s . We got the ground truth for CraftDroid scenarios from the original
CraftDroid paper, and we manually defined the ground truth for the ATM scenarios. The
target test case t t may include ancillary events (Zhao et al. 2020), that is, events in t t that
do not correspond to any event in t s , and that are required to reach relevant states in the
app. Since this set of research questions deal with semantic matching in isolation, we do
not consider ancillary events for these questions. Some events occur multiple times in test
cases for the same app. We prune redundant events, that is events that share all nine event
descriptors with other events, and we obtained 337 unique queries for evaluating semantic
matching.

We define the set of candidate target events Et = {et0, et1, · · · etn} for each es ∈ t s as the set
of events that are actionable in all the GUI states that the target test t t visits. More formally,
Et = {et : ∃ S ∈ S, et is actionable in S}, where S is the sequence of state transitions
obtained by executing t t . Some events t t may occur multiple times in the same window and
thus in Et . We prune redundant events, that is events that share all nine descriptors with
other events, from Et . The cardinality of Et ranges from 5 to 80, with an average of 24.03
and median of 19 events. Our definition of Et leads to semantic matching queries that are
coherent with Test Reuse, which matches events across applications by considering also
target events that span multiple windows (Behrang and Orso 2019; Lin et al. 2019).

4.2.3 Evaluation Metrics

Our experiments are queries that score events in the target app according to their similarity
with respect to events in the source test case. A query q sorts a set of input events Et of
the target app, according their similarity score with respect to an event es in the source test

case, and returns a sorted list: 〈es, Et 〉 q−→ (Et
sorted). We rank each query qi according to the

position of the correct event etgt that is the event that the query should return according to the
ground truth. The ranki of a query qi is the position of etgt in the list sorted according to the
similarity score of qi . We rank events with the same score as the average of their positions
in the list.

We experimented with 337 queries, and we measured the effectiveness of the Semantic
Matching Algorithms with two metrics that we compute on the returned ranks: MRR, the

123

Page 27 of 58 70

Empirical Software Engineering (2024) 29:70

Mean Reciprocal Rank (Liu 2023), and Top1, the ratio of queries in which the rank of the
correct answer is one.

The reciprocal rank of a query response is the multiplicative inverse of the rank of the
first correct answer: 1 for first place, 1/2 for second place, 1/3 for third place and so on. The
mean reciprocal rank is the average of the reciprocal ranks of our 337 queries Q.

MRR = 1

|Q|
|Q|∑

i=1

1

ranki
∈ (0; 1]

MRR is a standard statistical measure for evaluating any process that produces a list of
possible responses to a query q , sorted by their probability of correctness. MRR is suitable in
our context because it focuses on a single correct answer (etgt), while other metrics like Mean
Average Precision (MAP) and Normalized Discounted Cumulative Gain (NDCG) focus on
multiple correct answers (Liu 2023).

Top1 is the ratio of queries in which the ground truth (etgt) is in the first position of the
returned list. Top1 is less informative than MRR, because it ignores the position of etgt when
not top in the list. However, Top1 is significative in our context, since most Test Reuse
approaches choose the first event in the list.

Top1 = 1

|Q|
|Q|∑

i=1

{
1 if ranki = 1
0 otherwise

}
∈ [0; 1]

4.2.4 Semantic Matching Evaluator Prototype

We evaluated the queries with the Semantic Matching Evaluator, a prototype
framework that we developed in Python to evaluate semantic matching queries. Our
Semantic Matching Evaluator runs different configurations of the four compo-
nent types on a set of source and target events. Our Semantic Matching Evaluator
is a general framework that can be configured with different choices of component types.
For our experiments, we instantiated the Semantic Matching Evaluator for the
configurations in Fig. 5.

The source code of ATM and CraftDroid is publicly available, ATM is written in Java,
CraftDroid in Python (Lin et al. 2019). We implemented the Semantic Matching
Algorithm of ATM in Python, by referring to the original Java implementation. We
implemented the Semantic Matching Algorithm of CraftDroid by reusing the
original Python code as much as possible (Lin et al. 2019). The Semantic Matching Algo-
rithms of ATM and CraftDroid are internal algorithms of the Test Reuse components
and can be hardly executed in isolation.

Our implementations of the Event Descriptor Extractor instances execute the
source and target test cases. They retrieve the GUI state at runtime with the framework
Appium (1.1.13), and extract the values of the nine widget attributes in Table 2. We imple-
mented our own extractors, rather than rely on the implementations of ATM or CraftDroid,
to have a common tool to collect all the descriptors. Our event extractor retrieves all types of
click and fill events that ATM and CraftDroid use in their experiments The click events
include simple click, swipe and long click, and are applicable to a wide range of Android
widget types such as Button, ListView, Dialog, and ImageButton. Fill events insert a text into
an EditText widget.

123

70 Page 28 of 58

Empirical Software Engineering (2024) 29:70

Fig. 6 Distribution of MRR (top) and Top1 (bottom) for each component

4.3 Semantic Matching in Isolation: Experimental Results

We ran our 337 queries for each of the 337 configurations, for a total of 113,569 semantic
matching queries. MRR ranges from 0.201 to 0.795 across all configurations with average
0.685 and quartiles Q1: 0.649, Q2: 0.693, Q3: 0.724. The original configuration of ATM
[manuals (C1), w2v (C2),ATM (C3),ATM (C4)] is the 190th configuration in the list of the 337
configurations sorted according to the MRR values (MRR = 0.677). The original configuration
of CraftDroid [standard (C1), w2v (C2), CraftDroid (C3), CraftDroid (C4)] is
the 206th configuration in the list (MRR = 0.670).

Top1 ranges from 0.065 to 0.671 with average 0.518, and quartiles Q1: 0.465, Q2: 0.510,
Q3: 0.508. The original configuration of ATM is the 244th configuration, (Top1 = 0.472),
while the original configuration of CraftDroid is the 231th configuration (Top1 = 0.484).

The best configuration in both lists is [Google-Play (C1), WM (C2), ATM (C3),
SemFinder (C4)] and the worst is random.

Figure 6 shows the distributions of MRR and Top1 by instance. For example, the box plot
of SemFinder on the top right of Fig. 6 shows the distribution of the MRR values of all the
84 configurations with SemFinder as the semantic matching algorithm. The box plots of
the same component type are sorted by median.

The instances of the component types are unevenly distributed among the configurations.
For instance, WM is present in 64 configurations, while USE only in 16. This is because for
WM we considered the pre-computed standard model and three models built from the three
corpora of documents, while for USE we only considered the pre-computed model.

Table 6 shows the distributions of the various component instances as indicated in Fig. 5
for three percentiles 1% (top 3 entries [1:3]), 5% (top 16 entries [1:16]), and 10% (top
33 entries [1:33]). The random configuration does not include any instance of components,
thus it does not occur in the table. The values in the cells indicate the percentage of top 3, 16,
33 configurations that use a given instance of the components that are indicated in the rows for
each groupof components (C1,C2,C3,C4).Wecompare instances by component, thus values
of each group (C1, C2, C3, C4) are mutually independent. For instance, the top three cells of
the first column of Table 6 indicates that 33% of the configurations that MRR ranks in the top
three use manual (C1.Manuals), and 33% use Google-Play (C1.Google-Play) for
Corpus of Documents (C1 type). The cumulative percentage of each column for group
type C1 is less than 100% since some top configurations use pre-trained Word Embedding
models that is not in C1. The table clearly indicates the dominant role of some instances:

123

Page 29 of 58 70

Empirical Software Engineering (2024) 29:70

Table 6 Distributions of the 337 combinations sorted by MRR and Top1

Type Instance MRR Top1
[1:3] [1:16] [1:33] [1:3] [1:16] [1:33]

blogs 0% 19% 12% 0% 15% 12%

C1 manuals 33% 19% 12% 0% 15% 12%

googleplay 33% 31% 27% 33% 15% 19%

w2v 0% 0% 6% 0% 0% 0%

glove 0% 0% 0% 0% 0% 0%

wm 100% 94% 56% 100% 69% 62%

fast 0% 0% 6% 0% 0% 4%

C2 bert 0% 0% 0% 0% 0% 0%

nnlm 0% 0% 12% 0% 15% 15%

use 0% 6% 15% 0% 15% 19%

js 0% 0% 3% 0% 0% 0%

es 0% 0% 0% 0% 0% 0%

ATM_d 100% 50% 36% 67% 46% 42%

C3 CraftDroid_d 0% 19% 19% 0% 8% 19%

intersection 0% 6% 18% 0% 0% 15%

union 0% 25% 27% 33% 46% 23%

ATM_d 0% 19% 15% 0% 6% 15%

AdaptDroid_d 0% 0% 0% 0% 0% 0%

C4 CraftDroid_d 0% 0% 0% 0% 0% 0%

SemFinder 100% 81% 85% 100% 93% 81%

LEGEND:: The columns indicate the percentage of queries that locate the correct answer in positions [1:3]
(1% percentile), [1:16] (5% percentile), [1:33] (10% percentile) of the list of 337 configurations sorted by
MRR or Top1

WM, ATM and SemFinder are used by all top three configurations (100%) for C2, C3,
and C4, respectively, according to MRR. Top1 confirms the full dominant role of WM and
SemFinder (100%) and partially of ATM as well (67%).

We tested the pairs of instances in Table 6 for statistical significance usingMann-Whitney
U test (Mann and Whitney 1947). We rejected the null hypothesis that the two distributions
are the same with p-value <= 0.05. The null hypothesis invalidated 23 out of 51 pairs of
instances from MRR metrics, and 18 for Top1 metrics. Appendix 6 reports the results of the
Mann-Whitney U test.
RQ1: Baseline Comparison Both MRR and Top1 ranking indicate that all configurations
perform better than the random baseline. Bothmetrics rank random last in the sorted list, with
MRR and Top1 values of 0.201 and 0.065, respectively, much lower than the configurations
with the second lowest values, 0.595 and 0.359, respectively.

Table 6 indicates that syntactic based similarity metrics (Edit Distance Simila-
rity and Jaccard Similarity) perform worse than Word Embedding models.
Indeed, none of the 32 configurations with either Jaccard Similarity or Edit
Distance Similarity appear in the top 10% configurations sorted by either MRR
or Top1 values. The distribution of MRR and Top1 of Fig. 6 confirms Edit Distance

123

70 Page 30 of 58

Empirical Software Engineering (2024) 29:70

Similarity and Jaccard Similarity in the leftmost side of the distribution sorted
in increasing order.

The experimental results confirm the hypothesis: The semantic approaches that useWord
Embedding perform better than the syntactic baseline, with a big gap between the ran-
dom baseline and the less performant semantic matching configurations
according to both MRR and Top1.

RQ2: Component Effectiveness in Isolation The results reported in Table 6 and Fig. 6
indicate that the most effective instances of the four components evaluated in isolation are:
Google-Play, WM, ATM, and SemFinder for each of the four components of Fig. 5.
Below we discuss the evidence from experimental data in details.

Corpus of Documents (Component C1) Table 6 indicates that Google-Play is the
Corpus of Documents that occurs more often in the top ranked combinations, accord-
ing to both MRR and Top1 for all percentiles. The distribution in Fig. 6 confirms the result
with the distribution of Google-Play in the rightmost position. The statistical test shows
a significant difference between the approaches that use Google-Play and Manuals
(MRR p-value of 0.0479), and a less significant difference between the approaches that use
Google-Play and Blogs (MRR p-value of 0.0954).

We studied the impact of the Out Of Vocabulary (OOV) issue that occurs when the
query involves words that do not belong to the considered corpus. We collected the OOV
issues for the 36 configurations with Word2vec as Word Embedding technique, and
Google-Play, Manuals, and Blogs as corpora of documents, and compared the cumu-
lative number of OOV for the three clusters that use googleplay, manuals, and blogs,
respectively. The cumulative 25,119, 364,049 and 208,075 OOV for googleplay, manuals,
and blogs indicate that googleplay suffers significantly less thanmanuals and blog fromOOV.

Word Embedding (Component C2) Figure 6 indicates that sentence level Word
Embedding techniques, WM and USE, are the best techniques according to both MRR and
Top1. The difference between sentence level (WM and USE) and word level techniques
(FastText, Word2vec, GloVe, ES) is statistically significant for both MRR and Top1
(The MRR p-values of WM and word level techniques are 0.000, 0.000, 0.000, and 0.003
respectively, while the MRR p-values of USE and word level techniques are 0.001, 0.001,
0.002, and 0.007). Table 6 indicates that WM dominates USE and all other techniques. The
inspection of GUI textual attributes indicates that many of them are expressed with multiple
words, and this explains the better performance of sentence level over word level techniques.

Event Descriptor Extractor (Component C3) Figure 6 indicates that ATM
and intersection perform better than union and CraftDroid, as event descriptor selectors,
and the difference is statistically significant (ATM and intersection differs from union and
CraftDroid with MRR p-values of 0.000).

Table 6 confirms the dominance of ATM also in terms of occurrences in top ranked positions
according to both MRR and Top1 for all percentiles.

A deep analysis of the results reveals an unbalanced distribution of the attribute types
in our subjects: 8,099 source and target events define the activity-name attribute, 7,837
the id attribute, 4,532 the text attribute, 957 the neighbor-text attribute, 837 the content-
desc attribute, 600 the parent-text attribute, 554 the file-name attribute, 165 the sibiling-text
attribute, and no events defines the hint attribute. The poor performance of union and
CraftDroid may depend on the high frequency of the activity-name attribute, which
is defined for each event. Unrelated events in the target app that share the activity name of

123

Page 31 of 58 70

Empirical Software Engineering (2024) 29:70

the source event may yield a similarity score higher than the correct match (etgt), and this
impact on the final score.

Semantic Matching Algorithm (Component C4) Figure 6 indicates that SemFinder
outperforms ATM, CraftDroid, and AdaptDroid, always with statistical significance
(SemFinder differs from other Semantic Matching Algorithms with MRR p-values of
0.000). Indeed, the MRR and Top1 medians of SemFinder are higher than the median
of other algorithms. Table 6 confirms that SemFinder is the semantic matching algorithm
that occurs more often in the top ranked combinations, according to both MRR and Top1 for
all percentiles.

The analysis of the performance of the algorithms indicates AdaptDroid as the best
performing approach: the configurations with AdaptDroid complete all 337 queries in 170
seconds in average, the configurations with SemFinder in 255 seconds, the configurations
with CraftDroid in 393 seconds, and the configurations with ATM in 600 seconds. This
suggests that combining attribute values into a single sentence can reduce the runtime while
improving the results of semantic matching, as long as there are no prioritization of attributes.

The experimental results indicate that the most effective instances for the Semantic
Matcher components are: SemFinder, ATM, Google-Play, and WM.

RQ3: Component Impact Analysis in Isolation We studied the impact of the component
types with a “local” sensitivity analysis (Crick and Hill 1987) that varies the instance of a
component type at a time while holding the others fixed (Hamby 1995). We clustered the 337
configurations of the four component types, by varying an instance of a component while
fixing instances of the other three components. For example, if we consider Component C2
and exclude the randombaseline,wehavenine possible instances. Every timewefix the values
for components Component C1, Component C3, Component C4, we define a new cluster
with nine configurations (in which only Component C2 varies). We compute the standard
deviation (SD) of the MRR values of these nine configurations. This SD value represents the
impact of Component C2 in the cluster (if the choice of Component C2 has high impact,
the SD value is high, otherwise it is low) (Hamby 1995). SD is a measure of the amount
of variation or dispersion of a set of values. A low SD indicates that the values tend to be
close to the mean of the set, while a high SD indicates that the values are spread out over a
wider range. This means that if a component has a high impact on the semantic matching,
the SDs values of each cluster must be high. We repeated this process for component C2 48
times, that is, for every possible combination of the values of components C1, C3, and C4,
obtaining 3 × 4 × 4 = 48 SDs that globally capture the impact of component C2 on the
semantic matching. We ran this analysis for all four component types.

We computed the SDs for both the MRR and the Top1 values. Figure 7 shows the dis-
tributions of the SDs values for category type, and sorts the components left to right by
impact.

The experimental results indicate that the Semantic Matching Algorithm
(Component C4) is the configuration with the highest impact, followed by Word
Embedding technique (Component C2), Event Descriptor Extractor
(Component C3), and Corpus of Documents (Component C1).

123

70 Page 32 of 58

Empirical Software Engineering (2024) 29:70

Fig. 7 Impact analysis of components

4.4 Semantic Matching in the Context of Test Reuse: Experimental Setting

We evaluated semantic matching in the context of Test Reuse (RQ4, RQ5, RQ6) by
systematically running ATM and CraftDroid with selected configurations against 89
migrations of test cases.

4.4.1 Configurations

Migrating GUI test cases is time consuming due to the cost of executing GUI events on actual
apps. It takes 15minutes on average to migrate an ATM test case on our server, and 30minutes
to migrate a CraftDroid test case, with an overall cost of over 1,000 days of computation
time to investigate the 337 configurations of our experimental setup. We designed a feasible
evaluation context, by sampling the semantic configurations according to a process that con-
siders enough configurations to study every possible instance of every component: (i) We
ordered the configurations based on the MRR values that we computed when studying the
components in isolation, and (ii) uniformly sampled the configuration every X positions from
the top. We choose X=5 that is the highest sampling step that guarantees all the semantic
matching instances to be included at least once in the study. This process selected 68 config-
urations. We also considered random and perfect configurations. The random configuration
assigns a random score between 0 and 1 to each pair of events, and serves as the baseline, to
quantify the impact of semantic based approaches. The perfect configuration assigns score 1
to the correct pairs of events, based on the ground truth, 0 otherwise, and represent the target
for test reuse approaches.

ATM considers events with a similarity score greater than a threshold as matching events
(line 91 in Algorithm 6). The original ATM paper (Behrang and Orso 2019) uses a threshold
optimized for the configuration considered in the paper. Our experiments indicate that the
same threshold may penalize the results of ATM for other configurations and applications.
Thus we decided to use different thresholds across configurations and applications.

We derived unbiased thresholds for each pair of applications and each configuration from
the similarity scores computed with respect to the considered configuration for the pairs of
events that occur in the other applications. Intuitively, we compute the threshold for each
pair of applications 〈Ai , A j 〉 as the similarity score that best separates correct from incorrect

123

Page 33 of 58 70

Empirical Software Engineering (2024) 29:70

Fig. 8 Size of the source test cases

pairs of events, by considering all pairs of applications that do not include either As or At . In
details, we consider the similarity scores computed for all pairs of events in the experiment in-
isolation.We computed the threshold of each pair of applications 〈Ai , A j 〉 from the similarity
score of all pairs of events that occur in any pair of applications, but the pairs that include
either As or At . We compute the threshold as the similarity score that best separates the pairs
of correct and incorrect matches, that is, the score that maximizes the F1-score computed for
pairs above and below the threshold.

We computed the threshold for all configurations that differ in the Corpus of
Documents, Word Embedding and Semantic Matching Algorithm, com-
ponents. We did not distinguish configurations that differ in Event Descriptor
Extractor and Event Selector, since the semantic score does not depend on Event
Selector, and only partially on Event Descriptor Extractor.

4.4.2 Experimental Setup

We experimented with 34 unique scenarios, 11 ATM and 23 CraftDroid scenarios. Each
scenario is a test case t s of the source application with the ground truth t gt , and a target appli-
cation. The ground truth indicates the expected matching, as provided by the CraftDroid
authors for CraftDroid test cases, and manually identified by us for the ATM test cases.

Figure 8(a) and (b) show the size of the ATM and CraftDroid test cases in terms of
number of GUI events. Figure 9 shows the size of the ground truth of ATM scenarios, that
is, the number of events that belong to the correct mappings across test cases of compatible
applications. CraftDroid refers to the source test cases as the ground truth of compatible
applications, thus the size of the ground truth is equal to the size of the source test cases.
The figures explicitly distinguish events that correspond to assertions (oracle events). We
consider both GUI and oracle events, since Test Reuse approaches migrate both GUI
and oracle events with semantic matching. Oracle events commonly occur at the end of the
test cases, thus the possibility of generating oracles depends on the ability to migrate all
previous events in the test case. We evaluate the migrated test cases with oracles included
and oracles excluded for an unbiased evaluation of both GUI and oracle events.

123

70 Page 34 of 58

Empirical Software Engineering (2024) 29:70

Fig. 9 Size of the ground truth for ATM scenarios

We assessed semanticmatching in the context of Test Reuse, by comparing the quality
of the test cases that ATM and CraftDroid migrate with the 68 sampled configurations.
We executed some sample configurations for five hours, and we identified an upper bound
for each run as the maximum execution time after which no tool migrates test cases. We set
the maximum execution time to 2.5 hours.

4.4.3 Evaluation Metrics

Weevaluate the quality of themigrated test cases as thefidelity of two associations: the source-
to-ground-truth and the ground-truth-to-migrated associations. The source-to-ground-truth
association maps source test cases to ground truth test cases. It indicates the sequence of
events in the source test case for the source app that shall be migrated to obtain an optimal
test for the target app. The ground-truth-to-generated association maps ground truth test
cases to their corresponding migrated test cases. It indicates the events of the source app that
are correctly mapped to the target app.

The source-to-ground-truth association is defined manually once for all by the authors of
the considered subject cases (Section 4.1). Given a source test case t s = 〈es0, es1, · · · esk〉 and a
ground truth test case t gt = 〈egt0 , egt1 , · · · egtm 〉, we refer to this association as stg : t s → t gt 3,
such that, stg(esi) = egtj .

3 For sake of notation, we represent the set of events in a test case {e1, . . . , en} with the same symbol used to
represent the test case t .

123

Page 35 of 58 70

Empirical Software Engineering (2024) 29:70

Our Fidelity plug-in builds the ground-truth-to-generated association m : t gt →
t t automatically as follow: Each event in the target test case is associated with the event in
the target test case that shares the values of the identifier attributes, following their order of
occurrence in the grounds truth test case. More rigorously, Let t gt = 〈egt0 , egt1 , · · · egtm 〉 and
t t = 〈et0, et1, · · · etn〉 be test cases and a(e ji) be the attributes of event e

j
i , the ground-truth-to-

generated association is a partial function m : t gt → t t that associates events in the ground
truth test case to events in the target test case according to the following rule:

m(etgi) = etj iff a(etgi) = a(etj) ∧ ∀w < j, ∃k < i | a(etgi)
= a(etw) ∨ m(etgk) = etw
Let us define, m(t gt) = ⋃

i m(egti), that is, the set of events in the target test case that are
associated with any event in the ground truth test case.

We measure the fidelity of the associations with the F1-Score fidelity metric that we
compute from Precision, Recall as in FrUITeR (Zhao et al. 2020):

Precision = T P

T P + FP

Recall = T P

T P + FN

F1-score = 2 × Recall × Precision

Recall + Precision

where we define true positives (TP), false positives (FP), and false negatives (FN) for a source
test case t s , a target test case t t , and a ground truth t gt , and the related stg andm associations,
as follows:

TP: the cardinality of ground-truth-to-migrated, that is, the number of events in the source
test case that are correctly mapped according to the ground truth:

T P = |m(t gt)|
FP: the cardinality of the difference between the migrated test and the ground-truth-to-

migrated association, that is, the number of events in the migrated test case that do not
exist in the ground truth:

FP = |t t \ m(t gt)|
FN: the cardinality of the difference between the source-to-ground-truth and ground-truth-

to-migrated associations, that is, the number of events in the source test case that have
an equivalent event in the ground truth, and are missed in the migrated test case.

FN = |stg(t s) \ m(t gt)|
FrUITeR computes the fidelity of the mappings between the source and migrated test

cases by instrumenting the Test Reuse approaches. We compute the fidelity between
source and ground-truth test cases and between ground-truth and migrated test case to avoid
the instrumentation overhead.

4.4.4 Prototype Test Migration Evaluator

We evaluated the test migration with The Test Migration Evaluator, a prototype
framework that integrates theSemantic Matching Evaluatorwith both theATM and
CraftDroidTest Generator, aswell aswith a Fidelity plug-in thatmeasures
the fidelity of the source and migrated test cases with respect to the ground truth.

123

70 Page 36 of 58

Empirical Software Engineering (2024) 29:70

We implemented our plug-in in Python, instead of extending FrUITeR (Zhao et al. 2020),
because (i) FrUITeR requires transforming the test cases into a canonical format, and the
transformers are available for Java test cases only, whileCraftDroid test cases are in JSON
format, and (ii) FrUITeR identifies events by resource-id or XPath that do not uniquely iden-
tify events across the migration process: resource-id can be shared across multiple widgets,
and the migration process generates different XPath for the same events.

TheTest Migration Evaluator gets a set of pairs of source and target applica-
tions, with a set of test cases for each of the source application, and any subsets of the 337
configurations considered in our study. It migrates the input test cases according to input
configurations.

We integrated ATM and CraftDroid in our framework, by interfacing both the ATM
and CraftDroid Event Selectorwith our Semantic Matching Evaluator.
In this way, we use the same Semantic Matcher with both ATM and CraftDroid.
OurTest Migration Evaluator pairs both ATM and CraftDroid with all the
Event Descriptor Extractor strategies implemented in the Semantic Mat-
ching Evaluator. For instance, our Test Migration Evaluator can evaluate
the CraftDroid generation approach with file-names attribute, thus extending the original
CraftDroid approach.

4.5 Semantic Matching in the context of test reuse: Experimental Results

We migrated all 89 scenarios, that is, test cases with the ground truth, and target application,
for the 68 selected configurations, for a total of over 6,000 migrations.
RQ4. Impact of Semantic Matching in the Context of Test Reuse We measure the impact
of semantic matching on test reuse as the correlation between semantic matching metrics
(MRR and Top1) and test reuse metrics (F1-Score). The experimental results indicate a
statistically significant impact of semantic matching on test reuse, and similar performance
of most configurations on both ATM and CraftDroid test reuse approaches.

Tables 7 and 8 show the Pearson correlation (Pearson 1931) between the MRR and Top1
metric values for semantic matching, on one side, and the F1-Score for test reuse, on the
other side. The result includes 68 values for F1-Score and 68 for MRR. The full results are
available in the replication package. The tables report the correlations from experimenting
with CraftDroid on both all scenarios and shared scenarios. They report the correlations
from experimenting with ATM on the shared scenarios only, since we cannot adapt ATM for
all subjects. The tables report also the p-values that we compute to validate the statistical
significance of the results. We indicate the correlation as weak (≤0.3), moderate (0.3 - 0.5),
or strong (≥0.5), following the widely accepted classification of Cohen (Cohen 2013), and

Table 7 Correlation of semantic matching metrics and test reuse metric, with oracles

CraftDroid ATM CraftDroid
Subjects All Shared Shared
Metric F1 MRR F1 Top1 F1 MRR F1 Top1 F1 MRR F1 Top1

Correlation 0.39063 (M) 0.51028 (S) 0.33981 (M) 0.42692 (M) 0.1505 (-) 0.22328 (-)

p-value 0.00099 0.00001 0.00458 0.00028 0.22057 0.06721

S = strong correlation, M = moderate correlation, W = weak correlation, - = statistically insignificant

123

Page 37 of 58 70

Empirical Software Engineering (2024) 29:70

Table 8 Correlation of semantic matching metric and test reuse metric without oracles

CraftDroid ATM CraftDroid
Subjects All Shared Shared
Metric F1 MRR F1 Top1 F1 MRR F1 Top1 F1 MRR F1 Top1

Correlation 0.39830 (M) 0.49938 (S) 0.34433 (M) 0.45241 (M) 0.15759 (-) 0.24503 (-)

p-value 0.00077 0.00001 0.00404 0.00011 0.19934 0.04402

S = strong correlation, M = moderate correlation, W = weak correlation, - = statestically insignificant

we indicate as statistically insignificant (-) results with p-vales smaller than 0.05. The results
indicate an either medium or strong correlation for all statistically significant cases. The
results in the tables indicate that oracles do not impact significantly on the correlation.

Figures 10 and 11 plot the MRR and Top1 metrics with respect to the F1-Score for
both CraftDroid and ATM executed with all and shared scenarios, respectively. The fig-
ures report also the correlations for the perfect (green square dots) and random (red triangle
dots) baselines. TheF1-Score of the perfect configuration is 0.6627 for CraftDroid and
0.557 for ATM. The F1-Score of the semantic matching is not the only factor for test migra-
tion; Test Generator plays an important role as well. The F1-Score of the random
configuration is 0.1553 for CraftDroid and 0.1698 for ATM, less than most semantic
matching configurations (blue) dots, thus confirming the effectiveness of semantic
matching for Test Reuse. The least squares polynomial fit with degree of one (Ger-
gonne 1974) (red lines) indicates the trends, which are positive in all cases, confirming the
correlation between MRR and Top1 metrics. The gap between semantic matching
configurations (blue) and perfect (green) dots suggests a space for improving seman-
tic matching for Test Reuse. The results for Top1 are skewed to the left comparing to
MRR, since Top1 scores 1 only if the correct candidate is exactly in the top position of the
ranking while MRR scores positively also when the candidate occur in a high position that
may be different from the top position. Thus Top1 does not consider the case of many good
but not perfect candidates.

We measure the effectiveness of semantic matching across ATM and CraftDroid con-
figurations as the difference Δ between the F1-Score values of ATM and CraftDroid
migrations for all common configurations. We normalize Δ values for each approach, sepa-
rately, and use a tailed t-test to determine if a mean of Δ is different from zero with p-value
of 0.05. Non-zero mean values of Δ indicate configurations with different performance for
ATM and CraftDroid: ATM better than CraftDroid for positive Δ and vice versa for
negative Δ.

Figure 12 plots all configurations sorted by normalized Δ values, and marks the negative
(orange) and positive (blue) mean values. ATM and CraftDroid do not differ for most
(average Δ = 0) but six configurations: Three orange configurations on the left hand side
(CraftDroid better than ATM), and three blue on the right hand side (ATM better than
CraftDroid). Only the leftmost out of the six configurations that work better on either
approaches corresponds to a p-value less than 0.001. Thus the data indicate that no specific
pattern between the configurations works better for one of two approaches.

We compare ATM and CraftDroid on 27 scenarios, all the scenarios that we can
reproduce for both Test Generators (Shared Scenarios). Figure 13 compares the per-

123

70 Page 38 of 58

Empirical Software Engineering (2024) 29:70

Fig. 10 Correlation between semantic matching (MRR) and Test Reuse (F1-Score) with oracles

Fig. 11 Correlation between semantic matching (Top1) and Test Reuse (F1-Score) with oracles

Fig. 12 Configurations sorted by normalized Δ of F1-Score

123

Page 39 of 58 70

Empirical Software Engineering (2024) 29:70

Fig. 13 Scenarios sorted by normalized Δ of F1-Score

formance of the Test Generators, ATM and CraftDroid, for the different scenarios.
It plots the scenarios by normalized Δ values, to investigate the differences in performance
of the Test Generators in various scenarios. We compute the Δ values as in Fig. 12.
The figure shows that CraftDroid performs better than ATM for six scenarios (orange in
the figure), ATM for eight (blue in the figure), and the two Test Generators perform
similarly for thirteen scenarios (light pink in the figure). CraftDroid outperforms ATM
on Shopping (four) and Expense (two) scenarios. ATM outperforms CraftDroid on Note
(five), Expense (two), and Shopping (one) scenarios. The relatively high number of scenar-
ios where the Test Generators perform similarly, and a shared category of scenarios
(Expense) where either of the approach perform better suggests that scenarios may have at
most a mild impact on the choice of the Test Generator.

The results show

(i) a medium to strong positive correlation between semantic matching and Test
Reuse, thus confirming that semantic matching impacts on Test Reuse,

(ii) a significant gap between the best semantic matching configurations
and the perfect baseline that suggests a space for improving semantic matching for
Test Reuse.

(iii) a uniform behavior of the Test Generator in the different semantic
matching configurations and scenarios, thus confirming the generality
of the Test Generators.

RQ5. Component Effectiveness in the Context of Test Reuse We measured the
effectiveness of the components (Semantic Matching Algorithm (C4), Event
Descriptor Extractor (C3),Word Embedding (C2),Corpus of Documents
(C1)) on Test Reuse, by ranking the scenarios grouped by component instances, accord-
ing to the median F1-Score.

123

70 Page 40 of 58

Empirical Software Engineering (2024) 29:70

Table 9 Median F1-Score values of MRR grouped by Semantic Matching Algorithm

CraftDroid CraftDroid ATM
Subjects All Shared Shared
Comp. # S. oracles no oracles rank oracles no oracles rank oracles no oracles rank

CraftDroid 13 0.3974 0.4978 1 0.1936 0.2219 1 0.1782 0.2018 4

SemFinder 18 0.3678 0.4503 2 0.1761 0.2050 3 0.1847 0.2160 3

AdaptDroid_a 20 0.3496 0.4369 3 0.1841 0.2174 2 0.2251 0.2498 1

ATM_a 17 0.3336 0.4192 4 0.1741 0.1963 4 0.2127 0.2354 2

The experimental results indicate: (i) A more stable performance of SemFinder
and AdaptDroid across subjects than ATM and CraftDroid Semantic Matching
Algorithm; (ii) A clear ranking with ATM on top followed by Intersection, Union and
CraftDroid as Event Descriptor Extractor, in this order; (iii) A better per-
formance of WM and FastText over Word2vec and GloVe Word Embedding; (iv)
Google-Play as the best Corpus of Documents for CraftDroid, with no relevant
differences among corpora for ATM.

Semantic Matching Algorithm Table 9 reports the median F1-Score for the
CraftDroid and ATM configurations grouped accroding to the Semantic Matching
Algorithm component for both ‘all’ and ‘shared’ scenarios. The best values are in boldface,
the worst in italics. The values for ‘all’ subjects benefit from the large size of the experiments.
The homogeneity of values across configurations indicates an even behavior of the different
choices of the Semantic Matching Algorithm component on Test Reuse. The
CraftDroid algorithm works best for the CraftDroid Test Generator and worst
for the ATM Test Generator, while ATMworks well for ATM Test Generator and
worst for CraftDroid Test Generator. The SemFinder and AdaptDroid algo-
rithms work stably well with both approaches on all subject. The values from the migration
of test cases with and without oracles indicate a positive impact of the assertion events.

Event Descriptor Extractor Table 10 reports the median F1-Score for the
CraftDroid andATM configurationsgroupedby theEvent Descriptor Extractor
component. ThemedianF1-Score values in the table clearly indicate a ranking:ATM, Inter-

Table 10 Median F1-Score values of MRR grouped by Event Descriptor Extractor

CraftDroid CraftDroid ATM
Subjects All Shared Shared
Comp. # S. oracles no oracles rank oracles no oracles rank oracles no oracles rank

ATM 19 0.4214 0.5169 1 0.2539 0.2888 1 0.2729 0.3036 1

Intersection 14 0.3581 0.4434 2 0.1786 0.2072 2 0.2274 0.2680 2

Union 16 0.3316 0.4115 3 0.1656 0.1644 3,4 0.1888 0.2109 3

CraftDroid 19 0.3070 0.3712 4 0.1428 0.2050 4,3 0.1818 0.2081 4

123

Page 41 of 58 70

Empirical Software Engineering (2024) 29:70

Table 11 Median F1-Score values of MRR grouped by Word Embedding

CraftDroid CraftDroid ATM
Subjects All Shared Shared
Comp. # S. oracles no oracles rank oracles no oracles rank oracles no oracles rank

WM 13 0.4190 0.5023 1 0.2019 0.2372 1 0.2017 0.2234 2

FastText 17 0.3302 0.4192 3 0.1722 0.2153 3 0.2099 0.2352 1

W2V 14 0.3432 0.4236 2 0.1880 0.2197 2 0.1513 0.1694 4

GloVE 10 0.3040 0.3700 4 0.1100 0.1224 4 0.1870 0.2071 3

section, Union, CraftDroid, with and without oracles, and for all sets of configurations,
for both ATM and CraftDroid but CraftDroid with oracles on shared subjects.

Word Embedding Table 11 reports the median F1-Score for the CraftDroid and
ATM configurations grouped by the Word Embedding component. The table reports the
values for the instances that occur at least ten times in the sampled configurations: WM,
GloVe, FastText, and Word2vec. The values indicate that WM and FastText perform
better than Word2vec and GloVe.

Figures 14 and 15 compare syntactic and semantic configurations, by plotting the con-
figurations sorted by mean of F1-Score. We aggregate semantic configurations by means
since both MRR and Top1 aggregate the results by means. The yellow box plots indicate
the five configurations that implement syntactic techniques, the green box plot indicates the
perfect configuration, and the red box plot the random configuration. The distribution of
syntactic configurations in both figures indicates no relevant differences between syntactic
and semantic configurations, however the limited amount of syntactic configurations does
not allow us to generalize the results. While the perfect configuration subsumes all configu-
rations, the random configuration subsumes some configurations for ATM. This explains the
lower F1-Score values for ATM than CraftDroid in Table 11.

Corpus of DocumentsTable 12 reports themedianF1-Score for theCraftDroid
and ATM configurations grouped by the Corpus of Documents component. The val-
ues in the table indicate the independence of ATM from the choice of Corpus of
Documents, while CraftDroid Test Generator perform best for Google-Play
and worst for Manuals.

The results indicate that

(i) semantic matching instances that are effective in isolation perform well also in
Test Reuse, however, semantic matching instances that are less effective in
isolation may still perform well in Test Reuse,

(ii) both SemFinder and AdaptDroid algorithms work consistently well across
Test Generators,

(iii) ATM and WM are the best instances for Event Descriptor Extractor and
Word Embedding, respectively,

(iv) Google-Play performs best with CraftDroid Test Generator, while
all Corpus of Documents instances work similarly with ATM Test
Generator .

123

70 Page 42 of 58

Empirical Software Engineering (2024) 29:70

Fig. 14 Range of F1-Score per semantic matching configurations in CraftDroid with all
scenarios, Ordered by mean

RQ6. Component Impact Analysis in the Context of Test Reuse Table 13 reports the
median F1-Score for both CraftDroid and ATM configurations grouped by compo-
nents. The values in the table indicate that Event Descriptor Extractor is the
most impactful component on Test Reuse, with F1-Score values far higher than
the other components for all data sets. Semantic Matching Algorithm, and Word
Embedding follow Event Descriptor Extractorwith different comparative per-
formance depending on the approach and subjects. The F1-Score values ranks Corpus
of Documents as the least impactful component on Test Reuse for all setups.

The results in the table depend on the subjects: Semantic Matching Algorithm
ranks third for CraftDroid with shared subjects, and fourth with all subjects. The results
with all subjects indicate a similar impact of Semantic Matching Algorithm and
Word Embedding for CraftDroid. The plots in Fig. 16 confirm the similar performance
of Semantic Matching Algorithm and Word Embedding for CraftDroid.

The results indicate that

(i) Event Descriptor Extractor is the most impactful component in Test
Reuse,

(ii) Semantic Matching Algorithm and Word Embedding are the next
impactful components and their impact depends on both the Test Generator
and the scenarios,

(iii) Corpus of Documents is the least impactful component.

4.6 Discussion

The experimental results that we discuss in this section indicate the importance of semantic
matching in test reuse. They also show a substantial gap between the best semantic match-
ing configurations and the perfect mapping (Figs. 14 and 15). The gap indicates space for
improvement.

123

Page 43 of 58 70

Empirical Software Engineering (2024) 29:70

Fig. 15 Range of F1-Score per semantic matching configurations in ATM with shared sce-
narios, Ordered by mean

The results clearly indicate the contribution of the different instances for the semantic
matching components. Here we compare the results of the experiment of semantic matching
in isolation (RQ1, RQ2 and RQ3) that we discuss in detail in Section 4.3, to the results
in the context of test reuse (RQ4, RQ5 and RQ6) that we discuss in detail in Section 4.5.
Since different metrics captured the effectiveness of semantic matching in isolation (MRR and
Top1) and in the context of test reuses (F1-Score), we compare the results qualitatively.

• Semantic Matching Algorithm: The evaluation in isolation indicates that
SemFinder performs best and AdaptDroid worst among the evaluated Semantic
Matching Algorithm. The evaluation in the context of test reuse does not reveal
substantial differences among the evaluated semantic matching algorithms, all of which
perform well. SemFinder and AdaptDroid semantic matching algorithms are not
paired with a specific test generation approach, and perform evenly well when paired
with any Test Generator. ATM and CraftDroid semantic matching algorithms
perform best when paired with the corresponding test generator, worst otherwise. These
results suggest that SemFinder could be a safe choice since it performed well in all
contexts, regardless of the test generation approach used.

• Event Descriptor Extractor: Both the evaluation in isolation and in the con-
text of test reuse indicate that event descriptor extractors perform well, with ATM
outperforming the others.

• Word Embedding: Both the evaluation in isolation and in the context of test reuse
indicate that WM performs better than the other word embeddings. FastText performs

Table 12 Median F1-Score values of MRR grouped by Corpus of Documents

CraftDroid CraftDroid ATM
Subjects All Shared Shared
Comp. # S. oracles no oracles rank oracles no oracles rank oracles no oracles rank

Google Play 9 0.3848 0.4772 1 0.2019 0.2296 1 0.1851 0.2084 3

Blogs 18 0.3382 0.4223 2 0.1804 0.2111 2 0.1906 0.2233 2,1

Manuals 15 0.3234 0.3746 3 0.1548 0.1763 3 0.1916 0.2190 1,2

123

70 Page 44 of 58

Empirical Software Engineering (2024) 29:70

Table 13 Median F1-Score values of MRR grouped by Components

CraftDroid CraftDroid ATM
Subjects All Shared Shared
Comp. # S.oraclesno oraclesrankoraclesno oraclesrankoraclesno oraclesrank

Event Descriptor Extractor 11 0.05360.0835 1 0.06880.0779 1 0.05170.0704 1

Word Embedding 12 0.03520.0436 2 0.03600.0481 3 0.01730.0226 3

Semantic Matching Algorithm10 0.03330.0293 3 0.05380.0574 2 0.01950.0289 2

Corpus of Documents 10 0.01390.0245 4 0.02990.0331 4 0.01610.0189 4

well, although often worse than, only the context of test reuse. We speculate that this
result might derive from the capability of FastText to handle out-of-vocabulary issues
more effectively than the other word embedding that we consider in the study, being
out-of-vocabulary a phenomenon that occurs often when processing a large variety of
diverse words. Overall, the results clearly indicate WM as the best option for the task of
semantic matching, among the considered models.

• Corpus of Documents: Both the evaluation in isolation and in the context of test
reuse suggests that the best corpora to use may depend on how the corpora is used,
and this on the test reuse technique. In fact, Google-Play is the best corpora for
CraftDroid, while it performs worst for ATM.

• Impact of the components on test reuse:The four components (Corpus
of Documents, Word Embedding, Semantic Matching Algorithm,
Event Descriptor Extractor) have a different impact on test reuse, depending
on the test generator (ATM, CraftDroid), and the impact varies from evaluation in
isolation and in the context of test reuse (Figs. 7, and 16). The evaluation in isolation
ranks Semantic Matching Algorithm first, then Word Embedding, Event
Descriptor Extractor and Corpus of Documents. The evaluation in the
context of test reuse ranks Event Descriptor Extractor first, then Semantic
Matching Algorithm and Word Embedding between the second and third place
depending on the test reuse approach, and finally Corpus of Documents. From
these results we can deduce that the set of extracted descriptors and theway these descrip-
tors are processed are the most important and impactful part of the semantic matching
process. While, the Word Embedding, and even more the choice of the Corpus of
Documents, play a minor role in the semantic matching process. Interestingly, results
also highlight how there is a gap to fill with respect to the performance of the ideal
semantic matching process.

4.7 Threats to Validity

We discuss the main threats to the validity of the results, and summarize how we mitigated
them.

External Validity The main threat to the external validity of our results concerns the
generalizability of the results to otherAndroid apps and testmigration scenarios.Wemitigated
this threat by experimenting with a large number of test migration scenarios (147), which is
comparable to or higher than the number of scenarios that the authors of test reuse approaches
used so far to evaluate their approaches (Lin et al. 2019; Behrang and Orso 2019). Moreover,
we collected the subjects from two benchmark datasets built by two independent teams,

123

Page 45 of 58 70

Empirical Software Engineering (2024) 29:70

Fig. 16 Impact analysis of component for CraftDroid Test Generator on all subject and ATM Test
Generator on shared subjects

spanning several app categories and functionalities (Table 5). The number of Android apps
(30) that we considered in our experiments is higher than the number of Android apps used
in FrUITeR’s experiments (20) (Zhao et al. 2020).

Internal ValidityThemain threats to the internal validity of our results concern both errors
in our implementation thatmay lead to incorrect results and errors in our re-implementation of
the semantic matching algorithms of ATM and CraftDroid. We mitigated the threat that
may derive from errors in the implementation of Semantic Matching Evaluator
(research questions RQ1, RQ2 and RQ3) by manually validating the descriptors and metrics
on a set of 30 sample queries that we selected with the following characteristics: empty
descriptors, and abnormally high or low MRR and Top1 values. For such queries, we man-
ually inspect the GUI of the app to check that both the descriptors are correctly extracted
and the embedding models return the computed similarity scores. We mitigated the threat
that may derive from errors in the implementation of Test Migration Evaluator
(research questions RQ4, RQ5, RQ6), by checking that the test generation approaches ATM
and CraftDroid integrated into our framework with their original configuration, return
similar results to those obtained by running the original implementations on the same sub-
jects. We mitigated the treat that our re-implementation of the semantic matching algorithms
of ATM and CraftDroid may not faithfully implement the semantic matching algorithms
of ATM and CraftDroid, by referring to the original source code of the implementations
of the authors of ATM and CraftDroid, to exclude that other factors besides the selection
of test reuse components might affect the results. We also released our data and scripts 4, and
we welcome external validation.

Construct Validity The main threat to the construct validity concerns the adequacy of
the measures that we use in the experiments, for evaluating the effectiveness of semantic
matching and test reuse. We mitigated the threat that may derive for metrics, by considering
well-established metrics. We evaluate semantic matching in isolation with MRR and Top1,
widely used metrics in information retrieval. We evaluate the effectiveness of test migration
with the Fidelity metrics (Zhao et al. 2020), which are the de-facto standard metrics for
evaluating test reuse approaches (Zhao et al. 2020).

4 https://star.inf.usi.ch/#/software-data/11

123

70 Page 46 of 58

https://star.inf.usi.ch/#/software-data/11

Empirical Software Engineering (2024) 29:70

5 RelatedWork

This paper presents the first study of semantic matching of GUI events for test reuse
approaches. The closest related work is FrUITeR (Zhao et al. 2020), a framework that
Zhao et al. designed to comparatively evaluate test reuse techniques. FrUITeR targets the
end-to-end effectiveness of Test Reuse approaches by automatically evaluating the qual-
ity of the generated test cases (using fidelity metrics). Differently, our framework enables
the evaluation of the semantic matching in isolation using the MRR and Top1 metrics, and
also allows the automated evaluation of different combinations of the test reuse components.
In particular, our study evaluates both the end-to-end effectiveness of Test Reuse tech-
niques and the impact of each component in isolation. In our study, we identify a common
workflow of test reuse approaches and propose a component-based evaluation framework
that uses metrics introduced in FrUITeR. Differently from Zhao et al.’s study, we investigate
the impact of each component of test reuse, and we suggest which instances of components
are more effective based on the results. We conduct our semantic matching study both in
isolation from and with respect to test generation, reporting novel findings and insights.

Some studies in theNLPcommunity compare variousword embedding techniques (Baroni
et al. 2014; Wang et al. 2018; Li et al. 2018). Li et al. report that word embedding techniques
trained on domain-specific corpora perform better on the related specialized tasks (Li et al.
2018), which is in line with the results of this paper. However, our study is the first study that
compares word embedding techniques in the context of GUI events matching. In our previous
work (Khalili et al. 2022) we studied the impact of domain-specific corpora on training word
embedding models for the semantic matching of GUI events. The results suggest that there
is an ideal level of specialization and further specializations have a negative impact.

In this paper, we propose SemFinder, a new instance of Semantic Matching
Algorithm component, which addresses the limitations of current approaches. Similarly to
current semantic matching algorithms (Behrang andOrso 2019; Lin et al. 2019;Mariani et al.
2021), Semantic Matching Algorithm exploits textual attributes of GUI widgets
and scores target events based on their similarity to a source event. However, SemFinder
addresses the main limitations of current semantic matching algorithms: (a) They consider
too much information, which might include noise; (b) They restrict information and lose rel-
evant information; (c) They miss contextual information by considering attributes separately.
SemFinder balances different strategies to address these limitations.

In this paper we consider three stat-of-the-art Test Reuse approaches for Android
platform (ATM Behrang and Orso 2019, 2020), CraftDroid (Lin et al. 2019) and
AdaptDroid Mariani et al. 2021). We do not consider test reuse techniques that target
different environments, for instance Web apps (Rau et al. 2018a, b) make different assump-
tions, or target different objectives. We consider the general ATM approach that migrates test
cases across different apps, and not the specialized GUITestMigrator (Behrang andOrso
2018) approach that migrates test cases across apps with the same specification. We do not
consider approaches to adapt GUI test cases across the Android and iOS implementations of
the same app (Qin et al. 2019; Talebipour et al. 2021).

Some approaches generate Android test cases based on some predefined interaction pat-
terns (sequence of recurrent events in abstract or concrete form). These approaches use
semantic matching to find appropriate events of abstract patterns in the target application.
AppFlow uses machine learning to recognize common widgets and screens (Hu et al.
2018). Augusto uses Alloy to encode patterns of prevalent functionalities among different
domains (Mariani et al. 2018). These approaches use semantic matching to infer sequences

123

Page 47 of 58 70

Empirical Software Engineering (2024) 29:70

of events that match some predefined interaction patterns, a problem related to but different
from the use of semantic matching that we study in this paper. The findings and insights
that we report in this paper can shed new light also on the use of semantic matching to find
appropriate events of abstract patterns in the target application.

Some techniques automatically infer interaction patterns from sequences of GUI
events (Mao et al. 2017; Zhao et al. 2022; Mao et al. 2022). Polarize (Mao et al. 2017)
extracts motifs, patterns of recurrent concrete events, from large sets of execution traces
of multiple apps, and feed the identified motifs to a genetic algorithm, to generate test
cases for other apps, aiming to maximize coverage. Polarize uses syntactic checks to
match pattern elements to the target app events. Mao et al. (2022) mine patterns that con-
tain abstract elements, from user traces, to generate test cases for applications with similar
functionalities. They use a Semantic Matching Algorithm similar to the one of
CraftDroid to extract abstract element of patterns and match them to target application
events. AVGUST (Zhao et al. 2022) leverages computer vision and NLP techniques to extract
usage patterns from screen recordings of multiple apps. AVGUST is a developer-in-the-loop
technique: It recommends top events to developers to choose from. AVGUST uses a classifier
to match target events to the elements.

Qin et al. (2019) and Lin et al. (2022) use semantic matching for automatically migrating
test cases for the same apps across different platforms. TestMig (Qin et al. 2019) reuses test
cases of IOS apps to generate test cases for theAndroid version of the same apps.TestMig
uses tf-idf to convert text to vectors of real numbers, and uses cosine similarity formula to
compute the similarity of events between the two versions of the same app. Then, it maps
events by using probabilistic sequence transduction – a probabilistic model widely used in
machine translation. TransDroid (Lin et al. 2022) migrates test cases of Web apps to their
corresponding Android version, with a Semantic Matching Algorithm similar to
CraftDroid. Migrating test cases of the same application across different platforms is
generally easier than migrating test cases across different apps.

Many approaches match GUI elements by relying on visual information or DOM
structure in the context of test case generation, program repair, and test case execution.
Some approaches use visual information to identify the semantic of widgets and screens
and to generate test cases. DEEPGUI (YazdaniBanafsheDaragh and Malek 2021) extends
Monkey (Google 2017), the standard random approach available in the Android platform.
DEEPGUI identifies actionable widgets with deep reinforcement learning, and trains the
model with screenshots of GUI states that it obtains by random crawling many applications.
Humanoid (Li et al. 2019) trains a deep learning network model with visual information of
human-computer interactions, and uses themodel to identify themost likely next interactions,
and generate meaningful test cases.

Some other approaches repair test cases that broke down in new versions of GUI apps,
by modifying the locators of the events that cannot retrieve the corresponding widgets.
WATER (Choudhary 2011) fixes the broken locators by leveraging DOM structure informa-
tion. It either relocates the missing widget or finds an element most similar to the missing
element. It relocates the missing widget based on attributes of the widget that it retrieves by
executing the test case on the old version. It finds an element most similar to the missing
one based on either Levenshtein distance of XPaths or other DOM based locators, such as
coordinates. WATER works on the syntactic similarity and it is agnostic to the semantic of
the attributes. It cannot fix the test case if the widgets are relocated to other pages.

123

70 Page 48 of 58

Empirical Software Engineering (2024) 29:70

VISTA (Stocco et al. 2018) detects a breakage when the locator of an event either does
not return any element or returns a visually different element. It compares visual information
of the two versions to find the missing element and repair the test. In this way, VISTA can
handle complex breakage scenarios, like new pages added in-between test steps and elements
relocated to some neighbor pages.METER (Pan et al. 2022) uses visual information to infer the
breakages. It extracts textual information from the GUI with Optical Character Recognition
(OCR), and finds a matching widget for the broken locator with both visual and syntactic
textual similarity.

GUIDER (Xu et al. 2021) extends METER by using structural data to match the widgets of
the broken locators. GUIDER first leverages syntactic similarity of the identifying attributes
of widgets and if it cannot find a match, it uses visual similarity.

Yet other approaches use visual scripts to automate the execution ofGUI tests by relying on
computer vision (Chang et al. 2010; Alégroth et al. 2013). Leotta et al. define PESTO (Leotta
et al. 2018) that transforms DOM-based test scripts into visual test script, to reuse GUI tests
that are available as DOM-based scripts. RoScript (Qian et al. 2020) transforms videos of
users interacting with the application to visual scripts, and uses a physical robot to execute
the test script on the device.

Xu et al.’s empirical comparison of GUIDER, METER and WATER (Xu et al. 2021)
shows that structural data and visual information are complementary approaches for repair-
ing test case, and combining them together improves the results. The results of Xu et
al. support the intuition that combining textual and visual approaches may improve the
effectiveness of Test Reuse approaches, and fill the gap between current semantic
matching configurations and the perfect Test Reuse. Combining textual and
visual approaches is a relevant research direction that can benefit a lot from the results
reported in this paper.

6 Conclusions

The results presented in this paper indicate that semantic matching is a powerful tool for
reusing test cases across applications that share similar functionalities, and shade lights on
interesting future research directions. We conclude the paper with some considerations about
the practical implications of test reuse, a summary of the impact of the findings reported in
this paper on test reuse, and a perspective of the research directions that emerge from the
results reported in this paper.

Practical Implications of Test Reuse

Mobile apps are extremely popular. There are millions of apps in the Google Play app
store (AppBrain 2023), and thoroughly testing them is important. Zhou et al. reports that
88% app users would abandon an app if they were repeatedly encountering functionality
issues (Zhao et al. 2022). Automatic test generators largely reduce the human effort required
for testing, but miss many functionality failures. Reusing test cases across similar apps and
functionalities can reveal many functional failures with little human effort if any. Many stud-
ies indicate a huge number of similar applications. Ebrahimi et al. classify the 1.8M apps of
Apple App Store in 23 categories, and the 2.87M apps of Google Play in 35 distinct cate-
gories (Ebrahimi et al. 2021). Thus, effectively reusing test cases across similar applications
can largely reduce the human effort required for testing. Developers can complement auto-

123

Page 49 of 58 70

Empirical Software Engineering (2024) 29:70

matically generated test suites with test cases automatically reused across application, and
focus on the few remaining open issues, after an expert assessment of the test results.

Impact of the Findings Reported in this Paper on Test Reuse

The seminal works on reusing test cases across Android apps exploits semantic match-
ing (Behrang and Orso 2019; Lin et al. 2019; Mariani et al. 2021). This paper presents the
first comprehensive study of semantic matching in the context of test generation. Semantic
matching is a core component of the approaches that generate test suites by reusing tests across
applications that share similar functionalities. Reusing tests can be particularly rewarding in
domains with many applications that share similar functionalities, like the fast-growing mar-
ket of mobile apps. In this paper we study the approaches that reuse tests by migrating test
cases across Android apps. We observe that the state-of-the-art approaches share a common
workflow that they instantiate with different choices for the main components.

We define a framework to study the impact of the different choices for the compo-
nents that comprise the Android Test Reuse workflow, and study the choices for the
different components both in isolation and in the context of Test Reuse. We present
the results of experimenting with 8,099 GUI events from 337 semantic matching
configurations We discuss the interesting insights that derive from the experiments,
and propose SemFinder, a new Semantic Matching Algorithm to improve Test
Reuse. We answer six research questions that investigate the impact of the different com-
ponents of Test Reuse approaches both in isolation and in the context of test reuse.

The most impactful component on Test Reuse is the Event Descriptor
Extractor, since it is the gateway of the necessary information for semanticmatching. The
impact of the Event Descriptor Extractor grows when used for Test Reuse,
with respect to its evaluation in isolation, since the absence of the necessary information
results in incorrect matchings, thus the generation of the test case deviates from the relevant
windows.

The Semantic Matching Algorithm and Word Embedding have a medium
and the Corpus of Documents the lowest impact on semantic matching in the context
of Test Reuse. In a nutshell the result suggests a good performance of SemFinder for
Semantic Matching Algorithm, WM for Word Embedding, ATM for Event
Descriptor Extractor, and Google-Play for Corpus of Documents.

The gap between the best semantic matching configurations and the perfect
Test Reuse indicates the important role of the Test Generator. Our manual inspec-
tion of the results indicates that the main hurdle that hinders the Test Generator is the
incompleteness of the Target Application Model.

When the correct match does not sit in the current window, current approaches hardly
locate the correct event because of the lack of information in the Target Application
Model. Thus the Test Generator and Target Application Model are the pri-
ority for improving Test Reuse.

Open Research Directions

Our results indicate that there is still a substantial gap between the best semantic
matching configurations and the perfect matching. The insights that emerge from
our study shade new lights towards new research directions: many-to-many semantic match-
ing, Target Application Model and visual information.

123

70 Page 50 of 58

Empirical Software Engineering (2024) 29:70

Many-to-many mapping: Ancillary events deal only with simple differences between the
cardinality of the source and target tests. In general, the source-to-target test case map-
pings can be very complex. New many-to-many mappings, like Ermuth and Pradels macro
events (Ermuth and Pradel 2016), that is, compositions of multiple events, may largely
improve semantic matching.

Target Application Model: Reinforcement learning can be a promising research
direction to produce effective Target Application Model to query for the next
events.

Visual information:Enhancing textual with visual information can largely improve locat-
ing the relevant events, as Xu et al. (2021) empirical study suggests. Leveraging computer
vision to take advantage of visual information available in the GUI is the intuitive next
research stage.

Appendices

Mann-Whitney U test

MMR

Mann-Whitney U tests of pairs of instances for different distribution (p-value ≤ 0.05),
according to MMR metrics. The entries with p-value ≤ 0.05 are indicated in bold.

Component C1 Corpus of Documents

Googleplay Manuals

Blogs 0.0954 0.3228
Googleplay 0.0479

Component C2 Word Embedding

es fast glove js nnlm use w2v wm

bert 0.3188 0.1022 0.0770 0.2670 0.0125 0.0006 0.0899 0.0007
es 0.1519 0.1547 0.2796 0.0285 0.0075 0.2016 0.0032
fast 0.4012 0.3524 0.0361 0.0015 0.4086 0.0001
glove 0.4308 0.0316 0.0027 0.4291 0.0001
js 0.0506 0.0028 0.3887 0.0031
nnlm 0.1103 0.0361 0.1982
use 0.0011 0.2718
w2v 0.0001

123

Page 51 of 58 70

Empirical Software Engineering (2024) 29:70

CraftDroid intersection union

ATM_d 0.0000 0.0209 0.0000
CraftDroid_d 0.0000 0.3689
intersection 0.0001

ATM CraftDroid SemFinder

adaptdroid_a 0.0000 0.0000 0.0000
ATM_a 0.3931 0.0000
CraftDroid_a 0.0000

Component C3 Event Descriptor Extractor

Component C4 Semantic Matching Algorithm

Top1

Mann-Whitney U tests of pairs of instances for different distribution (p-value ≤ 0.05),
according to Top1 metrics. The entries with p-value ≤ 0.05 are indicated in bold.

Component C1 Corpus of Documents

Googleplay Manuals

Blogs 0.1219 0.1293
Googleplay 0.0123

Component C2 Word Embedding

es fast glove js nnlm use w2v wm

bert 0.2427 0.1982 0.1802 0.1778 0.0046 0.0001 0.2638 0.0003
es 0.0735 0.0478 0.3886 0.0028 0.0000 0.0989 0.0001
fast 0.4962 0.0246 0.0033 0.0000 0.4030 0.0000
glove 0.0213 0.0031 0.0000 0.3675 0.0000
js 0.0004 0.0000 0.0337 0.0000
nnlm 0.0787 0.0019 0.3749
use 0.0000 0.0787
w2v 0.0000

123

70 Page 52 of 58

Empirical Software Engineering (2024) 29:70

Component C3 Event Descriptor Extractor

CraftDroid intersection union

ATM_d 0.0000 0.0004 0.0000
CraftDroid_d 0.0000 0.0964
intersection 0.0005

Component C4 Semantic Matching Algorithm

ATM CraftDroid SemFinder

adaptdroid_a 0.4464 0.0000 0.0000
ATM_a 0.0048 0.0000
CraftDroid_a 0.0000

Acknowledgements This work was partially supported by the Swiss SNF project ASTERIx Automatic System
TEsting of inteRactive software applIcations (SNF200021_178742) and the ItalianNational Project PRIN2017
SISMA: Solutions for Engineering Microservices Architectures.

Funding Open access funding provided by Università della Svizzera italiana.

Data Availibility The tools developed for this study and the datasets generated and analyzed during the current
study are available in the replication repository: https://star.inf.usi.ch/#/software-data/11.

Declaration

Competing interest The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abbasi A, Chen H, Salem A (2008) Sentiment analysis in multiple languages: feature selection for opinion
classification in web forums. ACM Trans Inf Syst (TOIS) 26(3):1–34

Alégroth E, NassM, Olsson HH (2013) Jautomate: a tool for system- and acceptance-test automation. In: 2013
IEEE sixth international conference on software testing, verification and validation, pp 439–446

123

Page 53 of 58 70

https://star.inf.usi.ch/#/software-data/11
http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering (2024) 29:70

AmalfitanoD, FasolinoAR, Tramontana P, DeCarmine S,MemonAM (2012)Using gui ripping for automated
testing of Android applications. In: Proceedings of the international conference on automated software
engineering ASE ’12. ACM, pp 258–261

Anand S, NaikM,HarroldMJ, YangH (2012) Automated concolic testing of smartphone apps. In: Proceedings
of the ACM SIGSOFT international symposium on foundations of software engineering, FSE ’12. ACM,
pp 1–11

AppBrain (2023) Google play store: Number of apps 2023. https://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/, Accessed Aug 2023

Apps By Vir (2021) Tip calc. https://play.google.com/store/apps/details?id=com.appsbyvir.tipcalculator,
Accessed Jan 2021

Arisoy E, Sainath TN, Kingsbury B, Ramabhadran B (2012) Deep neural network language models. In:
Proceedings of the NAACL-HLT 2012 workshop: will we ever really replace the n-gram model? On the
future of language modeling for HLT, pp 20–28

Baroni M, Dinu G, Kruszewski G (2014) Don’t count, predict! a systematic comparison of context-counting
vs. context-predicting semantic vectors. In: Proceedings of the 52nd annual meeting of the association
for computational linguistics (vol 1: long papers), pp 238–247

Barr ET, Harman M, McMinn P, Shahbaz M, Yoo S (2015) The oracle problem in software testing: a survey.
IEEE Trans Softw Eng 41(5):507–525

Becce G, Mariani L, Riganelli O, Santoro M (2012) Extracting widget descriptions from guis. In: Proceedings
of the international conference on fundamental approaches to software engineering, FASE ’12. Springer,
pp 347–361

Behrang F,OrsoA (2018) Testmigration for efficient large-scale assessment ofmobile app coding assignments.
In: Proceedings of the international symposium on software testing and analysis, ISSTA ’18. ACM,
pp 164–175

Behrang F, Orso A (2019) Test migration between mobile apps with similar functionality. In: Proceedings
of the international conference on automated software engineering, ASE’19. IEEE Computer Society,
pp 54–65

BehrangF,OrsoA (2020)Apptestmigrator: a tool for automated testmigration for android apps. In: Proceedings
of the international conference on software engineering, ICSE DEMO ’20. ACM, pp 17–20

Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword information. Trans
Assoc Comput Linguist 5:135–146

Cer D, Yang Y, yi Kong S, Hua N, Limtiaco N, John RS, Constant N, Guajardo-Cespedes M, Yuan S, Tar C,
Sung Y-H, Strope B, Kurzweil R (2018) Universal sentence encoder

Chang T-H, Yeh T, Miller RC (2010) Gui testing using computer vision. In: Proceedings of the SIGCHI
conference on human factors in computing systems, CHI ’10. Association for Computing Machinery,
New York, pp 1535–1544

Chifor A (2021) Swiftnotes. https://play.google.com/store/apps/details?id=com.moonpi.swiftnotes, Accessed
Jan 2021

Choudhary SR, Zhao D, Versee H, Orso A (2011) Water: Web application test repair. In: Proceedings of the
first international workshop on end-to-end test script engineering, ETSE ’11. Association for Computing
Machinery, New York, pp 24–29

Cohen J (2013) Statistical power analysis for the behavioral sciences. Routledge
Craigpark Limited (2021) Email app for anymail. https://play.google.com/store/apps/details?id=park.outlook.

sign.in.client, Accessed Jan 2021
Crick M, Hill M (1987) The role of sensitivity analysis in assessing uncertainty. In: Uncertainty analysis for

performance assessments of radioactive waste disposal systems
Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers for

language understanding
Dix A (2009) Human-computer interaction. In: Encyclopedia of database systems. Springer, pp 1327–1331
Dong Z, Böhme M, Cojocaru L, Roychoudhury A (2020) Time-travel testing of android apps. In: ICSE ’20:

42nd international conference on software engineering, ICSE’20. ACM, Seoul, pp 481–492
douzifly (2021) Clear list. https://f-droid.org/en/packages/douzifly.list/, Accessed Jan 2021
Ebrahimi F, Tushev M, Mahmoud A (2021) Classifying mobile applications using word embeddings. Trans

Softw Eng Methodol (TOSEM) 31(2):1–30
Ermuth M, Pradel M (2016) Monkey see, monkey do: effective generation of gui tests with inferred macro

events. In: Proceedings of the international symposium on software testing and analysis, ISSTA ’16.
ACM, pp 82–93

Ferreira LK (2021) Expenses. https://play.google.com/store/apps/details?id=luankevinferreira.expenses,
Accessed Jan 2021

Gaukler F (2021) Foss browser. https://f-droid.org/en/packages/de.baumann.browser/, Accessed Jan 2021

123

70 Page 54 of 58

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://play.google.com/store/apps/details?id=com.appsbyvir.tipcalculator
https://play.google.com/store/apps/details?id=com.moonpi.swiftnotes
https://play.google.com/store/apps/details?id=park.outlook.sign.in.client
https://play.google.com/store/apps/details?id=park.outlook.sign.in.client
https://f-droid.org/en/packages/douzifly.list/
https://play.google.com/store/apps/details?id=luankevinferreira.expenses
https://f-droid.org/en/packages/de.baumann.browser/

Empirical Software Engineering (2024) 29:70

Gergonne JD (1974) The application of the method of least squares to the interpolation of sequences. Historia
Mathematica 1(4):439–447

Google (2017) Monkey runner. http://developer.android.com/tools/help/monkey.html, Accessed 08 Dec 2017
Grzyb A (2021) Shopping list. https://play.google.com/store/apps/details?id=pl.com.andrzejgrzyb.

shoppinglist, Accessed Jan 2021
Gu T, Sun C, Ma X, Cao C, Xu C, Yao Y, Zhang Q, Lu J, Su Z (2019) Practical GUI testing of android

applications via model abstraction and refinement. In: Proceedings of the international conference on
software engineering, ICSE ’19. IEEE Computer Society, pp 269–280

Hamby D (1995) A comparison of sensitivity analysis techniques. Health Phys 68(2):195–204
Hub TF (2020) Token based text embedding trained on english google news 200b corpus. https://tfhub.dev/

google/nnlm-en-dim128/2
Hu G, Zhu L, Yang J (2018) AppFlow: using machine learning to synthesize robust, reusable UI tests. In:

Proceedings of the european software engineering conference held jointly with the ACM SIGSOFT
international symposium on foundations of software engineering, ESEC/FSE ’18. ACM, pp 269–282

Jiao Q, Zhang S (2021) A brief survey of word embedding and its recent development. In: 2021 IEEE 5th
advanced information technology, electronic and automation control conference (IAEAC), vol 5, pp1697–
1701

JPStudiosonline (2021) Free tip calculator. https://play.google.com/store/apps/details?id=com.
jpstudiosonline.tipcalculator, Access Jan 2021

Khalili F, Mohebbi A, Terragni V, Pezzè M, Mariani L, Heydarnoori A (2022) The ineffectiveness of domain-
specific word embedding models for gui test reuse. In: 2022 IEEE/ACM 30th international conference
on program comprehension (ICPC), pp 560–564

Kildare K (2021) Shopping list. https://f-droid.org/en/packages/com.woefe.shoppinglist/, Access Jan 2021
Kildare K (2021) Simply do. https://f-droid.org/en/packages/kdk.android.simplydo/, Access Jan 2021
Kusner MJ, Sun Y, Kolkin NI, Weinberger KQ (2015) From word embeddings to document distances. In:

Proceedings of the international conference on international conference on machine learning, ICML ’15,
pp 957–966

Kvannli (2021) Daily budget. https://play.google.com/store/apps/details?id=com.kvannli.simonkvannli.
dailybudget, Access Jan 2021

Leotta M, Stocco A, Ricca F, Tonella P (2018) Pesto: automated migration of dom-based web tests towards
the visual approach. Softw Test Verification Reliab 28(4)

Letondor B (2021) Easybudget. https://play.google.com/store/apps/details?id=com.benoitletondor.
easybudgetapp, Accessed Jan 2021

Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions, and reversals. Tech Rep 8,
Soviet Physics Doklady

Li H, Li X, Caragea D, Caragea C (2018) Comparison of word embeddings and sentence encodings as
generalized representations for crisis tweet classification tasks. Proc ISCRAM Asia Pac

Lin J-W, Jabbarvand R, Malek S (2019) Craftdroid implementation. https://github.com/seal-hub/CraftDroid
Lin J-W, Jabbarvand R, Malek S (2019) Test transfer across mobile apps through semantic mapping. In:

Proceedings of the international conference on automated software engineering,ASE’19. IEEEComputer
Society, pp 42–53

Lin J-W, Malek S (2022) Gui test transfer from web to android. In: 2022 IEEE conference on software testing,
verification and validation (ICST). IEEE, pp 1–11

Liu T-Y (2023) Learning to rank for information retrieval
Li Y, Yang Z, Guo Y, Chen X (2019) Humanoid: a deep learning-based approach to automated black-box

android app testing. In: 2019 34th IEEE/ACM international conference on automated software engineer-
ing (ASE), pp 1070–1073

MachiryA,TahilianiR,NaikM(2013)Dynodroid: an input generation system for android apps. In: Proceedings
of the ACM SIGSOFT international symposium on foundations of software engineering, FSE ’13. ACM,
pp 224–234

Mail.Ru Group (2021) Mail.ru. https://play.google.com/store/apps/details?id=ru.mail.mailapp, Access Jan
2021

Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than
the other. Ann Math Stat 50–60

Mao K, Harman M, Jia Y (2016) Sapienz: multi-objective automated testing for Android applications. In:
Proceedings of the international symposium on software testing and analysis, ISSTA ’16. ACM, pp 94–
105

Mao K, Harman M, Jia Y (2017) Crowd intelligence enhances automated mobile testing. In: Proceedings
of the international conference on automated software engineering, ASE ’17. IEEE Computer Society,
pp 16–26

123

Page 55 of 58 70

http://developer.android.com/tools/help/monkey.html
https://play.google.com/store/apps/details?id=pl.com.andrzejgrzyb.shoppinglist
https://play.google.com/store/apps/details?id=pl.com.andrzejgrzyb.shoppinglist
https://tfhub.dev/google/nnlm-en-dim128/2
https://tfhub.dev/google/nnlm-en-dim128/2
https://play.google.com/store/apps/details?id=com.jpstudiosonline.tipcalculator
https://play.google.com/store/apps/details?id=com.jpstudiosonline.tipcalculator
https://f-droid.org/en/packages/com.woefe.shoppinglist/
https://f-droid.org/en/packages/kdk.android.simplydo/
https://play.google.com/store/apps/details?id=com.kvannli.simonkvannli.dailybudget
https://play.google.com/store/apps/details?id=com.kvannli.simonkvannli.dailybudget
https://play.google.com/store/apps/details?id=com.benoitletondor.easybudgetapp
https://play.google.com/store/apps/details?id=com.benoitletondor.easybudgetapp
https://github.com/seal-hub/CraftDroid
https://play.google.com/store/apps/details?id=ru.mail.mailapp

Empirical Software Engineering (2024) 29:70

Mao Q, Wang W, You F, Zhao R, Li Z (2022) User behavior pattern mining and reuse across similar android
apps. J Comp Apps 42(7):2155–2161

Mariani L,Mohebbi A, PezzèM, Terragni V (2021) Semanticmatching of gui events for test reuse: are we there
yet? In: Proceedings of the 30th international symposium on software testing and analysis, ISSTA 21,
ACM

Mariani L, Pezzè M, Terragni V, Zuddas D (2021) An evolutionary approach to adapt tests across mobile apps.
In: International conference on automation of software test, AST ’21, pp 70–79

MarianiL, PezzèM,ZuddasD (2018)Augusto: exploiting popular functionalities for the generation of semantic
gui tests with oracles. In: Proceedings of the international conference on software engineering, ICSE ’18,
pp 280–290

Memon AM, Banerjee I, Nagarajan A (2003) GUI ripping: reverse engineering of graphical user interfaces for
testing. In: Proceedings of the working conference on reverse engineering, WCRE ’03. IEEE Computer
Society, pp 260–269

Memon A, Banerjee I, Nagarajan A (2003a) What test oracle should i use for effective gui testing? In:
Proceedings of the international conference on automated software engineering,ASE ’03. IEEEComputer
Society, pp 164–173

Mikolov T, Chen K, Corrado G, Dean J (2013a) Efficient estimation of word representations in vector space
Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013b) Distributed representations of words and phrases

and their compositionality. In: Proceedings of the international conference on neural information pro-
cessing systems, NIPS ’13, pp 3111–3119

Mirzaei N, Bagheri H, Mahmood R, Malek S (2015) SIG-Droid: automated system input feneration for
android applications. In: Proceedings of the international symposium on software reliability engineering,
ISSRE ’15. IEEE Computer Society, pp 461–471

Moran K, Vásquez ML, Bernal-Cárdenas C, Vendome C, Poshyvanyk D (2016) Automatically discovering,
reporting and reproducing android application crashes. In: Proceedings of the international conference
on software testing, verification and validation, ICST ’16. IEEE Computer Society, pp 33–44

Mozilla (2021) Firefox focus. https://play.google.com/store/apps/details?id=org.mozilla.focus, Accessed Jan
2021

Mycom BV (2021) mymail. https://play.google.com/store/apps/details?id=ru.mail.mailapp, Accessed Jan
2021

OpenIntents (2021) Oi shopping list. https://play.google.com/store/apps/details?id=org.openintents.shopping,
Accessed Jan 2021

Pan M, Xu T, Pei Y, Li Z, Zhang T, Li X (2022) Gui-guided test script repair for mobile apps. Trans Softw
Eng 48(3):910–929

Pearson ES (1931) The test of significance for the correlation coefficient. J Am Stat Assoc 26(174):128–134
Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word representation. In: Empirical

methods in natural language processing (EMNLP), pp 1532–1543
plafu (2021) Writeily pro. https://f-droid.org/en/packages/me.writeily, Accessed Jan 2021
Qian J, ShangZ,YanS,WangY,ChenL (2020)Roscript: a visual script driven truly non-intrusive robotic testing

system for touch screen applications. In: Proceedings of the ACM/IEEE 42nd international conference
on software engineering, ICSE ’20. Association for Computing Machinery, New York, pp 297–308

Qin X, Zhong H, Wang X (2019) Testmig: migrating gui test cases from ios to android. In: Proceedings of the
international symposium on software testing and analysis, ISSTA ’19. ACM, pp 284–295

rainbowshops (2021) Rainbow. https://play.google.com/store/apps/details?id=com.rainbowshops, Accessed
Jan 2021

Rau A, Hotzkow J, Zeller A (2018a) Efficient gui test generation by learning from tests of other apps. In:
Proceedings of the international conference on software engineering, ICSE Poster ’18. ACM, pp 370–
371

Rau A, Hotzkow J, Zeller A (2018b) Transferring tests across web applications. In: International conference
on web engineering. Springer, pp 50–64

Restaino A (2021) Lightning browser. https://play.google.com/store/apps/details?id=acr.browser.lightning,
Accessed Jan 2021

roxrook (2021) Pocket note. https://github.com/roxrook/pocket-note-android, Accessed Jan 2021
Roy R (2021) Minimal. https://f-droid.org/en/packages/com.rubenroy.minimaltodo/, Accessed Jan 2021
Schler J, Koppel M, Argamon S, Pennebaker JW (2006) Effects of age and gender on blogging. AAAI spring

symposium: computational approaches to analyzing weblogs 6:199–205
Schwartz HA, Eichstaedt JC, Kern ML, Dziurzynski L, Ramones SM, Agrawal M, Shah A, Kosinski M,

Stillwell D, Seligman ME et al (2013) Personality, gender, and age in the language of social media: the
open-vocabulary approach. PLOS ONE 8(9):1–16

123

70 Page 56 of 58

https://play.google.com/store/apps/details?id=org.mozilla.focus
https://play.google.com/store/apps/details?id=ru.mail.mailapp
https://play.google.com/store/apps/details?id=org.openintents.shopping
https://f-droid.org/en/packages/me.writeily
https://play.google.com/store/apps/details?id=com.rainbowshops
https://play.google.com/store/apps/details?id=acr.browser.lightning
https://github.com/roxrook/pocket-note-android
https://f-droid.org/en/packages/com.rubenroy.minimaltodo/

Empirical Software Engineering (2024) 29:70

SECUSOResearch Group (2021) Shopping list (privacy friendly). https://play.google.com/store/apps/details?
id=privacyfriendlyshoppinglist.secuso.org.privacyfriendlyshoppinglist, Accessed Jan 2021

SECUSO Research Group (2021) Todo list. https://f-droid.org/en/packages/douzifly.list/, Accessed Jan 2021
Stocco A, Yandrapally R,Mesbah A (2018) Visual web test repair. In: Proceedings of the 2018 26th ACM joint

meeting on european software engineering conference and symposium on the foundations of software
engineering, ESEC/FSE 2018. Association for Computing Machinery, New York, pp 503–514

Stoutner (2021) Privacy browser. https://play.google.com/store/apps/details?id=com.stoutner.privacybrowser.
standard, Accessed Jan 2021

Talebipour S, Zhao Y, Dojcilović L, Li C, Medvidović N (2021) Ui test migration across mobile platforms.
In: 2021 36th IEEE/ACM international conference on automated software engineering (ASE). IEEE,
pp 756–767

TLe Apps (2021) Simple tip calculator. https://play.google.com/store/apps/details?id=com.tleapps.
simpletipcalculator, Accessed Jan 2021

Turian J, Ratinov L, Bengio Y (2010) Word representations: a simple and general method for semi-supervised
learning. In: Proceedings of the 48th annual meeting of the association for computational linguistics.
Association for Computational Linguistics, pp 384–394

Vansuita (2021) Shopping list. https://play.google.com/store/apps/details?id=br.com.activity, Accessed Jan
2021

Wang Y, Liu S, Afzal N, Rastegar-Mojarad M, Wang L, Shen F, Kingsbury P, Liu H (2018) A comparison of
word embeddings for the biomedical natural language processing. J Biomed Inform 87:12–20

xorum (2021) Open money tracker. https://play.google.com/store/apps/details?id=com.blogspot.e_kanivets.
moneytracker, Accessed Jan 2021

Xu T, Pan M, Pei Y, Li G, Zeng X, Zhang T, Deng Y, Li X (2021) Guider: gui structure and vision co-
guided test script repair for android apps. In: Proceedings of the 30th ACM SIGSOFT international
symposium on software testing and analysis, ISSTA 2021. Association for Computing Machinery, New
York, pp 191–203

YazdaniBanafsheDaragh F, Malek S (2021) Deep gui: Black-box gui input generation with deep learning. In:
2021 36th IEEE/ACM international conference on automated software engineering (ASE), pp 905–916

Yelp Inc (2021) Yelp. https://play.google.com/store/apps/details?id=com.yelp.android, Accessed Jan 2021
ZaidiSoft (2021) Tip calculator plus. https://play.google.com/store/apps/details?id=com.zaidisoft.teninone,

Accessed Jan 2021
Zhao Y, Chen J, Sejfia A, Schmitt Laser M, Zhang J, Sarro F, Harman M, Medvidovic N (2020) Fruiter: a

framework for evaluating ui test reuse. Proc Joint Meeting Foundations Softw Eng ESEC/FSE 20:1190–
1201

Zhao Y, Su T, Liu Y, Zheng W, Wu X, Kavuluru R, Halfond WG, Yu T (2022) Recdroid+: automated end-to-
end crash reproduction from bug reports for android apps. ACM Trans Softw Eng Methodol (TOSEM)
31(3):1–33

Zhao Y, Talebipour S, Baral K, Park H, Yee L, Khan SA, Brun Y, Medvidović N, Moran K (2022) Avgust:
automating usage-based test generation from videos of app executions. In: Proceedings of the 30th
ACM joint European software engineering conference and symposium on the foundations of software
engineering, ESEC/FSE 2022. Association for Computing Machinery, pp 421–433

Zhao Y, Yu T, Su T, Liu Y, Zheng W, Zhang J, Halfond WGJ (2019) ReCDroid: automatically reproducing
android application crashes from bug reports. In: Proceedings of the international conference on software
engineering, ICSE ’19. IEEE Computer Society, pp 128–139

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

Page 57 of 58 70

https://play.google.com/store/apps/details?id=privacyfriendlyshoppinglist.secuso.org.privacyfriendlyshoppinglist
https://play.google.com/store/apps/details?id=privacyfriendlyshoppinglist.secuso.org.privacyfriendlyshoppinglist
https://f-droid.org/en/packages/douzifly.list/
https://play.google.com/store/apps/details?id=com.stoutner.privacybrowser.standard
https://play.google.com/store/apps/details?id=com.stoutner.privacybrowser.standard
https://play.google.com/store/apps/details?id=com.tleapps.simpletipcalculator
https://play.google.com/store/apps/details?id=com.tleapps.simpletipcalculator
https://play.google.com/store/apps/details?id=br.com.activity
https://play.google.com/store/apps/details?id=com.blogspot.e_kanivets.moneytracker
https://play.google.com/store/apps/details?id=com.blogspot.e_kanivets.moneytracker
https://play.google.com/store/apps/details?id=com.yelp.android
https://play.google.com/store/apps/details?id=com.zaidisoft.teninone

Empirical Software Engineering (2024) 29:70

Authors and Affiliations

Farideh Khalili1 · Leonardo Mariani2 · Ali Mohebbi3 ·Mauro Pezzè3,4 ·
Valerio Terragni5

Farideh Khalili
Khalili.f@northeastern.edu

Leonardo Mariani
leonardo.mariani@unimib.it

Ali Mohebbi
ali.mohebbi@usi.ch

Valerio Terragni
v.terragni@auckland.ac.nz

1 Northeastern University, Boston, MA, USA
2 University of Milano - Bicocca, Milan, Italy
3 USI Universitá della Svizzera italiana, Lugano, Switzerland
4 Constructor Institute Schaffhausen, Schaffhausen, Switzerland
5 University of Auckland, Auckland, New Zealand

123

70 Page 58 of 58

http://orcid.org/0000-0002-4844-4351
http://orcid.org/0000-0001-5193-7379
http://orcid.org/0000-0001-5885-9297

	Semantic matching in GUI test reuse
	Abstract
	1 Introduction
	2 Test Reuse Approach
	3 Test Reuse Workflow
	3.1 Corpus of Documents
	3.2 Word Embedding
	3.3 Event Descriptor Extractor
	3.4 Semantic Matching Algorithm
	3.5 Event Selector

	4 Experiment
	4.1 Subjects
	4.2 Semantic Matching in Isolation: Experimental Setting
	4.2.1 Configurations
	4.2.2 Experimental Setup
	4.2.3 Evaluation Metrics
	4.2.4 Semantic Matching Evaluator Prototype

	4.3 Semantic Matching in Isolation: Experimental Results
	4.4 Semantic Matching in the Context of Test Reuse: Experimental Setting
	4.4.1 Configurations
	4.4.2 Experimental Setup
	4.4.3 Evaluation Metrics
	4.4.4 Prototype Test Migration Evaluator

	4.5 Semantic Matching in the context of test reuse: Experimental Results
	4.6 Discussion
	4.7 Threats to Validity

	5 Related Work
	6 Conclusions
	Practical Implications of Test Reuse
	Impact of the Findings Reported in this Paper on Test Reuse
	Open Research Directions

	Appendices
	Mann-Whitney U test
	MMR

	Component C1 Corpus of Documents
	Component C2 Word Embedding
	Component C3 Event Descriptor Extractor
	Component C4 Semantic Matching Algorithm
	Top1
	Component C1 Corpus of Documents
	Component C2 Word Embedding
	Component C3 Event Descriptor Extractor
	Component C4 Semantic Matching Algorithm

	Acknowledgements
	References

