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ABSTRACT

This paper details the eleventh edition of Java Unit Testing Com-
petition, covering its setup, challenges, and findings. The competi-
tion featured five Java test case generation tools: EvoSuite, Kex-
concolic, Kex-symbolic, Utbot-concolic, and Utbot-fuzzer, all
of which were evaluated on a benchmark of 100 classes taken from
5 open-source Java Projects. We assessed the generated test cases
based on code and mutation coverage, as well as human under-
standability - a metric introduced in this edition of the competition.
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1 INTRODUCTION

The eleventh edition of the Java Testing Tool Competition received
five submitted tools, namely EvoSuite [8], Kex-Concolic [5], Kex-
Symbolic [5], UTBot-Concolic [3, 4] and UTBot-Fuzzer [3, 4]. Fur-
thermore, similarly to previous editions, we used Randoop [11]
as a baseline for comparison. This tool competition is conducted
along with the competition for cyber-physical systems[6] and for
[10]. Each tool has been executed on 100 classes under test (CUTs)
sampled from five different Java projects. The competing tools have
been compared by using line, branch and mutant coverage metrics,
for two different time budgets, i.e., 30 and 120 seconds. Moreover,
we have conducted a study to measure how understandable are the
generated test cases for the human participants.

In order to guarantee a fair comparison among the competing
tools, the execution of the tools for generating test suites and their
evaluation has been carried out by using a dockerized infrastruc-
ture [7]. The results show that EvoSuite achieves higher code cover-
age, whileUtbot-concolic generates more human-understandable
test cases.

2 THE BENCHMARK SUBJECTS OF THE JUNIT

TESTING COMPETITION

The selection of the projects and classes under test (CUTs) to use
as a benchmark for test case generation has been done by consider-
ing the following criteria: (i) the projects must belong to different
application domains [8]; (ii) projects must be open-source for repli-
cability purposes. To select the subjects for the competition we
relied on the curated list of popular Java frameworks, libraries and
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Table 1: Description of the benchmark.

Project #CUTs # Filtered CUTs # Sampled CUTs

Collections 473 98 26
JSoup 246 38 14
ta4j 256 81 30
Spatial4j 92 30 13
threeten-extra 77 52 17
Total 1,145 298 100

software1. We selected five subjects each of which belong to a dif-
ferent category. We focused on projects that rely on Maven as a
build framework, and have developer-written JUnit2 test suites.
Specifically, we picked:

• Apache Commons Collections (https://commons.apache.org/
proper/commons-collections/) is a library that extends the
Java Collections Framework by adding many powerful data
structures that accelerate the development of most signifi-
cant Java applications.

• JSoup (https://github.com/jhy/jsoup) is a Java library for
working with real-world HTML.

• ta4j (https://github.com/ta4j/ta4j) is a Java library for techni-
cal analysis. It provides the basic components for the creation,
evaluation and execution of trading strategies.

• Spatial4j (https://github.com/locationtech/spatial4j) is a gene-
ral-purpose spatial/ geospatial open-source Java library.

• threeten-extra (https://github.com/ThreeTen/threeten-extra)
provides additional date-time classes that complement those
in Java SE 8 and is curated by the primary author of the Java
8 date and time library.

Among all 1,145 classes across five projects, we only kept the
ones that (i) have at least 2 branches (ii) have at least one method
with McCabe’s cyclomatic complexity higher than five. To calculate
the number of branches in the class and cyclomatic complexity of
each method in that class we used the JaCoCo [1] code coverage
tool. Then, we filtered out all the classes that are non-testable. We
verified testability by running the Randoop test case generation
tool for 10 seconds and checking whether any test cases were
generated with this budget. If that was not the case, the class was
classified as non-testable. The applied filtering step left us with a list
of 298 classes. Based on the time and resources available for running
the competition, as well as, taking into account the high number
of competing tools, and the fact that we used two different time
budgets, we randomly sampled 100 classes to use as our benchmark
(as shown in Table 1). It should be noted that this is the largest
benchmark set used in the history of the competition.

1https://github.com/akullpp/awesome-java
2https://github.com/junit-team/junit4
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3 COMPETING TOOLS

Five tools have competed in the eleventh edition: EvoSuite [8],
Kex-concolic [5], Kex-symbolic [5], Utbot-concolic [4], Utbot-
fuzzer [4].

EvoSuite [8] uses evolutionary search to automatically gener-
ate test suites that aim to maximise various code coverage criteria.
The current default evolutionary algorithm of EvoSuite is Dynamic
Many-Objective Sorting Algorithm (DynaMOSA) [12].

Kex-symbolic and Kex-concolic [5]. Kex is a platform for
analysis of JVM programs, which mainly focuses on automatic test
generation with the aim to maximize branch coverage criterion.
Kex can generate tests in fully static mode without running any
actual code (Kex-symbolic) and in concolic mode (Kex-concolic)
which combines symbolic and concrete executions.

Utbot-concolic and Utbot-fuzzer [3, 4]. UTBot Java is a
part of the UnitTestBot tool lineup [3, 4] for automated unit test gen-
eration. This year, UTBot Java is implemented as Utbot-fuzzer,
which is a pure greybox fuzzer, and Utbot-concolic, which is
based on dynamic symbolic execution paired with fuzzing. The
Utbot-fuzzer gathers constant values from the code under test
to generate inputs faster. Utbot-concolic also generates human-
readable test descriptions.

Randoop [11], used as a baseline in the context of the compe-
tition, generates unit tests using a feedback-directed random test
generation, which collects information from the execution of the
tests as they are generated to reduce the number of redundant and
illegal tests [11].

4 METHODOLOGY OF THE TESTING

COMPETITION

4.1 Calculation of the structural coverage

criteria

We considered only two different time budgets: 30 and 120 seconds
due to time and resource constraints, the high number of participat-
ing tools (five plus Randoop as baseline) and the large size of our
benchmark. To account for the randomness associated with certain
tools (such as search-based or random approaches), we executed
each tool 10 times for each CUT. This resulted in 12,000 executions
in total, which we used for statistical analysis: i.e., 100 CUTs × 6
tools × 2 time budgets × 10 repetitions. For all the competing tools,
we were able to complete the planned number of executions.

We ran each tool on virtual machines with the same architec-
ture i.e., Google Cloud e2-highmem-8 virtual machine instances
equipped with 8 vCPUs, 64 GB of RAM and 50 GB of memory. We
used a dedicated instance for the combination of each tool and time
budget, employing 12 virtual machines instances overall.

Metrics computation. We used line, branch, and mutation
coverage metrics to measure the performance of the tools. We
utilized JaCoCo [1] to compute the line and branch coverage metrics
and PITest [2] for the mutation analysis. To ensure the feasibility
of our experiments, we allocated a maximum of five minutes for
mutation analysis per CUT and a timeout of one minute for each
generated mutant. For classes with more than 200 mutants, we
randomly sampled only 33% of them, while for classes with more
than 400 mutants, we sampled 50%.

This year we have ensured to deliver the results of the competi-
tion way ahead of the final deadline so that in case any problems
are found with the runs can be repeated. This proved useful for the
Utbot-concolic tool, as its runs on the JSoup subject were affected
by the fact the JSoup is also one of its internal dependencies.

Statistical analysis. To support the obtained results, we per-
formed statistical tests in the exact way as in the previous edition
of the competition [9].

4.2 Measuring Test Case Understandability

While high coverage and fault detection capabilities are essential
indicators of test suite quality, the adoption of automatic test case
generation tools in practice heavily relies on the understandability
of their outputs to developers. To emphasize this often-overlooked
aspect of automatically generated test cases, we introduced a new
metric in this edition of the competition that quantifies their un-
derstandability. Unlike coverage metrics, understandability cannot
be measured by third-party tools at runtime, but must be assessed
by humans. To facilitate this assessment, we conducted a human
study in which participants were provided with test cases gener-
ated by the competing tools and asked to rank them based on their
understandability.

Test case selection. As part of the competition, we have gener-
ated thousands of test cases running each participant tool. Assessing
each such test case in terms of understandability is infeasible due
to constraints in time and the finances required to compensate the
human participants. We, therefore, conducted a small study with a
limited number of test cases getting evaluated. Our goal was to se-
lect one class from each subject program and compare the test cases
that are testing one of the methods of this class. For each project,
we selected one class and its method which we believe performs
the most generic and well-known functionality, so that it does not
require a lot of effort from the human participants to understand
what the class and the method do. However, Kex-concolic and
Kex-symbolic tools did not generate any test cases for the ta4j
subject. In contrast, for JSoup there was not a single class for which
all 5 competing tools generated test cases. Therefore, we had to
exclude ta4j and JSoup from this study. For the classes and their
method for the remaining three subjects, we detected all the test
cases that have a call on the method and selected randomly only one
of them. We gave preference to the test cases that have an assertion
that predicates on the return value of the method. However, not all
tools have generated such test cases.

The final task. The task presented to the human participant
consisted of (i) three Java classes their source codes provided (ii) five
test cases each from one of the five competing tools (iii) question(s)
asking the participant to rank the test cases for each class in terms
of understandability from the most understandable to the least
understandable (iv) question(s) asking the participant to describe in
natural text the behaviour of the test case they have rated the most
understandable (v) question(s) asking the participant to explain
why the test case they ranked the least understandable is hard to
understand (vi) the final questions asking the participant whether
the task had clear instructions, was easy to perform and whether
an hour of time provided for the task was enough. The questions in
points (iv) and (v) were used as attention questions, to ensure that
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Table 2: Statistics on number of test cases generation for each

tool and each time budget.

tool timeBudget Total # gen. tests Median # of gen. tests

randoop 30 630,425 204
120 2,070,129 485

kex-symbolic 30 71,395 82.5
120 294,839 262.5

kex-concolic 30 30,021 24
120 96,388 80

utbot-fuzzer 30 20,392 9
120 23,281 10

utbot-concolic 30 37,302 29
120 49,701 35

evosuite 30 54,965 35
120 43,443 23.5

the participant understands what the test cases are doing and can
justify the decision on ranking a test case at the lowest position.
In cases when these explanations were not satisfactory, the data
points of the participant were removed from the final dataset.

Participant Recruitment. We posted our study on Prolific
Academic3 which is a specialised crowdsourcing platform to collect
research data. We have indicated the knowledge of Java and JUnit
as the required skills to be allowed to participate in our study. We
offered a payment of 10 GBP to each participant (Prolific Academic
recommends at least 8 GBP per hour of work).

5 RESULTS OF THE JUNIT TESTING

COMPETITION

5.1 Results for Structural Coverage Criteria

Table 2 shows the total and average number of generated test cases
for each tool and time budget. As expected, increasing the time
budget generally leads to an increase in the number of generated
test cases for all tools, except for EvoSuite. This could be due to
EvoSuite’s minimization process, which aims to reduce the number
of generated tests while maintaining coverage. With a higher time
budget, EvoSuite has more time to explore the search space of
possible test cases to identify those that maximize coverage. It is
worth noting that both Kex-concolic and Kex-symbolic failed to
generate test cases for subject ta4j. Figures 1, 2, and 3 report the
distribution of line, branch, and mutation coverage of the tools, for
all CUTs for each specific time budget. Note that we considered the
median value for each CUTs, as we had 10 runs for each CUT.

Line Coverage. The tool with the lowest median line coverage
is the baseline Randoop (= 38.20%). This is an expected result as
the test case generation of Randoop is not guided by coverage.
Interestingly, increasing the time budget from 30 to 120 seconds
has no effect on the median line coverage, although it generates
more test cases (see Table 2). For all the other tools the increase
of time budget lead to an increase of line coverage. The tool that
performed the best is EvoSuite with a median of 97.00%.

Branch Coverage. As for line coverage, the tool with the lowest
median branch coverage (see Table 2) is Randoop (= 4.8%). Simi-
larly, the increase in the test budget leads to an increase in branch

3https://www.prolific.co/
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Figure 1: Line Coverage Ratio for 30 and 120 seconds.
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Figure 2: Branch Coverage Ratio for 30 and 120 seconds.

coverage for all tools except Randoop. The tools that achieve a me-
dian branch coverage greater or equal to 50% for at least one of the
time budget are Utbot-concolic, Kex-concolic and EvoSuite.

Mutation Coverage. The mutation coverage is the ratio be-
tween the number of mutants that were killed by at least one test
and the total number of mutants being generated. The performance
of the tools drops in a noticeable manner when it comes to the
mutation score with the median being equal to zero for all tools.
Moreover, for Kex-concolic and Kex-symbolic the mutation score
is zero for all subjects. Overall, EvoSuite achieves the highest
mutation score, followed by Utbot-concolic.

Scores and Rankings. The formula for the score [7] has been
created and improved during the previous editions of the tool com-
petition and takes into account the line and branch coverage, the
mutation score, and the time budget used by the generator. More-
over, it applies a penalty for flaky and non-compiling tests. We
observed a final score of 678.12 for EvoSuite, 530.71 for Utbot-
concolic, 426.19 for Randoop, 381.48 for Utbot-fuzzer, 195.09
for Kex-concolic and 128.80 for Kex-symbolic. The rankings of
the tools are reported in the column CoverageR of Table 4.

5.2 Results for the Test Case Understandability

Our goal for the test case understandability study was to obtain
rankings for the test cases from 20 participants. We evaluated each
submitted response manually and checked whether the responses
to the questions that require textual descriptions were properly

https://www.prolific.co/
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Figure 3: Mutation Coverage Ratio for 30 and 120 seconds.

Table 3: Result for Test Case Understandability Study.

Tool LMap Months DUtils Average

EvoSuite 2.38 2.08 2.23 2.23
Utbot-concolic 1.92 2.23 2.23 2.13
Utbot-fuzzer 3.54 2.77 2.69 3.00
Kex-symbolic 3.62 4.00 4.23 3.95
Kex-concolic 3.54 3.92 3.62 3.69

filled. If this was not the case, we excluded the entry from our
final dataset. In our attempt to replace the rejected entries with
high-quality responses, we hired 30 human participants overall.
However, only 13 of the entries had the required quality of the
responses and were used in our final dataset.

Table 3 reports the results of the study. Columns LMap, Months,
DUtils report the average rankings the human participants as-
signed for each tool to the test cases for LinkedMap, Months and
DistanceUtils classes accordingly. Column Average reports the
average across the test cases for the three classes. As the results
show, the tool with the highest understandability of the selected
test cases is Utbot-concolic, followed by EvoSuite.

5.3 Overall Results

Given the small number of test cases being evaluated and the small
number of human participants in the study to measure test case un-
derstandability, we gave the understandability score a low weight
of 10%. Therefore, our final score is measured as a weighted sum
between the final rankings for the coverage metrics and the un-
derstandability rankings, with the former having a weight of 0.9
and the latter having a weight of 0.1. Table 4 reports the ranking
obtained based on the coverage metrics, ranking based on the under-
standability and the ranking based on the combination of the two.
As we can see, the final ordering of the participant tools is EvoSuite,
followed by Utbot-concolic, Utbot-fuzzer, Kex-concolic and
Kex-symbolic.

6 CONCLUSIONS AND FINAL REMARKS

This year marks the eleventh edition of the Java Test Case Genera-
tion Competition which had 5 competing tools. In this edition, we

Table 4: Final Rankings.

Tool CoverageR UnderstandabilityR OverallR

EvoSuite 1.79 2.23 1.83
Utbot-concolic 2.61 2.13 2.56
Utbot-fuzzer 3.76 3.00 3.68
Kex-symbolic 4.995 3.95 4.89
Kex-concolic 3.95 3.69 3.92

used the largest benchmark dataset and introduced a new qualita-
tive metric to measure the understandability of the test cases. While
running the tools, we encountered an issue with JaCoCo when it
would produce an error if it had to instrument two classes with the
same name, but coming from different dependencies. We handled
this error via manual intervention this year, we plan to apply a fix
that would avoid it automatically in the upcoming editions. More-
over, for the next editions, we aim to improve the current design
of the understandability study, to ensure the higher quality of the
responses, by coming up with more meaningful criteria to select
the test cases and stricter criteria to select the participants.
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