GRADESTYLE: GitHub-Integrated and Automated
Assessment of Java Code Style

Callum Iddon
University of Auckland
Auckland, New Zealand
cidd131@aucklanduni.ac.nz

Abstract—Every programming language has its own style
conventions and best practices, which help developers to write
readable and maintainable code. Learning code style is an essential
skill that every professional software engineer should master. As
such, students should develop good habits for code style early on,
when they start learning how to program. Unfortunately, manually
assessing students’ code with timely and detailed feedback is often
infeasible, and professional static analysis tools are unsuitable for
educational contexts. This paper presents GRADESTYLE, a tool
for automatically assessing the code style of Java assignments.
GRADESTYLE automatically checks for violations of some of the
most important Google Java Style conventions, and Java best
practices. Students receive a report with a code style mark, a
list of violations, and their source code locations. GRADESTYLE
nicely integrates with GitHub and GitHub Classroom, and can be
configured to provide continuous feedback every time a student
pushes new code. We adopted our tool in a second-year software
engineering programming course with 327 students and observed
consistent improvements in the code style of their assignments.

Index Terms—computing education, code style, programming
courses, automated marking, GitHub, Java programming language

[. INTRODUCTION

Enforcing code style conventions and best practices is
paramount to have maintainable code that is less prone to
errors. As such, the importance of good code style is well
acknowledged by both academia and industry [1], [2].

Developing good habits for code style early on when learning
to program is essential [3]. One difficulty is that novice students
will not necessarily agree that “expert code” (which possesses
better code style) is more readable than non-expert code—
despite them recognising that it is expert code [4]. This presents
a major challenge for instructors to get novice programmers
on board to practice good code style [5], especially as student
learning demands frequent and timely feedback that is too
difficult to maintain when manually marking [6].

Code style should be marked to incentivise students to learn
how to write high quality code. Otherwise, they would likely
neglect code style in favour of the functionality aspect of an
assignment. Indeed, numerous studies report that a wide range
of code quality issues are prevalent in student code [7]-[9].

Automatic static analysis tools (e.g., CHECKSTYLE [10],
PMD [11], and SONARQUBE [12]) have made valuable
contributions in improving code quality for industry and open-
source software projects [13]. However, these tools tend to

Nasser Giacaman
University of Auckland
Auckland, New Zealand
n.giacaman@auckland.ac.nz

Valerio Terragni
University of Auckland
Auckland, New Zealand
v.terragni @auckland.ac.nz

be a challenge even for professionals to incorporate into
their development workflow [14]. These tools also tend to be
unsuitable for educational contexts [6], especially if the desire is
to have them student-facing since they can be overwhelming to
students [6]. In addition, static analysis tools were not intended
to be used as educational tools, and thus they do not translate
violations into a code quality mark.

In an educational context, automated feedback and assess-
ment tools have tended to focus on functionality rather than
code quality [2], [15]-[19]. The few tools that provide code
style feedback to students have helped students improve code
quality [5], [6], enabling scalability to support large numbers
of students and submissions [20].

This paper presents GRADESTYLE [21], a code style marker
tool for assignments in Java, which is one of the most
popular programming language of choice for introductory
programming courses [22]. GRADESTYLE detects 12 important
categories of Java code style violations and best practice
violations. GRADESTYLE relies on existing professional code
style checkers (i.e., CHECKSTYLE and PMD) to detect certain
categories of violations (e.g., formatting issues and code
clones). However, it also implements novel detectors of other
important categories of code style and best practices that are not
supported by neither current professional code style checkers
nor educational code style markers.

With the popularity of Git and educational solutions, such
as GitHub Classroom, we also wanted to support programming
courses as they increasingly use Git platforms to manage pro-
gramming assignments [23]. As such, GRADESTYLE integrates
with GitHub.

GRADESTYLE is publicly available under the AGPLv3
license, which allows instructors to use it in their courses
and to extend it with new detectors of code style violations.

https://github.com/

Digital-Educational-Engineering/gradestyle

II. GRADESTYLE

Figure 1 shows the logical workflow of GRADESTYLE.
There are two alternative ways to use the tool: In the first way
(Figure 1 left), the instructor decides when to run the automated
assessment and send the reports to students. GRADESTYLE
generates markdown reports, shared with students either by

This is the authors’ version of the paper that has been accepted for publication in the
45th IEEE International Conference on Software Engineering (ICSE 2023)

Marking or Feedback from Instructor Automated Feedback
Input T eH '
; GH
@]' ! O Actions !
= output Pagd /S | s
=& e-mail]' - gitpush | !
config file student 1| GRADESTYLE i
- E> E> GRADESTYLE [> () [> OR [> (‘iﬂ P 3 = g
Instructor { ; code ste/le <!¢: Students (!¢ <] 1 @
GHC repos reports . . ; - 3
GH issue GH issue violations i configo%ile 3
Fig. 1. Logical workflow of GRADESTYLE showing two alternative ways for using it.

email or by opening a GitHub issue in each student’s repo. In
this case, the automated assessment can either be a preliminary
code style feedback, or the final code style mark (if the
assignment is due). In the second way (Figure 1 right),
GRADESTYLE is integrated in GitHub and provides continuous
automated feedback. Every time a student pushes commits to
the main branch, a GitHub action runs GRADESTYLE and
automatically opens a GitHub issue with the violations, if any.

A. Input

GRADESTYLE runs with the command: java -jar
GradeStyle.jar config.properties. The input
configuration file specifies (i) the text messages to attach to
each individual report, and (ii) the categories of violations to
mark with their settings. If the instructor runs GRADESTYLE
(Figure 1 left), the config file must also contain the path to a
folder containing the students’ repos. Such a folder can be
automatically downloaded from GitHub Classroom using the
provided scripts. By default, GRADESTYLE analyses the latest
commit of the main branch. Nonetheless, it can also analyse
student assignments that are not Git repos.

Every violation category shares three setting fields:

mode = {ABSOLUTE, RELATIVE}. ABSOLUTE means that
the tool reports the raw number of violations for this category
regardless of the code size. RELATIVE means that the tool
uses the number of violations divided by the ‘“size” of the
assignments. This is to avoid penalising students with larger
codebases. For example, if the violations of VariableNames
is set to RELATIVE, the number of violations is adjusted
considering the total number of declared variables. This avoids
treating a student that has a few violations over a large number
of variables the same as another student with the same number
of violations over fewer variables.

scores = (1, x9, - xk) € N, where z; < 2y Vi=1---k—
1. k represents the maximum marks for the category. For
example, let us assume that we set k = 3 : (x1,x9,x3). For
each category, a student can get four possible marks: 3, 2,
1, or O (the higher, the better). The sequence of numbers
(1,2, 23) specifies how GRADESTYLE calculates the marks
based on the number of violations. Let num-viol denote
the number of violations for that category. Students will get 3
marks (full marks) if num-viol < xq, 2 marks if num-viol
> ¢y and < x5, 1 mark if num-viol > x5 and < 3, and
0 marks if num-viol > z3. For example, given the scores
(1 = 4,29 = 6,25 = 8); if students make two violations,

they would still get full marks (= 3) because 2 < 1, while if
they make seven violations then they will get one mark.

This representation gives a high degree of flexibility. Instruc-
tors could set these thresholds higher for the first assignment
to tolerate mistakes and boost students’ confidence. Also,
instructors could decide to give more weight (i.e., a higher k)
to certain categories of violations, or give higher thresholds to
those violations that are more difficult to avoid.

examples = n. The maximum number of examples of viola-
tions to show students in their feedback report. Each example is
a GitHub hyperlink pointing to the exact line number containing
the violation. Setting n relatively small (=10 or =20) avoids
polluting the report with too many examples.

Besides these three settings, some categories have specific
ones, which we explain below.

B. Code Style Violations

This subsection describes the code style violations currently
implemented in GRADESTYLE. The two most popular and
well-known coding conventions for Java are Oracle’s (Sun’s)
Java Code Conventions [24] and Google’s Java Style Guide [25].
They are mostly identical, except for a few differences. Between
the two, we chose Google’s because the last time Oracle
updated the conventions was over 23 years ago (on April
20, 1999). Google’s Java Style Guide (last updated in 2018)
provides guides for modern Java features that were introduced
after 1999, and recognises that Java’s code style has evolved
and matured over time [26].

We decided not to blindly check for all of Google’s Java
Style violations because that would be daunting for students,
negatively affecting their learning and motivation [27]. Not
every violation has the same severity level. As such, we selected
a subset of them that we deem to be the most important
ones contributing to code maintainability. We also included
additional violations, not included in the Google’s Java Style,
representing best practices for Java and OOP programming.

Google’s Java Style violations

Formatting Indentation, brace placement, and white spaces
must follow Google’s Java Style Guide [25]. A violation is
generated for every line of code that disobeys a formatting rule.
If a single line introduces multiple violations, GRADESTYLE
reports multiple violations that reference the same line.

PackageNames Package names should contain lower-
case letters only, and must follow the directory struc-

ture. For example, the Java class A.java located in
src/com/domain/A. java must have as package declara-
tion package com.domain;. A violation is every package
name that does not satisfy this convention.

ClassNames Class and enum names should be in UpperCamel-
Case (the first letter of each internal word capitalised). Class
names should be nouns or noun phrases. For example, Car
or ArrayList. Following Google’s Java code style, class
names can start with an adjective followed by a noun (e.g.,
LinkedList or ImmutableList). A violation is every
class declaration whose name does not satisfy this convention.

MethodNames Method names should be verb phrases in
lowerCamelCase (the first letter lowercase, with the first letter
of each internal word capitalised). A violation is every method
declaration whose name that does not satisfy this convention.

VariableNames Variable names (including instance fields,
parameters, and local variables) should be in lowerCamel-
Case, and should not start with underscore _ or dollar
sign $ characters, even though both are allowed. Names
representing variables that are both static and final must
be all uppercase using underscores to separate words (e.g.,
MAX_ITERATIONS, COLOR_RED). A violation is every

variable name that does not satisfy the above conventions.

JavaDoc GRADESTYLE verifies that every public method,
class, and enum has its own JavaDoc, and every JavaDoc
should contain at least minWords. We do not require JavaDoc
for instance fields as they should always be private (see the
PrivateMembers category). The JavaDoc of methods should
have entries for the parameter list (with @param tags), the
return value (with @return tags), and any throw exceptions
(with @throws tags). These entries should be consistent with
the methods’ signatures. A violation is every method, class, and
enum without a JavaDoc or each line in a method’s JavaDoc
that contains inconsistency among the @param, @return,
and @throws tags and the corresponding method’s signature.

Java’s Best Practices

Commenting This category has two levels of granularity:
Line level Good code style demands that code comments
provide additional information that is not readily available in
the code itself. GRADESTYLE checks this by computing the
Levenshtein distance [28] between every line of comment and
the associated line of code (i.e., the line of code immediately
under the comment, or on the same line). Such a distance
measures the number of edits needed to transform one string
into another [28]. This category requires an additional set-
ting (LevenshteinDistance) that specifies the minimum
allowed Levenshtein distance between a comment and its

associated line of code. For example, consider the following:
isOpen =

false; // set isOpen to false

This raises a violation as the distance between isOpen =
false; and “set isOpen to false” is 8, which is lower than
the minimum allowed (e.g., 10). A violation is every line of
comment that is too similar to its associated line of code.

Method level 1t is unlikely that every line in a method
needs to be commented or that long methods do not need any
comments. As such, this category requires additional settings
that define a lower and upper bound on the percentage of com-
mented lines of code in a method. A violation is every method
that contains comments for less than minFrequency or more
than maxFrequency of the methods’ total lines of code. For
marking our students, we found that minFrequency = 10%
and maxFrequency = 70% work reasonably well. However,
short methods (e.g., getters and setters) often do not require
comments. Therefore, this category needs an additional setting
(minLines) that specifies the minimum lines of code that a
method must have to be checked against the criteria above.

PrivateMembers An important OO design principle is infor-
mation hiding. Instance fields of a class should be private or
protected. Other classes should use public getters/setters
to access them. This protects data from unwanted access.

Ordering The order of elements inside a class declaration has
a great effect on code readability [25]. However, there is no
single correct way for how to do it. In fact, Google’s Java
Style acknowledges the importance of ordering class elements,
but does not impose any order [25]. We chose a popular order
of elements, which instructors can change according to their
preference: (i) inner classes, (ii) static fields, (iii) static methods,
(iv) instance fields, (v) constructors, and (vi) instance methods.
StringConcatenation Frequent string concatenation decreases

runtime performance significantly. Cumulative string concate-
nation in a loop, like the following, should be avoided:

String nums = "";
for (int i = 0; 1 < 100000; i++) |
nums += " " + i;

}

The reason is that Java instantiates a new String object
at every loop cycle. One can achieve the same result with a
StringBuilder, avoiding needless object creations:

StringBuilder sb = new StringBuilder();

for (int i = 0; 1 < 100000; i++) {
sb.append (" ") .append (i) ;

}

String nums = sb.toString();

On a 2.9 GHz Intel i7, the first code snippet takes 4,010 ms
to run, while the second only 7 ms. A violation is every String
concatenation inside a loop (i.e., for, do, or while).

Useless High quality source code should be free of useless
code that does not play any role in the runtime behaviour of the
program. GRADESTYLE checks for the presence of commented
code and unused imports, methods, and variable declarations.
A violation is every line of code that contains useless code.

Clones A code clone is a code fragment that is identical or
similar to another [29]. Code clones are considered harmful for
two main reasons. First, multiple duplicates of code increase
maintenance costs. Second, inconsistent changes to cloned
code introduce faults. There are four types of clones [29]:
Type-1 Exact copy, the only differences are in white space and

Scores Feedback
Method Names
Category Score L o
src/main/java/gradestyle/demo/main.java:51:
Method Names 1/3 This method name does not contain a verb.
Commenting 1/3 Commenting
src/main/java/gradestyle/demo/util/Utils.java:9:
Useless 1/2 This comment is very similar to the code it is about.
Total 318 Useless

src/main/java/gradestyle/demo/main.java:41:

This comment is code.

Fig. 2. Example of GRADESTYLE’s student report.

comments. Type-2 Same as type 1, but also variable renaming.
Type-3 (near-miss clones) Same as type 2, but also changing or
adding a few statements. Type-4 (semantic clones) Semantically
identical, but not necessarily the same syntax.

These types are increasingly challenging to detect, with
semantic clone (type-4) being the most complex one.
GRADESTYLE detects near-miss clones (type-3) because se-
mantic clone detection leads to many false alarms [30]-[32].
This category requires an additional setting (tokens) that
specifies the minimum number of identical tokens that two
code fragments must have to be considered as near-miss clones.
A violation is every code fragment that is a near-miss clone.

C. Output

The output of GRADESTYLE is twofold: (i) a folder contain-
ing the personalised code style reports for each of the students,
and (ii) a CSV file where each row breaks down, for each
student, the number of violations per category. The last column
of each row gives the code style mark, which is the sum of the
scores of each category specified in the config file. Such a CSV
file facilities uploading the marks to Learning Management
Systems (e.g., Canvas, Moodle).

Figure 2 shows an example report that GRADESTYLE
automatically generates. The beginning of the report gives
a table summarising the scores for each category. It follows
the instances of the detected violations (including the exact
location of the violation in the code via the GitHub link.

nurturing their ability to self-regulate their learning [33].

To showcase the violations that GRADESTYLE detects,
we created this GitHub repository https://github.
com/Digital-Educational-Engineering/
gradestyle—demo-java. The repository is based
on one of our student assignments and contains instances of
all the detectable violations. The automatically generated code
style report for this repository is: https://github.
com/Digital-Educational-Engineering/
gradestyle—demo-java/issues/1.

D. Implementation

We implemented the majority of GRADESTYLE’s novel vio-
lation detectors using JAVAPARSER [34] (v. 3.23.1), a library to
analyse Java source code and identify the language constructs of
interest (e.g., variable names for the VariableNames category).

To detect violations of the ClassNames and MethodNames
categories, we use EXTJWNL [35] (v. 2.0.5) in combination
with regex expressions. The regex expressions check for camel-
case notation in the extracted names and EXTIWNL checks
for the proper use of nouns and verbs in class and method
names, respectively. In particular, GRADESTYLE relies on the
Part of Speech tagger (PoS) of EXTJWNL to identify a word’s
function (e.g., subject, article, verb) in a class or method name.

GRADESTYLE also relies on the APIs of CHECKSTYLE [10]
(v. 10.3.2) to implement three detectors (i.e., Formatting,
PackageNames, and JavaDoc). For the code clone detection we
used PMD [11] (v. 6.45.0) CoPY/PASTE DETECTOR (CPD),
configuring it for Type-3 code clones. To read the GitHub
repos and to open GitHub issues, GRADESTYLE relies on the
libraries JGIT [36] (v. 6.0.0) and GITHUB API [37] (v. 1.3).

ITI. IMPACT DISCUSSION

This section discusses our application of GRADESTYLE in a
second-year object-orientated programming course from 1,488
submissions made by 327 students.

A. Course Context

The course has four programming based assignments for
students to apply theoretical components in a practical environ-
ment. In previous years, teaching assistants manually marked
the code style of each submission and gave individual feedback.
Feedback would not be given to students for up to six weeks
after submission due to the high volume of marking. Students
would also only receive a brief list of issues that were found
in their code, if any. Feedback would often be ignored due to
the late delivery and vague descriptions of the issues [38].

In 2022, we used GRADESTYLE for formative and summa-
tive feedback of code style for all four assignments. Code style
contributed a total of 5.5% towards the final grade.

The first assignment (A1) was a first introduction to OO
programming concepts and the Java language. The second
assignment (A2) required students to model a problem using
OO principles. Assignment three (A3) required students to
apply design patterns to their model of an OO problem.
The fourth assignment (A4) required students to design data
structures to which they apply a search algorithm. We evaluated
students using the Formatting, ClassNames, MethodNames,
VariableNames, and Commenting categories for all assignments.
A2, A3, and A4 also included the PrivateMembers and
Ordering categories. The Useless category was included for A3
and A4. We added additional categories throughout the course
to allow students to focus on a few aspects of their code and
gradually introduce new code quality attributes.

We used GitHub Classroom (GHC) to manage the assign-
ments. For each assignment, GHC created the students’ repos-
itories and initialised them with starter code that we provided
to them. Such starter code gives skeleton classes with missing
functionality. To finish the assignment, students had to complete
the skeleton classes and create new classes and methods. We
gave around four weeks to submit each assignment. A few
days before the deadline, we ran GRADESTYLE on the latest
commit and provided the feedback report to students.

90%

¥ Al A2 A3 A4
©
=
o M
2> 80% N \j
g N«}J’ w
(]
©
I AR W
o 70%
()]
©
-
g \
<< 60%
NS L L N NS
W Naa s O A
AN NN NN NN

Fig. 3. Average code style mark over time for the four assignments. Red
vertical lines indicate when we released the code style feedback.

B. Evaluation Setup

To evaluate the impact of GRADESTYLE on students’
learning, we analysed every commit of all assignments to
track the average code style mark throughout the semester,
totaling 22,364 Git commits. We included in the results only
students who had made a substantial contribution to their
assignment before receiving the first preliminary feedback. The
contribution requirement ignores the students that started after
the first feedback was released. Also, it ignores the code style
marks of the initial commits, which are disproportionately high
as the starter code had no violations and students had not made
many changes. We measured a student’s contribution by the
cumulative total of insertions and deletions to their GitHub
repository. We define a substantial contribution one with at least
100 changes for Al, and 600 for the remaining assignments.
We reduced the contribution requirement for Al as it was a
significantly smaller assignment. To report average marks of
a sufficiently large number of students, we report the average
after 75% of students had made a significant contribution.

C. Results and Discussion

Figure 3 shows the results. Each black line represents the
average code style marks over time for each assignment. Each
line starts when at least 75% of students made a substantial
contribution, and ends when the assignment was due. Vertical
red lines indicate when we released the formative feedback.

The average code style mark increases after each feedback
report. The impact of the feedback for Al is more pronounced
as it was the first feedback students received for code style.
The minimum average mark increases from 59.11% (Al) to
69.66% (A2), 74.95% (A3), and 79.02% (A4) throughout
the course despite the introduction of additional categories.
The final average marks of 84.59% (Al), 81.82% (A2),
86.52% (A3), and 87.92% (A4) show an upward trend. The
exception of the final average mark for Al being higher than
A2 was due to the lower number of categories considered
for Al. The average mark after 75% of students had made
a significant contribution (the beginning of each black line)
increased from 68.06% (A1) to 74.22% (A2), 78.36% (A3),
and 85.56% (A4). This demonstrates the lasting impact of

GRADESTYLE on students as they maintained better code
quality before receiving any feedback in later assignments.

To analyse the largest assignment, A4, GRADESTYLE takes
on average 741 ms per commit. Such a low computational
cost allows the deployment of GRADESTYLE in Massive Open
Online Courses (MOOCs) with thousands of students. Also,
when used with GitHub Actions, GRADESTYLE will not easily
consume all of the GitHub Actions budget.

IV. RELATED WORK

Professional software developers often rely on static analysis
tools (informally called “linters”) to verify that their code
follows an expected set of code conventions. Some of the
popular examples include CHECKSTYLE [10], PMD [11],
SONARQUBE [12], ERRORPRONE [39], and SPOTBUGS [40].
While such tools are popular and contribute to improving
code style, they are unsuitable for educational contexts [5],
[27], [41]. Indeed, even when provided with linters that
identify code quality issues, students will often neglect the
recommendations [42]. The reason is that such tools report a
manifold of violations that can overwhelm students [6], [41].
Moreover, linters do not translate violations into a code style
score. Such a score is essential for students to track their
progress and for instructors to aid automated assessment.

To address such inadequacies, DROP PROJECT [41],
PROGEDU [5], CSS [43], and HYPERSTYLE [27] report code
style violations in a way that is more suitable for students
who are learning programming. These tools are built on top of
professional linters (such as CHECKSTYLE or PMD) but they
change how they report violations to students, often including
a code style mark. GRADESTYLE belongs to such a category
of tools. Similarly, it leverages existing linters for detecting
some categories of violations. However, GRADESTYLE differs
from these tools by detecting violation categories beyond those
detected by existing professional linters. For example, linters
detect class and method names that are not UpperCamelCase
and lowerCamelCase, respectively. However, differently from
GRADESTYLE, they do not employ natural language processing
to verify the correct usage of noun or verb phrases. Moreover,
GRADESTYLE implements novel detectors guided by Java
best practices. For example, it detects comments that are too
syntactical similar to the associated line of code, and string
concatenations inside loops.

Another key difference of GRADESTYLE compared to most
of the above tools is in its workflow—it aims to seamlessly
integrate in courses using Git, such as GitHub Classroom.

V. CONCLUSION

Promoting code style awareness is crucial for turning
students into professional developers. This paper presented
GRADESTYLE, a tool for the automated assessment and feed-
back of Java code style. Our experience of using GRADESTYLE
on a class of 327 undergraduate students shows that the number
of violations decreased over time. The feedback from the tool
contributed (at least in part) to this downtrend.

In the future, we will support other popular programming
languages, and show the evolution of code style over time.

[1]

[2]

[16]

[17

[19]

REFERENCES

A. Tornhill and M. Borg, “Code red: the business impact of code quality -
a quantitative study of 39 proprietary production codebases,” in TechDebt
’22: International Conference on Technical Debt, Pittsburgh Pennsylvania,
May 17-18, 2022 (N. A. Ernst, V. Lenarduzzi, and T. Sharma, eds.),
pp. 11-20, ACM, 2022.

H.-M. Chen, B.-A. Nguyen, Y.-X. Yan, and C.-R. Dow, “Analysis of
learning behavior in an automated programming assessment environment:
A code quality perspective,” IEEE Access, vol. 8, pp. 167341-167354,
2020.

K. Ala-Mutka, T. Uimonen, and H.-M. Jarvinen, “Supporting students
in C++ programming courses with automatic program style assessment,”
Journal of Information Technology Education: Research, vol. 3, pp. 245~
262, January 2004.

E. S. Wiese, A. N. Rafferty, and A. Fox, “Linking code readability,
structure, and comprehension among novices: It’s complicated,” in 2079
IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET), pp. 84—
94, 2019.

H.-M. Chen, W.-H. Chen, and C.-C. Lee, “An automated assessment
system for analysis of coding convention violations in Java programming
assignments.,” J. Inf. Sci. Eng., vol. 34, no. 5, pp. 1203-1221, 2018.

J. C. Paiva, J. P. Leal, and A. Figueira, “Automated assessment in
computer science education: A state-of-the-art review,” ACM Trans.
Comput. Educ., vol. 22, jun 2022.

S. H. Edwards, N. Kandru, and M. B. Rajagopal, “Investigating static
analysis errors in student Java programs,” in Proceedings of the 2017
ACM Conference on International Computing Education Research, ICER
17, (New York, NY, USA), p. 65-73, ACM, 2017.

G. De Ruvo, E. Tempero, A. Luxton-Reilly, G. B. Rowe, and N. Gia-
caman, “Understanding semantic style by analysing student code,” in
Proceedings of the 20th Australasian Computing Education Conference,
ACE 18, (New York, NY, USA), p. 73-82, ACM, 2018.

P. Ardimento, M. L. Bernardi, and M. Cimitile, “Software analytics to
support students in object-oriented programming tasks: An empirical
study,” IEEE Access, vol. 8, pp. 132171-132187, 2020.

“Checkstyle.” https://checkstyle.org, Accessed: Oct 2022.

“PMD.” https://pmd.github.io, Accessed: Oct 2022.

“SonarQube.” https://www.sonarqube.org, Accessed: Oct 2022.

C. Vassallo, S. Panichella, F. Palomba, S. Proksch, A. Zaidman, and
H. C. Gall, “Context is king: The developer perspective on the usage
of static analysis tools,” in 25th International Conference on Software
Analysis, Evolution and Reengineering, pp. 38-49, 2018.

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?,” in 35th
International Conference on Software Engineering, pp. 672—681, 2013.
H. Keuning, B. Heeren, and J. Jeuring, “A tutoring system to learn code
refactoring,” in Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education, SIGCSE ’21, (New York, NY, USA),
p. 562-568, ACM, 2021.

R. Luukkainen, J. Kasurinen, U. Nikula, and V. Lenarduzzi, “ASPA:
A static analyser to support learning and continuous feedback on
programming courses. an empirical validation,” in 2022 IEEE/ACM 44th
International Conference on Software Engineering: Software Engineering
Education and Training (ICSE-SEET), pp. 29-39, 2022.

L. C. Ureel II and C. Wallace, “Automated critique of early programming
antipatterns,” in Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, SIGCSE °19, (New York, NY, USA),
p. 738-744, ACM, 2019.

N. Korber, K. Geldreich, A. Stahlbauer, and G. Fraser, “Finding anomalies
in scratch assignments,” in 43rd IEEE/ACM International Conference
on Software Engineering: Software Engineering Education and Training,
ICSE (SEET) 2021, Madrid, Spain, May 25-28, 2021, pp. 171-182, IEEE,
2021.

X. Liu, S. Wang, P. Wang, and D. Wu, “Automatic grading of
programming assignments: an approach based on formal semantics,”
in Proceedings of the 4l1st International Conference on Software
Engineering: Software Engineering Education and Training, ICSE (SEET)
2019, Montreal, QC, Canada, May 25-31, 2019 (S. Beecham and D. E.
Damian, eds.), pp. 126-137, IEEE / ACM, 2019.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]
[37]

[38]

[39]
[40]
[41]

[42]

[43]

H. Keuning, J. Jeuring, and B. Heeren, “A systematic literature review of
automated feedback generation for programming exercises,” ACM Trans.
Comput. Educ., vol. 19, no. 1, 2018.

Callum Iddon, Nasser Giacaman, and Valerio Terragni, “Gradestyle.”
https://github.com/Digital- Educational- Engineering/gradestyle.

J. Hong, “The use of java as an introductory programming language,”
XRDS: Crossroads, The ACM Magazine for Students, vol. 4, no. 4,
pp. 8-13, 1998.

Y.-C. Tu, V. Terragni, E. Tempero, A. Shakil, A. Meads, N. Giacaman,
A. Fowler, and K. Blincoe, “Github in the classroom: Lessons learnt,”
in Australasian Computing Education Conference, ACE °22, (New York,
NY, USA), p. 163-172, ACM, 2022.

Oracle, “Oracle’s code conventions for the java programming
language.” https://www.oracle.com/java/technologies/javase/
codeconventions-contents.html, Accessed: Oct 2022.

Google, “Google java style guide.” https://google.github.io/styleguide/
javaguide.html, Accessed: Oct 2022.

A. Trautsch, S. Herbold, and J. Grabowski, “A longitudinal study of
static analysis warning evolution and the effects of PMD on software
quality in Apache open source projects,” Empirical Software Engineering,
vol. 25, no. 6, pp. 5137-5192, 2020.

A. Birillo, I. Vlasov, A. Burylov, V. Selishchev, A. Goncharov,
E. Tikhomirova, N. Vyahhi, and T. Bryksin, “Hyperstyle: A tool for
assessing the code quality of solutions to programming assignments,”
in Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education, (New York, NY, USA), p. 307-313, ACM, 2022.
L. Yujian and L. Bo, “A normalized levenshtein distance metric,” I[EEE
transactions on pattern analysis and machine intelligence, vol. 29, no. 6,
pp. 1091-1095, 2007.

E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?,” in 2009 IEEE 31st International Conference on Software
Engineering, pp. 485-495, 1IEEE, 2009.

V. Saini, F. Farmahinifarahani, H. Sajnani, and C. Lopes, “Oreo: Scaling
clone detection beyond near-miss clones,” in Code Clone Analysis, pp. 63—
74, Springer, 2021.

R. Tiarks, R. Koschke, and R. Falke, “An assessment of type-3 clones
as detected by state-of-the-art tools,” in 2009 Ninth IEEE International
Working Conference on Source Code Analysis and Manipulation, pp. 67—
76, 1IEEE, 2009.

M. S. Uddin, C. K. Roy, K. A. Schneider, and A. Hindle, “On
the effectiveness of simhash for detecting near-miss clones in large
scale software systems,” in 2011 18th Working Conference on Reverse
Engineering, pp. 13-22, IEEE, 2011.

C. Ott, A. Robins, and K. Shephard, “Translating principles of effective
feedback for students into the cs1 context,” ACM Trans. Comput. Educ.,
vol. 16, jan 2016.

Danny van Bruggen, “The most popular parser for the Java language.”
http://javaparser.org, Accessed: Oct 2022.

YourKit, LLC, “Java API for creating, reading and updating dictionaries
in WordNet format.” https://extjwnl.sourceforge.net/, Accessed: Oct 2022.
PMD Team, “JGit: Java library implementing the Git version control
system:.” https://www.eclipse.org/jgit, Accessed: Oct 2022.

Kohsuke Kawaguchi, “GitHub-API for Java.” https://github-api.kohsuke.
org, Accessed: Oct 2022.

D. Salter, “The challenge of feedback: Too little too late,” in Proceedings
of EdMedia + Innovate Learning 2008 (J. Luca and E. R. Weippl, eds.),
(Vienna, Austria), pp. 3925-3926, Association for the Advancement of
Computing in Education (AACE), June 2008.

“Error Prone.” http://errorprone.info. Accessed: October 2022.
“SpotBugs.” https://spotbugs.github.io. Accessed: October 2022.

B. P. Cipriano, N. Fachada, and P. Alves, “Drop Project: An automatic
assessment tool for programming assignments,” SoftwareX, vol. 18, pp. 1-
7, 2022.

H. Keuning, B. Heeren, and J. Jeuring, “Code quality issues in student
programs,” in Proceedings of the 2017 ACM Conference on Innovation
and Technology in Computer Science Education, ITiCSE 2017, Bologna,
Italy, July 3-5, 2017, pp. 110-115, ACM, 2017.

O. Karnalim and Simon, “Promoting code quality via automated feedback
on student submissions,” in /IEEE Frontiers in Education Conference,
FIE 2021, Lincoln, NE, USA, October 13-16, 2021, pp. 1-5, IEEE, 2021.

