
Evolving a Programming CS2 Course:
A Decade-Long Experience Report

Nasser Giacaman

n.giacaman@auckland.ac.nz

University of Auckland

Auckland, New Zealand

Partha Roop

p.roop@auckland.ac.nz

University of Auckland

Auckland, New Zealand

Valerio Terragni

v.terragni@auckland.ac.nz

University of Auckland

Auckland, New Zealand

ABSTRACT
Despite instructors’ best efforts in designing and delivering any

given course, changes are likely required from time to time. This

experience report presents the changes made in a second-year pro-

gramming course for non-computing engineering majors over a

decade’s worth of effort, and the reasons behind those changes. The

changes were often reactive—in response to student feedback. How-

ever, many other changes were inspired by the desire to trial new

interventions in the hope of strengthening the students’ positive

experience. In addition to personnel and course content changes, the

gradual evolvement included how labs, assignments, and activities

were structured and executed. Teaching delivery evolved, alongwith

a number of small-scale interventions that eventually became inte-

gral elements of the course. When COVID-19 demanded a sudden

shift to online learning, the course was prepared to adapt quickly

and successfully. The contributions here come in the form of lessons

learned over the past decade: what worked, and what did not. We

present the large rangeof changes—and their rationales—that arepar-

ticularly relevant and applicable to programming courses targeting

engineering students where the luxury of pedagogically-friendlier

programming languages is not possible.

CCS CONCEPTS
• Software and its engineering→ Object oriented languages; •
Social and professional topics→Computing education; •Ap-
plied computing→ Education.

KEYWORDS
Course Evolution, Course Redesign, CS2, Long-Term Reflection,

Programming, Student Evaluations, Teaching Reflection.

ACMReference Format:
Nasser Giacaman, Partha Roop, and Valerio Terragni. 2023. Evolving a Pro-

gramming CS2 Course: A Decade-Long Experience Report. In Proceedings
of the 54th ACM Technical Symposium on Computer Science Education V. 1
(SIGCSE 2023), March 15–18, 2023, Toronto, ON, Canada.ACM, New York, NY,

USA, 7 pages. https://doi.org/10.1145/3545945.3569831

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.
© 2023

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of
the 54th ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE 2023),
March 15–18, 2023, Toronto, ON, Canada, https://doi.org/10.1145/3545945.3569831.

1 INTRODUCTION
Large programming courses

1
have always contributed additional

teaching andmanagement challenges—particularly around the grad-

ing of assessments [8]. Often large courses demand a distributed

approach for components such as tutorials, lab sessions, and the

grading of assignments. Distributing resources in this way will in-

evitably introduce inequitable inconsistencies as students might not

receive the same support and treatment [15].

To further complicate matters, some engineering disciplines de-

mand that students are taught using programming languages (such

as C++) with reputations of being problematic and too complex for

beginnerprogrammers [18].Whilemuchof thecomputingeducation

community has moved to friendlier programming languages (such

as Python) with the belief of its lower learning curve, this does not

necessarily mean that students will struggle less due to the language

alone [3].More educational attention is needed, as such attitudes dis-

missingC++arenegatively impactingpreparedness inkey industries

(such as telecommunications and embedded systems) [35].

Practical activities are highly accepted as an essential compo-

nent to learning programming [32]. Well-designed assignments are

attributed to contributing to the bulk of students’ experience [10].

Programming assignments need to meet many criteria to be consid-

ered a success: relevance to a real-world problem, focused on the

intended concepts, be challenging, interesting, and while allowing

for creativity [33]. While valuable for learners [26], labs also impose

their own set of challenges [5, 23].

But improving the students’ overall learning journey is not limited

to refining individual course components—such as assignments or

lab exercises alone. Instead, a holistic approach is often required that

will include many modifications to be applied over many years [36].

It iswith the collective changes that general improvementmay be ob-

served,while acknowledging fluctuations in student satisfaction and

learningarepossible along theway.Given the long-termnatureofno-

ticeable improvements, instructor retention can play a key role [38].

In this paper, we present our accumulated experience in con-

stantly evolving a CS2 course over almost a decade. We believe that

the insights emerged from this evolution can benefit the computing

education community with valuable lessons learned. Indeed, digital

technologies are fast evolving and demanding constant improve-

ments.While therearemanystudies that investigate innovativeways

to redesignprogramming courses (e.g., [14, 16, 21, 36]), only fewstud-

ies reflect on the continuous evolution of programming courses span-

ning several years [4, 29, 39]. However, such studies mainly focus on

evolving course content, while this paper brings a novel reflection

from an equally important aspect: lecturing style and organisation.

1
Even 100+ can be considered large [15].

https://orcid.org/0000-0001-6885-1571
https://orcid.org/0000-0001-9654-5678
https://orcid.org/0000-0001-5885-9297
https://doi.org/10.1145/3545945.3569831
https://doi.org/10.1145/3545945.3569831

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. Nasser Giacaman, Partha Roop, and Valerio Terragni

Wehaveexperienced teaching thesamecourse foralmostadecade,

andwitnessed the impact of those iterative changes—many of which

were due to scare resources and budgets in the face of increasing

student enrollments [31]. In recognition of the difficulties associ-

ated with analysing qualitative evaluations [34], we share a brief

synthesis of qualitative evaluations carried out over multiple course

offerings—and the resulting changes arising from that—which we

believe are transferable to many programming courses. While much

of the computing education literature has touched onmany of the

components individually, here we present substantial and contin-

uous course redesign over almost a decade—a difficult research area

that has received scant attention [20].

Our goal is to illustrate the value of long-term reflections in evolv-

ing courses in an ever-changing discipline, such as computing. We

end the paper with recommendations for educators seeking a pro-

gressive and incremental evolution of their programming courses.

In summary, the paper makes the following main contributions:

• Sharing a reflection with insights and lessons learned in im-

proving the same CS2 course over a decade.

• Provide a case study in the value of documenting accumulated

changes, to help instructors avoid repeated mistakes when

considering frequent modifications in their courses.

• Experiences using a pedagogically-discouraged language,

such as C++, as mandated for non-computing majors.

• Sharing rationales and the resulting impact of accumulative

changes spanning almost a decade.

2 RELATEDWORK
Programming courses require to be continuously refined—at the

very least in terms of content, to remain relevant to evolving tech-

nology [12]. Besides evolving course content, evolving lecturing

style andmanagement has proven beneficial for improving students’

learning and positive experience [14]. Indeed, redesign efforts on

programming courses have shown to result in higher grades and

lower dropout rates [14].

Several studies investigate innovative ways to redesign program-

ming courses (e.g., [14, 16, 21]). A particularly dominant trend has

been to move away from traditional lecturing styles, and towards

a more practical environment as this is recognised as key in helping

students embrace difficult programming concepts [2, 13, 36]. Our

experience with our CS2 course confirms this. Students responded

positively to our hybrid approach of blending live coding demon-

strations and traditional teaching.

This paper presents an accumulated reflection over (almost) ten

years on continuously evolving a programming course. To the best

of our knowledge, only a few studies present a similar reflection [4,

29, 39]. Baker and Van Der Hoek [4] report their experience design-

ing and delivering two new software design courses. Different from

our study, their reflection is limited to two years only. Ramnath

and Dathan [29] and Yusof and Abdullah [39] present their expe-

rience in evolving programming courses over 10 years [29]. Both

studies mainly focused on the course content, while our redesign

and resulting reflection mainly involved teaching style and course

management. As such, our study brings an orthogonal perspective

toward programming course redesign.

3 COURSE CONTEXT
This section provides the context for the second-year programming

course, including the students that take it, the teaching team, learn-

ing outcomes, content, and activities for each respective year. Table 1

presents key course components each year, which are expanded be-

low. To assist with the context of changes discussed in Section 4, the

status of course scores is also provided. The Anonymous University

defines courses as “red-flagged” (�) when they score less than 70%

satisfaction rate in student evaluations; otherwise they are regarded

as fine (�); it required the teaching team three iterations before they

were able to turn course ratings around. The 2020 and 2021 offerings

were predominantly online due tomandatory COVID-19 lockdowns.

3.1 The Students
At the Anonymous University, there are ten specialisations in the

undergraduate Bachelor of Engineering (Honours) four-year de-

gree. This paper focuses on a compulsory second-year programming

course, taught to three of these specialisations in their second year:

• Computer Systems Engineering (CSE),

• Electrical and Electronics Engineering (EEE),

• Mechatronics Engineering (ME).

Regardless of specialisation, the first year is a “general” year that

involves all engineering students completing the same core courses.

One such course introduces basic programming usingMatlab and

C (six weeks dedicated to each language), which serves as the pre-

requisite for this course.

3.2 Content and Learning Outcomes
C++ is acknowledged as being a complex and unforgiving program-

ming language for novice programmers [18], yet it has always been

the course’s programming language of choice. Beginner friendli-

ness is not the only factor in deciding a course’s programming

language [9], with industry-relevance also being an important fac-

tor [24]. C++ remains a vital language in many industries relevant

to the CSE, EEE, and ME specialisations; examples include telecom-

munications, microelectronics, graphics, embedded systems, and

aerospace [35]. This message is regularly reinforced by industry

representatives as part of the institution’s accreditation reviews.

The course has existed in two major phases in terms of topic con-

tent. When it was inherited in 2013, the teammostly reused existing

content so as to “ease into” the course. There were initially three

sections, each spanning four teaching weeks in the semester:

• OOP (Object-oriented programming), such as classes, ab-

straction, encapsulation, inheritance, and polymorphism.

• UML (Unified modeling language), such as use cases, class

diagrams, sequence diagrams, and activity diagrams.

• DSA (Data structures and algorithms), such as abstract data

types, algorithms and complexity, sets, stacks, queues, linked

lists, binary trees, recursion, searching, and sorting.

At the end of 2015, it was apparent that the course was trying

to do too much. Due to the large amount of content that needed

to be covered, lessons were moving rapidly with the pressure of

getting through the material during the allotted time. As a result,

students were playing a very passive role in the lectures as new in-

formation was constantly thrown at them. To address this, 2016 saw

Evolving a Programming CS2 Course: A Decade-Long Experience Report SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

Table 1: Course Components Each Year

2013 2014 2015 2016 2017 2018 2019 2020𝑜𝑛𝑙𝑖𝑛𝑒 2021𝑜𝑛𝑙𝑖𝑛𝑒
Specialisations ←−− CSE, EEE, ME −−→ ME

Students 265 227 252 266 222 259 289 300 114

Topics ←−−−−−− OOP UML DSA −−−−−−→ ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− OOP DSA −−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Instructors A B C A B C D B C B B C E C B C B C B F
Labs 10x 2% 6x 2.5% 6x 2.5% 6x 0% 6x 0% 6x 0% 6x 0% 6x 0% 6x 0%

Mini Activities - - - - - 1x 1% 1x 1% 5x 1% 5x 1%

Assignments 20,20% 15,30% 15,15,15% 20,20,20% 5,25,10,20% 4,25,10,20% 5,24,10,20% 5,20,10,20% 5,20,10,20%

Tests 20,20% 20,20% 20,20% 20,20% 20,20% 20,20% 20,20% 20,20% 20,20%

GitHub - - - - - - - Yes Yes

Course Score � � � � � � � � �

a major revamp of the course where the UML section was mostly

removed, resulting in only the OOP and DSA sections remaining—

each stretched to span six weeks of teaching. This change not only

allowed the instructors to cover the sections at a more relaxed pace,

but also it enabled the possibility of more interaction with students.

Most importantly, this enabled practical hands-on opportunities of

engagement to be embedded in the lectures (more in Section 4.2).

None of the instructors assigned to the course from 2013 had

taught it before. Each instructor was assigned one of the sections

to teach. Consequently, there were three instructors during the

2013–2015 period, while the major revamp led to involving just two

instructors. The coursewas taught solely by B in 2016, while the re-

vamped course was being trialled. It was then decided that only two

instructors would suffice in teaching the course given the reduction

of sections. Hence from 2017 onward, the course was predominantly

taught by the same two instructors (B and C), with the occasional

use of a replacement when one of themwent on sabbatical leave.

3.3 Course Assessments
Intended as a predominantly hands-on course, most assessments

involve practical programming activities. There are two invigilated

time-restricted tests, always composed of multi-choice questions

(MCQs). This was the case for both in-person paper-based tests (us-

ing optical mark recognition scanners), and also when online due to

COVID lockdowns (using quiz software). Given the large number of

students, MCQs have the benefits of quick evaluation, reliable scor-

ing, affordability, andmarking automation [7].WhileMCQshave the

disadvantage of dealing with lower knowledge levels, this is catered

for by incorporating questionswith code snippets. Prior research has

demonstrated strong support for such code tracing skills being asso-

ciated with writing skills [19]. Another rationale for showing code

snippets (rather than “worded” MCQ questions) is that there tends

to be less room for incorrect interpretation of what is being asked.

Labs (Section 4.1) involve small coding exercises, typically scoped

to require20–45minutes tocomplete formost students.Theexercises

are aimed at reinforcing the past week’s lectures, while also scaffold-

ing students towards the larger course assignments.While scheduled

lab sessions are offered for students to seek help from TAs, most

students resort to online support through the course’s Piazza forum

(https://piazza.com)—where both peers and the teaching team can re-

spond. The take-home assignments always demanded substantially-

more programming depth, typically requiring 2–4 weeks of effort.

Final submissions are run throughMoss [1].

Initially the assignments were too large in scope and difficult to

provide timely feedback, causing distress formany students—so they

tendtonowbemoredigestible (Section4.3).Tosolve typicalproblems

supporting assignments, Git now plays an instrumental role in the

course (Section 4.5). Simple mini learning activities have also been

introduced to keep students motivated and engaged (Section 4.4).

4 ISSUES ANDCORRESPONDINGCHANGES
This section overviews the key issues that came up over the decade,

many of which resulted in changes made to the course. However,

not all “issues” that came up were deemed to require changes—these

are also highlighted along with the reasoning behind not making

changes.Where changesweremotivatedby student feedback, quotes

are provided to help illustrate the student voice. All quotes are from

anonymous end-of-semester course evaluations.

4.1 Labs
When we first inherited the course, it followed a somewhat typical

format of labs. In 2013, we used the same format as used by our

predecessors: 10x weekly lab exercises, each worth 2% for a total

20% of the course. This seemed reasonable to us, particularly how

we valued the importance of practical programming opportunities

for students—and students also recognised this:

“Labs every week were the most helpful because it let me prac-
tice what I learnt.” [2013]
But despite such positive comments, an overwhelmingly larger

amount of negative views surrounded labs—mostly operational:

“It is not very fair when people who finish early have to wait
the entire lab session while others who are still doing the lab
exercises get more attention from TAs. Sometimes there’s not
enough TAs for the lab.” [2013]
These issues have stemmed from high student enrollments as is

seen in many computing courses, for both computing majors and

non-majors [31]. To alleviate some of these issues, in 2014 we re-

duced the number of lab exercises to support more resources per

lab activity (10x −→ 6x). It was hoped that directing more of the lab

costs towards quality over quantity might help. Unfortunately, these

https://piazza.com

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. Nasser Giacaman, Partha Roop, and Valerio Terragni

incremental modifications did not provide the transformation we

were hoping for and the resource constraints persisted to negatively

impact students’ learning:

“I didn’t feel like I could ask for help in the lab sign-offs because
of all the people waiting after me, which made this course
particularly difficult for me.” [2015]

Since using plagiarism-detection software provided too many

false-positives (given the relative simplicity of lab exercises), brief in-

terviews were conducted for students to be signed off for lab credits.

Such environments create uncomfortable student–TA interactions

when dealing with plagiarism, heightened by time constraints [30].

With all these issues in mind, 2016 sawmajor changes to labs. Lab

activities were no longer given (direct) course credit. Instead, under-

standing lab exercises was assessed within the invigilated tests. This

allowed the lab sessions to be transformed into lab clinics, where
students are encouraged to attend when they would like help. TAs

now played a muchmore supportive role: rather than be the incrimi-

nating interviewer, they were now the support system that students

could reach out to. Labs now received plenty of praise:

“The amount of lab time we had available.” [2016]

“Labs—Personal conversation with tutors.” [2016]

While we recognised this was an essential move to support stu-

dents, therewere still the odd comments requesting compulsory labs:

“Considergraded labs. I knowthismeans codegetting checked—
perhaps just show it works? I think it’s a good idea.” [2016]

While this would encourage lab attendance and engagement, we

feel the welcoming support system provided by drop-in labs—rather

than feeling like an interrogation zone—makes the better impact on

student wellbeing. This change has stood the test of time, where labs

continue to gather feedback on both sides:

“The labs—the TAs were very helpful andmademe understand
the content a lot better.” [2021]

“Maybe make the labs worth something, as I found it hard to
be motivated to do them.” [2020]

4.2 Teaching Delivery
Despite the issues surrounding labs, students yearned for more op-

portunities to practice programming:

“The course should be 4 hours of labs, 1 hour of lectures instead.
You learn coding by doing, not falling asleep trying to watch
someone else show you.” [2013]

Students also wanted more guidance on programming strategies:

“Spend time in lectures focusing on how to approach thesemore
difficult labs.” [2013]

When preparing the 2014 course offering, the teaching team con-

sidered the flipped classroom approach [6] as a possible delivery

model to address this issue. Despite its promises, migrating the

course to use this model involved too many (well-documented) chal-

lenges [2]. The higher workload and time commitment required to

make such a change was far too demanding, especially as all the

instructors were relatively new to teaching the course. As a com-

promise, live coding demonstrations were blended with traditional

teaching of the concepts. Students were also encouraged to bring

a laptop to lectures, where the instructors provided themwith the

opportunity to try some of the exercises during the lecture time. To

facilitate this, Active Classroom Programmer (ACP) [11] was tri-

alled. This allowed the instructor to share written code directly from

their IDE—and students in turn modified that shared code. Students

responded positively to this, and suggested more of it:

“Maybe more integration with ACP throughout the whole
course, it’s an excellent way of learning!” [2014]

ACP provided the perfect compromise of overcoming constraints

of limited lab resources,without thechallengesofa trulyflippedclass-

room approach—and quickly become a pivotal course component:

“I like the live coding on ACP, and having the different versions
online—this was a very good reference for learning how to
apply code, and understandwhat each line of code does.” [2020]

4.3 Assignments
The coursewas always intended to be highly practical, involving sub-

stantial amounts of programming from students. As such, the course

was initially designed with large assignments—roughly one to cover

each half-section of the course. Initially, the main issue arising from

these large assignments was that they required substantial manual

effort to be graded—and there were few TAs assigned to marking.

This heavily impacted the turnaround for giving students feedback:

“Couldassignmentsalsobe returnedmoreappropriatelyplease?
By tomorrow it will be eight weeks since we handed in Assign-
ment 1 and still we haven’t received amark or feedback.” [2013]

To correct this, assignments were revised to be slightly smaller,

with more TAs hired to help with marking. Unfortunately, assign-

ments were actually more demanding than implied by their weights.

Furthermore, a new instructor’s teaching pace was too fast for most

students to start off the course.Many students felt discouraged strug-

glingwith the concepts, and thiswas a badway to start off the course:

“As for the first assignment—this was an incredibly hard as-
signment to actually understand. Many people lost a lot of
confidence in this paper after that assignment and just gave
up in this paper all together.” [2015]

As part of the 2016 major course redesign, assignments were

redesigned following a constructive alignment approach. In addition
to redesigning the assignments, this also involved redesigning the in-

class activities and lessons to gear students towards the assignments:

“The assignments assisted in understanding and applying the
concepts taught in the course very well and were very appro-
priate.” [2016]

More changes to assignments weremade in 2017, which have per-

sisted to their current formtoday.This includedamuchsmaller5%As-

signment 1 due after only twoweeks of teaching—much sooner than

in the past. Collectively, andmost importantly, this provides students

with a massive confidence boost early on in the course. This confi-

dence is very much needed when moving on to larger assignments:

“ The assignments clearly supported, assessed and provided
feedback onmy learning which was great! Very rapid feedback
on assignments and tests (returned within days of deadline)
allowed me to quickly address any misconceptions.” [2020]

Evolving a Programming CS2 Course: A Decade-Long Experience Report SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

4.4 Mini Learning Activities
To extend the benefits initially observed with the “starting small”

structure of assessments, starting in 2020 saw a further 5% of the

course redirected to supporting even smaller weekly at-home activi-

ties, whichwe collectively termed as “mini learning activities”. There
are a total of five 1% activities, starting from the first week. Unlike

other assignments and lab exercises, these mini activities were in-

tended to not involve programming, and instead be perceived as fun

and easy—yet useful. The goal is to “hook students” to the course

with “tasters”, and inspire them to stay focused and engaged—even if

feeling somewhat programming-averse. The scope of these activities

is such that they require less than an hour’s effort to complete.

The first activity has tended to familiarise students with GitHub,

and involves giving them a stripped-down version of Assignment 1

with the same setup—but with just very few test cases they need to

pass. This mini activity achieves a lot, ensuring students:

• Have created a GitHub account, linked it to their university

identity, and know how to make commits and pushes.

• Have the required programming development environment

set up as needed for the semester.

• Demonstrate how to successfully submit future assignments.

Another typical mini learning activity includes students writing

short reflections on their journey, with prompts for guidance:

• Regarding learning OOP and GitHub, did it spark any new idea
or create any new perspective for you?
• How do you describe the impact of learning OOP and GitHub
on your professional future?

The marking of the 1% activities tends to be lenient, as this not

only facilitates speedy-marking, but also ensuring students engage.

These activities are simple to define and can also be reused in subse-

quent years without concerns for plagiarism. Not to mention, they

are still relevant to the course and appreciated by students:

“The 1% activities early on were helpful to get us familiar with
the concepts in the course.” [2020]

4.5 Git
Version control was traditionally never considered as belonging to

this course. Despite the growing importance of Git over the years, it

still felt as if there was too much overhead in managing it for a large

number of students. Creating individual repositories and adding

students manually was clearly not an option. Yet, there was desire

for a version control solution due to scenarios such as:

• Students submitting the incorrect files to the assignment drop-

box, whether that be an old version of the assignment, or files

for a completely different assignment/activity.

• Suspiciously-similar submissions according to software sim-

ilarity tools, but without understanding how they evolved.

• Students allege catastrophic events resulting in last-minute

data loss, such as a stolen laptop or corrupted hard drive.

Whilemany scenarioswere genuine, itwas always difficult telling

students “sorry, we cannot help here without sufficient evidence”. As in-
structors, it was difficult making such calls—but we had a duty to the

rest of the students to be fair, so could only support studentswith suf-

ficient evidence. Integrating GitHub Classroom for all assignments

has allowed us to support students where they had the Git history

2013 2014 2015 2016 2017 2018 2019 2020 2021
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Grade Distribution and Course Ratings

A range B range C range
Failed Course rating

Year

%
 o

f s
tu

de
nt

s

Figure 1: Distribution of grades and course rating each year.

supporting their story. Students are told that we expect frequent

updates to their Git repository as they progress. Logs have been

useful in supporting plagiarism investigations, and dismissing un-

warranted requests for an extension—such as cloning the assignment

repository only the day before it is due. Themost rewarding casewas

reinstating full marks to a student that completed their assignment

on time but had their laptop stolen the day before the due date.

5 REFLECTIONS
There is no such thing as the perfect course—a course will forever

be evolving. What worked for us is listening to student feedback,

and revising where feasible. We feel addressing the “lion’s share” of

student concerns each year accumulated to an overall improvement.

5.1 Course Ratings and Student Performance
Figure 1 presents the final grade distributions for each of the re-

spective years, along with the corresponding course score resulting

from the student satisfaction evaluation. As previously presented

in Table 1, the course’s first three years were red-flagged, while the

latter years were over the 70% satisfaction rate.

Of particular interest is how students were satisfied in the two

years of remote learning due to COVID-19. The are no obvious

“trends”, in terms of grades and course ratings. These can drop or rise

as part of the natural and arbitrary environment of that particular

year. What is however reassuring, is that course satisfaction is con-

sistently better in the recent years compared to the initial years that

triggered the biggest changes in the course.With that said, one needs

to be aware of using surveys as a measure of course quality [17, 37].

The proportion of A-grades tend to be higher in the most recent

three years. Therewere notable years that had different distributions

of grades. In 2015, there was a lower proportion of mid-range B

grades, and higher proportion of lower-range C grades—along with

the most failed grades. This was the year that inspired an urgent and

thorough makeover. The course was trying to teach too much con-

tent, and the first section was a fast pace for the students—resulting

in struggling and loss of confidence within the first few weeks of

the course. The only time there were more B grades compared to

A grades was in 2018; there was nothing particularly eventful that

year, and it might have just been a difference of instructors.

SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada. Nasser Giacaman, Partha Roop, and Valerio Terragni

5.2 WhatWorkedWell
We recognised the detrimental impact of losing student confidence

early on in the course. This not only impacted the wellbeing of stu-

dents trying their best, but also their ability to progress in course ac-

tivities [25].One of the best things thatworkedwell is having smaller

and easier assignments early on in the semester to hook students in.

This particularly gave confidence boosts to students that enter the

course nervously. The introduction of Git has also contributed to

better experienceswith assignments, andhas rescuedmany students.

Based on the expectations demanded by the practical assessments,

the course has evolved to provide students with the necessary sup-

port system. Rather than wasting TAs’ time interviewing to sign

students off, they are now dedicated to helping students overcome

misconceptions. The tone of the comments in evaluations have no-

ticeably changed, from a negative tone to a much more positive

tone about both the TAs and the lab sessions as a whole. Providing

students with more practical opportunities in the lecture time has

also worked very well, where students are encouraged to bring their

laptop to modify code snippets shared by the instructor.

5.3 What Did NotWork
Despite the lab improvements made, they are by no means perfect.

Ideally we would like to see more uptake of both the lab exercises,

and the assistance available in scheduled drop-in labs. When the

lab clinics are under-utilised, the TAs will often use that time to

respond toonlinequestionson thecourse’sPiazza forum.While ithas

been considered (and even requested by students) to give credit for

completing these exercises, from our experience this only results in

heightened administration effort targeted at fightingplagiarism.As a

compromise,we strive tohavequestions in invigilated tests that stem

from the lab exercises as an incentive for students to attempt them.

While the course already uses automated assessment for the grad-

ing of larger assignments, maybe it is time to use an automated

tool [27], or review Git logs demonstrating incremental progress.

Regardless, this will require further thinking as colluding will not

be avoidable—especially in the context of a large course that cannot

enforce simultaneous invigilation in computing labs, and where

limited resources need to target learning.

5.4 Limitations
It is difficult to attribute course ratings to anything specific. The

student evaluations are holistic on the overall student experience

with the course. This is not limited to how they liked the teaching

team and course assessments of a particular year, but might also

include other aspects; for example, the scheduling of lectures and lab

clinics (including both the rooms, dates and times)—which are out of

the teaching team’s control. All these factors, and plenty others, are

not taken into account in this experience report. There were most

definitely other changes made to the course from year to year, but

here we only focus on the most problematic experiences that we

faced. The impact of any individual change cannot be isolated.

5.5 Recommendations
We recommend and encourage instructors to only take onwhat they

can, andmake slow incremental steps as they can. This is in linewith

the literature’s acknowledgement of thehighefforts required [14, 36].

We have also seen benefits in embedding a few simple and low-

stake 1%mini learning activities. Even with a few of them, we feel

they help boost studentmoralewithout “giving toomuch away” (col-

lectively only 5% in total—a small price to pay to inspire students to

engagewith the course concepts).Where possible, we also try and in-

corporate elements of gamification, as this has been shown to engage

and improve student learning [22]. Usually such activities are built

“in-house” by senior students, for example part of summer projects.

One of our biggest recommendations comes in the form of incor-

porating more in-class live programming, using whatever tools or

approach the instructor feels most comfortable with. This does not

need to be programming code snippets “from scratch”, and can in-

clude onlyminormodifications to existing code snippets. Ideally stu-

dents are also given opportunity to code along in the lesson. This not

only provides stronger alignment to the concepts taught, but helps

guide students in the programming thought process and develop

their debugging skills [28]. Based on our experience, we feel this has

been aneffective solutionwhen resources for lab andTAsare scarce—

essentially enabling us to bring practical “labs” into the classroom.

We hope this experience report will encourage educators to per-

form similar long-term reflections. In particular, reflecting on the

changes over a long period of time gave us a pragmatic view onwhat

can be reasonably achieved with incremental steps. Our reflection

taughtus that student feedback is apowerfuldriving force tobothmo-

tivate possible future improvements and validate changes; studying

how student feedback evolved over a long time was crucial. Indeed,

oftennegative (andpositive) feedbackaredictatedbyexternal factors

unrelated to our best effort to improve the course. As such, we dis-

courage using the most recent student feedback to immediately val-

idate recent changes. Instead, observing how the students’ feedback

evolve over a longperiodof timegives aholistic viewof the re-design.

As such, we advocate for long-term reflections, which can provide

insights that are impossible to get with a short-term reflection.

6 CONCLUSIONS
Revisingcourses is anaturalpart of teaching—particularly incomput-

ing courses as technology is changing frequently. Rather than focus

on course redesign based on content, here we present our experi-

ences changing other aspects of a second-year programming course

over almost a decade. In most cases, changes were motivated by

poor student satisfaction, but also often in recognition of the impor-

tance of practical programming opportunities to help students learn

the concepts. The changes have been implemented iteratively over

time, and sometimes required multiple revisions of the same com-

ponent. Notable improvements have been shifting away from TAs

“policing” students on graded lab exercises, and towards an environ-

ment where TAs are recognised for their key contribution in helping

students overcome programming struggles. Teaching delivery was

then adapted to provide additional practical programming exposure,

while reformulating assignments aimed to target loss of confidence.

Wehope thatour reflectivecasestudywill inspiremore instructors

to document changes to their own courses, along with the rationale

for those changes. We believe such reflective documentation will

provide course stability in light of increasing student enrollments,

teaching team turnover, and ever-changing technologies.

Evolving a Programming CS2 Course: A Decade-Long Experience Report SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.

REFERENCES
[1] Alex Aiken. 2022. Moss: A System for Detecting Software Similarity.

http://theory.stanford.edu/~aiken/moss

[2] Gökçe Akçayır and Murat Akçayır. 2018. The flipped classroom: A review of

its advantages and challenges. Computers & Education 126 (2018), 334–345.

https://doi.org/10.1016/j.compedu.2018.07.021

[3] Nabeel Alzahrani, Frank Vahid, Alex Edgcomb, Kevin Nguyen, and Roman

Lysecky. 2018. Python Versus C++: An Analysis of Student Struggle on Small

Coding Exercises in Introductory Programming Courses. In Proceedings of the 49th
ACM Technical Symposium on Computer Science Education (Baltimore, Maryland,

USA) (SIGCSE ’18). Association for Computing Machinery, New York, NY, USA,

86–91. https://doi.org/10.1145/3159450.3160586

[4] Alex Baker and André Van Der Hoek. 2009. An experience report on the design

and delivery of two new software design courses. ACM SIGCSE Bulletin 41, 1

(2009), 519–523.

[5] João Paulo Barros, Luís Estevens, Rui Dias, Rui Pais, and Elisabete Soeiro. 2003.

Using lab exams to ensure programming practice in an introductory programming

course. ACM SIGCSE Bulletin 35, 3 (2003), 16–20.
[6] Jonathan Bergmann and Aaron Sams. 2012. Flip your classroom: Reach every

student in every class every day. International society for technology in education.
[7] Dhawaleswar Rao CH and Sujan Kumar Saha. 2020. Automatic Multiple Choice

Question Generation From Text: A Survey. IEEE Transactions on Learning
Technologies 13, 1 (2020), 14–25. https://doi.org/10.1109/TLT.2018.2889100

[8] A. T. Chamillard and Laurence D. Merkle. 2002. Management Challenges in a

Large Introductory Computer Science Course. In Proceedings of the 33rd SIGCSE
Technical Symposium on Computer Science Education (Cincinnati, Kentucky)

(SIGCSE ’02). Association for ComputingMachinery, New York, NY, USA, 252–256.

https://doi.org/10.1145/563340.563440

[9] Michael De Raadt, Richard Watson, and Mark Toleman. 2003. Language

tug-of-war: industry demand and academic choice. In Proceedings of the 5th
Australasian Computing Education Conference (ACE 2003). Australian Computer

Society Inc., 137–142.

[10] Todd J. Feldman and Julie D. Zelenski. 1996. TheQuest for Excellence in Designing

CS1/CS2 Assignments. In Proceedings of the Twenty-Seventh SIGCSE Technical
Symposium on Computer Science Education (Philadelphia, Pennsylvania, USA)

(SIGCSE ’96). Association for ComputingMachinery, New York, NY, USA, 319–323.

https://doi.org/10.1145/236452.236564

[11] Nasser Giacaman and Giuseppe De Ruvo. 2018. Bridging Theory and Practice

in Programming LecturesWith Active Classroom Programmer. IEEE Transactions
on Education 61, 3 (2018), 177–186. https://doi.org/10.1109/TE.2018.2819969

[12] Richard Helps. 2007. Dancing on Quicksand Gracefully: Instructional Design

for Rapidly Evolving Technology Courses. In Proceedings of the 8th ACM
SIGITE Conference on Information Technology Education (Destin, Florida, USA)

(SIGITE ’07). Association for Computing Machinery, New York, NY, USA, 1–8.

https://doi.org/10.1145/1324302.1324304

[13] Ville Isomöttönen and Ville Tirronen. 2016. Flipping and Blending—An Action

Research Project on Improving a Functional Programming Course. ACM Trans.
Comput. Educ. 17, 1, Article 1 (sep 2016), 35 pages. https://doi.org/10.1145/2934697

[14] Erkki Kaila, Einari Kurvinen, Erno Lokkila, and Mikko-Jussi Laakso. 2016.

Redesigning an Object-Oriented Programming Course. ACMTrans. Comput. Educ.
16, 4, Article 18 (2016). https://doi.org/10.1145/2906362

[15] David G Kay. 1998. Large introductory computer science classes: strategies for

effective course management. ACM SIGCSE Bulletin 30, 1 (1998), 131–134.
[16] YekaterinaKharitonova, Yi Luo, and Jeho Park. 2019. Redesigning a software devel-

opment course as apreparation for a capstone:Anexperience report. InProceedings
of the 50th ACM Technical Symposium on Computer Science Education. 153–159.

[17] Antti Knutas, Timo Hynninen, and Maija Hujala. 2021. To Get Good Student

Ratings should you only Teach Programming Courses? Investigation and

Implications of Student Evaluations of Teaching in a Software Engineering

Context. In 2021 IEEE/ACM 43rd International Conference on Software Engi-
neering: Software Engineering Education and Training (ICSE-SEET). 253–260.
https://doi.org/10.1109/ICSE-SEET52601.2021.00035

[18] Michael Kölling. 1999. The problem of teaching object-oriented programming.

Journal of Object-oriented programming 11, 8 (1999).
[19] Mike Lopez, JacquelineWhalley, Phil Robbins, and Raymond Lister. 2008. Relation-

ships between Reading, Tracing andWriting Skills in Introductory Programming.

In Proceedings of the Fourth International Workshop on Computing Education
Research (Sydney, Australia) (ICER ’08). Association for Computing Machinery,

New York, NY, USA, 101–112. https://doi.org/10.1145/1404520.1404531

[20] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail

Giannakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott,

Judy Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic

Literature Review. In Proceedings Companion of the 23rd Annual ACM Conference
on Innovation and Technology in Computer Science Education (Larnaca, Cyprus).
55–106. https://doi.org/10.1145/3293881.3295779

[21] Sohail Iqbal Malik. 2018. Improvements in introductory programming course:

action research insights and outcomes. Systemic Practice and Action Research 31,

6 (2018), 637–656.

[22] B. Marín, J. Frez, J. Cruz-Lemus, and M. Genero. 2018. An Empirical Investigation

on the Benefits of Gamification in Programming Courses. ACM Trans. Comput.
Educ. 19, 1, Article 4 (nov 2018), 22 pages. https://doi.org/10.1145/3231709

[23] Julia M. Markel and Philip J. Guo. 2021. Inside the Mind of a CS Undergraduate TA:
A Firsthand Account of Undergraduate Peer Tutoring in Computer Labs. Association
for Computing Machinery, New York, NY, USA, 502–508.

[24] Raina Mason, Tom Crick, James H Davenport, and Ellen Murphy. 2018. Language

choice in introductory programming courses at Australasian and UK universities.

In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education. 852–857.

[25] Rodrigo Pessoa Medeiros, Geber Lisboa Ramalho, and Taciana Pontual Falcão.

2019. A Systematic Literature Review on Teaching and Learning Introductory

Programming in Higher Education. IEEE Transactions on Education 62, 2 (2019),
77–90. https://doi.org/10.1109/TE.2018.2864133

[26] DibaMirza, Phillip T. Conrad, Christian Lloyd, ZiadMatni, and Arthur Gatin. 2019.

Undergraduate Teaching Assistants in Computer Science: A Systematic Literature

Review. In Proceedings of the 2019 ACM Conference on International Computing
Education Research (Toronto ON, Canada) (ICER ’19). Association for Computing

Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/3291279.3339422

[27] Raymond Pettit, John Homer, Roger Gee, SusanMengel, and Adam Starbuck. 2015.

An Empirical Study of Iterative Improvement in Programming Assignments. In

Proceedings of the 46th ACM Technical Symposium on Computer Science Education
(Kansas City, Missouri, USA) (SIGCSE ’15). Association for Computing Machinery,

New York, NY, USA, 410–415. https://doi.org/10.1145/2676723.2677279

[28] Adalbert Gerald Soosai Raj, Jignesh M. Patel, Richard Halverson, and Er-

ica Rosenfeld Halverson. 2018. Role of Live-Coding in Learning Introductory

Programming. In Proceedings of the 18th Koli Calling International Conference
on Computing Education Research (Koli, Finland) (Koli Calling ’18). Associ-
ation for Computing Machinery, New York, NY, USA, Article 13, 8 pages.

https://doi.org/10.1145/3279720.3279725

[29] Sarnath Ramnath and Brahma Dathan. 2008. Evolving an integrated curriculum

for object-oriented analysis and design. In Proceedings of the 39th SIGCSE technical
symposium on Computer science education. 337–341.

[30] Emma Riese, Madeleine Lorås, Martin Ukrop, and Tomáš Effenberger. 2021.

Challenges Faced by Teaching Assistants in Computer Science Education

Across Europe. In Proceedings of the 26th ACM Conference on Innovation and
Technology in Computer Science Education V. 1 (Virtual Event, Germany) (ITiCSE
’21). Association for Computing Machinery, New York, NY, USA, 547–553.

https://doi.org/10.1145/3430665.3456304

[31] Linda J. Sax, Kathleen J. Lehman, and Christina Zavala. 2017. Examining the

Enrollment Growth: Non-CS Majors in CS1 Courses. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education (Seattle,

Washington, USA) (SIGCSE ’17). Association for Computing Machinery, New

York, NY, USA, 513–518. https://doi.org/10.1145/3017680.3017781

[32] Thomas Staubitz, Hauke Klement, Jan Renz, Ralf Teusner, and Christoph

Meinel. 2015. Towards practical programming exercises and automated

assessment in Massive Open Online Courses. In 2015 IEEE International Con-
ference on Teaching, Assessment, and Learning for Engineering (TALE). 23–30.
https://doi.org/10.1109/TALE.2015.7386010

[33] Daniel E. Stevenson and Paul J. Wagner. 2006. Developing Real-World Program-

ming Assignments for CS1. In Proceedings of the 11th Annual SIGCSE Conference
on Innovation and Technology in Computer Science Education (Bologna, Italy)

(ITICSE ’06). Association for Computing Machinery, New York, NY, USA, 158–162.

https://doi.org/10.1145/1140124.1140167

[34] Carly Steyn, Clint Davies, and Adeel Sambo. 2019. Eliciting student feedback for

course development: the application of a qualitative course evaluation tool among

business research students. Assessment & Evaluation in Higher Education 44, 1

(2019), 11–24. https://doi.org/10.1080/02602938.2018.1466266

[35] Bjarne Stroustrup. 2020. Thriving in a Crowded and Changing World: C++

2006–2020. Proc. ACM Program. Lang. 4, HOPL, Article 70 (2020), 168 pages.

https://doi.org/10.1145/3386320

[36] Dion Timmermann, Christian Kautz, and Volker Skwarek. 2016. Evidence-based

re-design of an introductory course “programming in C”. In 2016 IEEE Frontiers
in Education Conference (FIE). 1–5. https://doi.org/10.1109/FIE.2016.7757492

[37] Guannan Wang and Aimee Williamson. 2020. Course evaluation scores: valid

measures for teaching effectiveness or rewards for lenient grading? Teaching in
Higher Education 0, 0 (2020), 1–22. https://doi.org/10.1080/13562517.2020.1722992

[38] Catherine Whalen, Elizabeth Majocha, and Shirley Van Nuland. 2019.

Novice teacher challenges and promoting novice teacher retention in

Canada. European Journal of Teacher Education 42, 5 (2019), 591–607.

https://doi.org/10.1080/02619768.2019.1652906

[39] Azwina M Yusof and Rukaini Abdullah. 2005. The evolution of programming

courses: course curriculum, students, and their performance. ACM SIGCSE
Bulletin 37, 4 (2005), 74–78.

http://theory.stanford.edu/~aiken/moss
https://doi.org/10.1016/j.compedu.2018.07.021
https://doi.org/10.1145/3159450.3160586
https://doi.org/10.1109/TLT.2018.2889100
https://doi.org/10.1145/563340.563440
https://doi.org/10.1145/236452.236564
https://doi.org/10.1109/TE.2018.2819969
https://doi.org/10.1145/1324302.1324304
https://doi.org/10.1145/2934697
https://doi.org/10.1145/2906362
https://doi.org/10.1109/ICSE-SEET52601.2021.00035
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3231709
https://doi.org/10.1109/TE.2018.2864133
https://doi.org/10.1145/3291279.3339422
https://doi.org/10.1145/2676723.2677279
https://doi.org/10.1145/3279720.3279725
https://doi.org/10.1145/3430665.3456304
https://doi.org/10.1145/3017680.3017781
https://doi.org/10.1109/TALE.2015.7386010
https://doi.org/10.1145/1140124.1140167
https://doi.org/10.1080/02602938.2018.1466266
https://doi.org/10.1145/3386320
https://doi.org/10.1109/FIE.2016.7757492
https://doi.org/10.1080/13562517.2020.1722992
https://doi.org/10.1080/02619768.2019.1652906

	Abstract
	1 Introduction
	2 Related Work
	3 Course Context
	3.1 The Students
	3.2 Content and Learning Outcomes
	3.3 Course Assessments

	4 Issues and Corresponding Changes
	4.1 Labs
	4.2 Teaching Delivery
	4.3 Assignments
	4.4 Mini Learning Activities
	4.5 Git

	5 Reflections
	5.1 Course Ratings and Student Performance
	5.2 What Worked Well
	5.3 What Did Not Work
	5.4 Limitations
	5.5 Recommendations

	6 Conclusions
	References

