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Abstract—Recent concerns about software supply chain security
have led to the emergence of different binaries built from the
same source code. This will sometimes result in binaries that are
not identical and therefore have different cryptographic hashes.
The question arises whether those binaries are still equivalent,
i.e., whether they have the same behaviour. We explore whether
differential testing can be used to provide evidence for non-
equivalence.

We study this for 3,541 pairs of binaries built for the same
Maven artifact version, distributed on Maven Central, Google
Assured Open Source Software and/or Oracle Build-From-Source.
We use EVOSUITE to generate tests for the baseline binary from
Maven Central, run these tests against this baseline binary and
any available alternately built binaries, and compare the results for
consistency. We argue that any differences may indicate variations
in program behaviour and could, therefore, be used to detect
compromised binaries or failures at runtime.

Although our preliminary experiments did not reveal any
compromised builds, our approach successfully identified three
build configuration errors that caused changes in runtime
behaviour. These findings underscore the potential of our method
to uncover subtle build differences, highlighting opportunities for
improvement.

Index Terms—test generation, differential testing, reproducible
builds, software supply chain security, java, evosuite

I. INTRODUCTION

Software supply chain security has attracted increasing
attention recently after a number of high impact attacks such
as equifax, log4shell, solarwinds and xz [3], [9], [10], [18].
In general, these fall into two categories – compromising
components (such as equifax and log4shell), and compro-
mising processes (such as solarwinds and xz). When build
processes are compromised, attackers can inject malicious code
into a program, resulting in a vulnerable program built from
clean source code. The classic approach to achieve this is to
compromise the compiler [24].

Reproducible builds [1], [17] are a common countermeasure.
The idea is to perform a second build leading to the same
binary. As an adversary is very unlikely to compromise two
build environments, this can confirm the integrity of the binary
with high certainty. Establishing that the binaries are identical
is usually done by means of bitwise comparison, often using
cryptographic hashes as proxies. Several organisations have
started to provide infrastructure and services to provide such
secondary builds at scale, often meeting additional security-
related requirements, such as SLSA compliance [2]. Two such
products that include support to build Java / Maven artifacts are

Google’s Assured Open Source Software (gaoss)1, and Oracle’s
Build-From-Source (obfs)2.

However, there are several challenges with the reproducibility
of builds: (i) build environments are difficult to replicate,
(ii) locating the source code version (commit, tag or release)
associated with a binary release version is not always straight-
forward and (iii) builds may be non-deterministic [6], [12],
[15], [27]. In particular, different versions of compilers may
employ different compilation strategies, resulting in different,
yet functionally equivalent binaries [6], [21], [27]. In order to
address this, bytecode normalisation techniques have recently
been proposed [7], [21], [27].

From a security analysis perspective, comparing binaries
from alternative builds can help detect potential compromises.
If two binaries differ, it may indicate that one has been
compromised, potentially by the insertion of a backdoor during
the build process. A comparison based on strict binary equality
is likely to result in poor precision as differences between
binaries can be explained by the variability of compilers and
other tools used in the build toolchain. Low precision is known
to have a serious impact on the acceptance of program analysis
tools by engineers [8], [20]. Using bytecode normalisation
techniques such as jnorm [21] can help to reduce the false
positive rate by identifying equivalent binaries. The question
arises whether binaries built from the same sources that are not
equivalent actually have behavioural differences. A good way
to check this is to find or construct test cases to demonstrate
such differences.

This is the question we set out to study. We use test case
generation with EVOSUITE [11] to synthesise regression tests
for a baseline build, and then assess whether these tests behave
in the same way on programs that are the result of an alternative
build from the same sources.

The paper is organised as follows: in Section II we describe
the methodology used in our study. Results are discussed in
Section III, followed by a brief overview of related work in
Section IV and the conclusion (Section VI). Details on how to
access the dataset used and the generated tests are provided in
Section V.

1https://cloud.google.com/security/products/assured-open-source-software
2https://maven.oracle.com/public/
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Fig. 1. Methodology Overview

II. METHODOLOGY

A. Overview

An overview of our methodology is depicted in Figure 1.
As a baseline build we use the artifacts distributed on Maven
Central3 as this is the default artifact repository for most open
source Java projects. From there we obtain the binary (jar file
containing Java bytecode) mvnc jar and the pom mvnc pom.
From this pom we extract the dependencies using the Maven
dependency plugin4. The mvnc jar and its dependencies can be
used as input to generate test sources with EVOSUITE, which
are then compiled into test binaries (test bin). Finally, these
tests can be executed against both the original mvnc jar and an
alternative jar (alt jar) from a different build, with the resulting
test reports compared.

B. Project Selection

We started with the dataset from Dietrich et al. [7], which
contains jars corresponding to the same artifact identified by the
same group id, artifact id and version (i.e., GAV coordinates)
built by different parties. This dataset contains the results of
builds from Maven Central (mvnc), Google (gaoss), Oracle
(obfs) and RedHat. We ignored jars built by RedHat as they
have an additional patch id that suggests behavioural differences.
We only considered pairs where one of the jars was sourced
from Maven Central, i.e., built by the developer(s). There are
3,541 such pairs.

C. Static Pre-analysis

We then ran a static pre-analysis to eliminate pairs that
are probably equivalent. We first applied jnorm [21]5, and
compared jars by comparing the result of the transformation
applied to each class; we eliminated pairs with equal jnorm

3https://central.sonatype.com/
4https://maven.apache.org/plugins/maven-dependency-plugin/
5We used jnorm version 1.0.0, downloaded from https://github.com/stschott/

jnorm-tool/releases/tag/v1.0.0, with the arguments -o -n -s -a -p.

output, resulting in 226 pairs of jars. We then applied a filter
based on a change in the Java 18 compiler6, which is not yet
supported by jnorm. Applying this additional filtering resulted
in 166 pairs of jars, 31 of those pairs with an alternatively
built jar from gaoss, 135 with such a jar from obfs. In total
there are 1,248 classes that differ between mvnc and one of
the other two providers, which reduces to 802 after condensing
classes to top-level classes.

D. Test Generation

We chose to automatically generate tests for these experi-
ments because the existing tests within the project are typically
executed during builds. In other words, alternative builds can
ensure that such existing tests pass successfully.

We used EVOSUITE7 to generate differential tests. Although
various alternatives exist for Java test generation, recent
benchmarks demonstrate EVOSUITE’s superior performance in
achieving higher code coverage and mutation scores [13].

EVOSUITE automatically generates test cases for a given
object-oriented class under test (CUT). A test case consists of (i)
a method call sequence that instantiates and modifies the state
of objects of the CUT through method invocations and (ii) one
or more assertions that predicate on the values returned by the
method invocations. The state of objects often dictates program
behaviour, so manipulating these states is crucial for achieving
high coverage. It is worth noting that EVOSUITE may need to
create and modify objects that do not instantiate the CUT, as the
methods of the CUT might require non-primitive parameters.
For primitive parameters, EVOSUITE uses randomised values
guided by heuristics. The tool implements an evolutionary
algorithm that evolves populations of test cases to maximise
code coverage, typically targeting branch coverage.

EVOSUITE and similar automated testing tools are most
effective when running in regression mode due to the oracle
problem. In fact, they are predominantly evaluated in this
mode [13], [22]. While the oracle problem is one of the greatest
challenges in test automation, it is mitigated in the context of
regression testing, where we assume that one version is correct.
In regression mode, EVOSUITE adds assertions to the generated
test cases that capture the “implemented” behaviour of the given
version. These assertions are based on the actual values returned
by method call invocations during execution, without regard
for the “intended” behaviour of the CUT. This approach also
enables effective differential testing by identifying behavioural
differences between two implementations (without assuming
that one is correct). If a test generated for one version fails
when run on another, it reveals a behavioural difference.

EVOSUITE can be set up to generate targeted tests for certain
classes. Since the static pre-analysis compares jar files by
comparing the .class files they contain, we can use targeted
test generation for those classes only.

EVOSUITE was applied to generate regression tests for the
mvnc version of each of these 802 differing top-level classes,

6https://github.com/openjdk/jdk/pull/5165
7EVOSUITE version 1.2.0, downloaded from https://github.com/EvoSuite/

evosuite/releases/tag/v1.2.0
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resulting in 476 generated test classes comprising in total 20,437
JUnit4 tests, or 25.5 tests per differing class on average.

We ran EVOSUITE test generation per-class with all settings
at their defaults, in particular with search_budget (generation
time) set to 1 minute.8 All computation was performed using
a JDK 8 toolchain on an 8-core Linux Mint 21.2 VM with
50GB RAM.9 Resource settings were informed by [13].

III. RESULTS

A. Overview

Table I shows the number of differing test outcomes for each
artifact where one or more tests produced a different outcome
on an alternative build than on mvnc. Note that this excludes
55 test failures that occurred on mvnc itself.

We will now discuss the identified inconsistencies in detail.

B. Incorrect Build Configurations

The first kind of test outcome difference, corresponding to
rows 4–11 of Table I, occurs 48 times across 7 versions of
io.undertow:undertow-servlet, and twice “in the other di-
rection” in io.netty.netty-codec-http:4.1.102.Final. We
first describe the undertow-servlet cases.

For each of the 7 versions of the undertow-servlet artifact
shown in Table I, there are two binaries available: the jar from
mvnc, and an alternatively built jar from gaoss. In each case,
when the gaoss jar is tested using the io.undertow.servlet.-

spec.UpgradeServletInputStream_ESTest10 test class gener-
ated from the mvnc jar, test failures occur, while these tests
all succeed against the original mvnc jar.

All 48 gaoss test failures result from a
java.lang.NoSuchMethodError, caused by an attempt to
invoke java.nio.ByteBuffer.flip()Ljava/nio/ByteBuffer;.
Failure counts vary across versions only because of random
variation in the number of test methods that (indirectly) attempt
to call this method. Concretely, for version 2.2.23.Final, the 5
failing tests are test00, test01, test12, test15 and test16.

The errors occur during linking, and are related
to binary compatibility [25]: Two undertow methods
(UpgradeServletInputStream.readIntoBufferNonBlocking
and UpgradeServletInputStream.readIntoBuffer) have
call sites for this method, however, the method is
missing. A closer inspection reveals that the gaoss
version was built with Java 1111. In Java 11, java.nio.-

ByteBuffer.flip()Ljava/nio/ByteBuffer; exists12, and
the respective call site is added. The mvnc jar was
built against Java 8, where this method did not exist,

8Extending generation time to 10 minutes on a subset of classes did not
generate any additional tests.

9JDK 8 was used in order to improve the reliability of EVOSUITE test
generation. Although EVOSUITE could sometimes generate tests under JDK
11—including for 32 CUTs that refused to compile at JDK 8—doing so
produced around one third as many tests overall due to widespread failures.

10The class under test by an EVOSUITE-generated test can easily be identified
by removing the ESTest suffix.

11The jar manifest contains the entry Build-Jdk-Spec: 11
12Though its existence is not mentioned in the documentation at https://docs.

oracle.com/en/java/javase/11/docs/api/java.base/java/nio/ByteBuffer.html.

causing the compiler to instead add a call site to invoke
java/nio/ByteBuffer.flip:()Ljava/nio/Buffer;13.

Therefore, this issue is caused by the different JDK versions
used during the build. This is surprising, as reproducing builds
usually try to replicate the build environment in order to
maximise the chances of the build to succeed and the resulting
binary to be identical to the original binary. In this case the
engineers seem to have attempted this somehow by setting
the compiler target level to bytecode version 52, which is
associated with Java 8 [25, Sect. 4.1] instead of using version
55 associated with Java 11. However, they did not account
for the fact that there are changes in the standard library that
have an impact on how bytecode is compiled. Since Java 9
(JEP247 [16]), there is a -release compiler flag that can be
used to avoid issues like this. It is likely that engineers used
only -target instead. The generated tests reveal those changes.

The two gaoss test failures on io.netty.netty--

codec-http:4.1.102.Final are similar, but “in reverse”:
Here, it is the mvnc jar that was built with a newer JDK
version (19), while gaoss was built with JDK 814. This
time, the generated tests expect NoSuchMethodError to be
thrown, resulting in test failure on gaoss when the call to
java/nio/ByteBuffer.flip:()Ljava/nio/Buffer; completes
normally.

Table II summarises these findings. One might expect
different behaviour not revealed by tests when tests are executed
with Java 11, as the call sites in these two binaries refer to
different methods in the standard libraries. However, this is
not the case as the Java compiler creates a synthetic bridge
method when compiling overriding methods with covariant
return types. In this case, it creates the bridge method
java.nio.ByteBuffer.flip()Ljava/nio/Buffer; that in-
vokes java.nio.ByteBuffer.flip()Ljava/nio/ByteBuffer;.
This bridge method is used during the runtime resolution of
the virtual call for the mvnc binary.

C. EvoSuite Mock Generation
We have identified three generated test classes with in-

consistent behaviour between the obfs and mvnc builds for
commons-io:commons-io:2.15.0:

1) org...io.monitor.FileAlterationObserver_ESTest

2) org...io.filefilter.NotFileFilter_ESTest

3) org...io.output.UncheckedAppendableImpl_ESTest

All of these test inconsistencies are caused by the same
pattern. The obfs binary was built with Java 8, while the mvnc
binary was built with Java 21. The target level for both was
set to 52 (compatible with Java 8). Table III summarises the
situation.

In Java 18, a subtle change occurred regarding how methods
implemented in the root class (java.lang.Object) such as
toString, equals and hashCode are invoked for interfaces15.

13Unlike Java source code, Java byte code supports return type overloading,
and changing the return types alters the descriptor, and therefore is a binary
incompatible change causing linkage errors. [5], [25]

14The jar manifests contain the entries Build-Jdk-Spec: 19 and Build-Jdk-
Spec: 1.8, respectively.

15https://github.com/openjdk/jdk/pull/5165

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/ByteBuffer.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/nio/ByteBuffer.html
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TABLE I
NUMBER OF TESTS WITH DIFFERENT RESULTS BETWEEN mvnc AND ALTERNATIVE BUILDS

build artifact test class tests

gaoss commons-io:commons-io:2.15.0 org.apache.commons.io.filefilter.NotFileFilter ESTest 2
gaoss commons-io:commons-io:2.15.0 org.apache.commons.io.monitor.FileAlterationObserver ESTest 2
gaoss commons-io:commons-io:2.15.0 org.apache.commons.io.output.UncheckedAppendableImpl ESTest 1
gaoss io.netty:netty-codec-http:4.1.102.Final io.netty.handler.codec.http.multipart.AbstractDiskHttpData ESTest 2
gaoss io.undertow:undertow-servlet:2.2.23.Final io.undertow.servlet.spec.UpgradeServletInputStream ESTest 5
gaoss io.undertow:undertow-servlet:2.2.24.Final io.undertow.servlet.spec.UpgradeServletInputStream ESTest 17
gaoss io.undertow:undertow-servlet:2.2.25.Final io.undertow.servlet.spec.UpgradeServletInputStream ESTest 5
gaoss io.undertow:undertow-servlet:2.2.26.Final io.undertow.servlet.spec.UpgradeServletInputStream ESTest 6
gaoss io.undertow:undertow-servlet:2.2.28.Final io.undertow.servlet.spec.UpgradeServletInputStream ESTest 5
gaoss io.undertow:undertow-servlet:2.2.31.Final io.undertow.servlet.spec.UpgradeServletInputStream ESTest 5
gaoss io.undertow:undertow-servlet:2.2.32.Final io.undertow.servlet.spec.UpgradeServletInputStream ESTest 5
obfs commons-io:commons-io:2.15.0 org.apache.commons.io.filefilter.NotFileFilter ESTest 2
obfs commons-io:commons-io:2.15.0 org.apache.commons.io.monitor.FileAlterationObserver ESTest 2
obfs commons-io:commons-io:2.15.0 org.apache.commons.io.output.UncheckedAppendableImpl ESTest 1

TABLE II
TEST RESULTS FOR UpgradeServletInputStream ESTest TESTS ON

io.undertow:undertow-servlet:2.2.23 AND FOR
io.netty.handler.codec.http.multipart.AbstractDiskHttpData ESTest TESTS ON
io.netty.netty-codec-http:4.1.102.Final, RUNNING TESTS ON THE ORIGINAL
MAVEN CENTRAL ARTIFACT AND THE ALTERNATIVE BUILD FROM gaoss

artifact build bytecode
version

JDK version
used to build

test results
(Java 8)

test results
(Java 11)

undertow mvnc 52 8 pass pass
undertow gaoss 52 11 fail pass
netty mvnc 52 19 pass fail
netty gaoss 50 8 fail fail

TABLE III
TEST RESULTS FOR SELECTED TESTS GENERATED FOR

commons-io:commons-io:2.15.0, RUNNING TESTS ON THE ORIGINAL MAVEN
CENTRAL ARTIFACT AND THE ALTERNATIVE BUILD FROM obfs

build bytecode
version

JDK version
used to build

test results
(Java 8)

mvnc 52 21 pass
obfs 52 8 fail

For instance, consider the code in the following listing:

1 Comparable comp = ... ;
2 comp.toString ();

Up to Java 17, this call was compiled to invokevirtual

Object::toString16. Starting with Java 18, this call is now
compiled to invokeinterface Comparable::toString.

This results in changes to runtime behaviour when
using the EVOSUITE runtime, as EVOSUITE replaces
these calls with calls to its own mocks, such as
org.evosuite.runtime.System::toString. But this only re-
places the older call pattern, not the new one.

An example of such inconsistent behaviour we have en-
countered is when a toString implementation is recursive.
Then EVOSUITE generates a test with a self-referential data
structure that expects a StackOverFlowError to occur when

16Package names and descriptors are omitted for brevity

toString is invoked on this data structure. However, when the
mock substitution is performed by EVOSUITE, this error does
not occur as the mock toString method is not recursive, and
the test fails. I.e., the test outcome now depends on whether
EVOSUITE performs the substitution or not, and this depends
on the compiler that had been used.

In this case we think the misconfiguration is on the Maven
Central side, where a very recent Java version has been used
to create a binary compatible with Java 8, but this hasn’t been
configured correctly.

IV. RELATED WORK

Differential Testing [19] is an automated approach that
identifies various errors by comparing the behaviour of two or
more comparable systems [14], [23], [26]. In the context of
object-oriented (OO) programming, notable techniques include
DIFFUT [26], BERT [14], and DIFFGEN [23]. Similar to our
approach, these techniques leverage the differences between two
software versions to generate test cases that reveal behavioural
discrepancies. However, our approach focuses on comparing
binaries, which required us to design and implement specialised
ad-hoc analyses.

Although the implementation details may differ, all differen-
tial testing techniques share the core idea of generating and
executing the same test cases on the versions being compared
to reveal behavioural differences. While differential testing has
been effective in detecting semantic errors in various domains
(e.g., C compilers [28] and JVM implementations [4]), to the
best of our knowledge, it has not yet been applied to identify
differences between alternative builds of the same program
version.

V. DATA ACCESS

The input jar pairs, generated tests and raw test run reports
can be found here: https://doi.org/10.5281/zenodo.14753368.

VI. CONCLUSION

In this paper we have explored a novel use case for
differential testing: to assess the behavioural equivalence of
binaries built independently from the same source code. Our

https://doi.org/10.5281/zenodo.14753368


research was motivated by software supply chain security.
While we did not find any evidence that components in our
dataset had been compromised during the build, we did find
two interesting cases of build misconfiguration.

A possible avenue for future research is to analyse other
signals from test executions, namely coverage. This could still
reveal differences in program behaviour not captured by the
assertions in generated tests.
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