Metamorphic Testing of Large Language Models
for Natural Language Processing

Steven Cho
University of Auckland
Auckland, New Zealand
steven.cho@auckland.ac.nz

Abstract—Using Large Language Models (LLMs) to perform
Natural Language Processing (NLP) tasks has been becoming
increasingly pervasive in recent times. The versatile nature of
LLMs makes them applicable to a wide range of such tasks. While
the performance of recent LLMs is generally outstanding, several
studies have shown that LLMs can often produce incorrect results.
Automatically identifying these faulty behaviors is extremely useful
for improving the effectiveness of LLMs.

One obstacle to this is the limited availability of labeled
datasets, necessitating an oracle to determine the correctness of
LLM behaviors. Metamorphic Testing (MT) is a popular testing
approach that alleviates this oracle problem. At the core of MT are
Metamorphic Relations (MRs), defining the relationship between
the outputs of related inputs. MT can expose faulty behaviors
without the need for explicit oracles (e.g., labeled datasets).

This paper presents the most comprehensive study of MT for
LLMs to date. We conducted a literature review and collected
191 MRs for NLP tasks. We implemented a representative subset
(36 MRs) to conduct a series of experiments with three popular
LLMs, running ~560K metamorphic tests. The results shed light
on the capabilities and opportunities of MT for LLMs, as well
as its limitations.

Index Terms—large language models, metamorphic testing,
machine learning testing, NLP, Software Engineering for Al

I. INTRODUCTION

Large Language Models (LLMs) have rapidly gained trac-
tion in many applications due to their impressive natural-
language understanding and generation capabilities [1]. How-
ever, concerns on the reliability and trustworthiness of LLMs
persist—specifically, biases, hallucinations, and other faulty
behaviors remain significant challenges [2], [3]. Exposing such
issues is crucial as it is the first step for fixing them [4], [5].

Automated testing is crucial for evaluating the quality
of LLM outputs [2]-[5]. It also plays a key role in the
feedback loop that continually improves LLMs over time. When
testing uncovers unwanted behaviors, targeted interventions—
such as reinforcement learning [6], alignment adjustments [7],
policy updates [8], focused fine-tuning [9], and other adap-
tive techniques—can be applied to substantially enhance a
model’s reliability [S]. Moreover, automated testing of LLMs
is becoming increasingly important in industry contexts, where
many organizations are transitioning away from generic, public
(and supposedly well-tested) LLM services (e.g., OpenAl API)
toward private, locally deployed, fine-tuned models [10], [11].
This shift is often driven by privacy, security, and compliance

Stefano Ruberto
JRC European Commission
Ispra, Italy
stefano.ruberto@ec.europa.eu

Valerio Terragni
University of Auckland
Auckland, New Zealand
v.terragni @auckland.ac.nz

requirements, or simply by the need for better performance
in company-specific environments [11]. By rigorously testing
these locally hosted models, organizations can ensure they meet
performance standards while avoiding exposure of sensitive
data to third-party services.

One of the primary challenges in automatically testing LLMs
is the oracle problem [12]; the problem of distinguishing
between correct and incorrect test executions. In Natural Lan-
guage Processing (NLP), obtaining new text inputs for testing
is straightforward thanks to abundant textual data. However,
determining output correctness is far more complex. Typically,
human-created labels serve as the “oracles”, indicating correct
or incorrect outputs. Because human-labeled datasets for NLP
are limited and expensive to obtain, there is a pressing need for
effective automated test oracles [3] that can evaluate correctness
of textual outputs without relying on human-created labels.

Metamorphic Testing (MT) [13] is a widely used approach
to alleviate the oracle problem. At the core of MT are
Metamorphic Relations (MRs), which define relationships
between the outputs of related inputs. This approach is based
on the intuition that, even if we cannot automatically determine
the correctness of the output for an individual input, we can
use the relationships among the expected outputs of multiple
related inputs as a test oracle [14]. Metamorphic testing has
been used extensively in NLP, across a wide range of tasks [15]-
[19]. However, applying MT to LLMs is still an understudied
problem [20] despite its several potential benefits.

Figure 1 shows an example of faulty behavior we detected
in GPT-4 using MT. The example involves natural language
inference [21], a core NLP task that determines the relationship
between a premise and a hypothesis. It classifies it as either
entailment (hypothesis logically follows from the premise),
contradiction (hypothesis is logically incompatible with
the premise), or neutral (no clear logical relation). The
MR in Figure 1 states that, given two inputs where one is a
paraphrase of the other, the inference results should be the
same. We create this input pair by applying a transformation
on the first input to generate the second. In this case, the
LLM responds neutral for the first input and entailment
for the second, violating the metamorphic relation'. Notably,

ITo note, the LLM’s neutral response is correct, as the premise lacks
evidence that the man is performing. He could be playing at home, for instance

This is the authors’ version of the paper that was accepted for publication in the research track of the
41st IEEE International Conference on Software Maintenance and Evolution (ICSME 2025)

vter674
This is the authors’ version of the paper that was accepted for publication in the research track of the
41st IEEE International Conference on Software Maintenance and Evolution (ICSME 2025)

Metamorphic Relation (MR): &, : X, is a paraphrase of x, — &, : flx;) = fix,)

prompt P for “natural language inference” task

[> Premise:

i : A man is playing the flute into
1| the microphone.

HY: i i . .

A man is playing at a concert Hypothesis:

input transformation ¢ (paraphrasing)

\{HY}\

: The man plays the flute into the
answer.

[, |microphone.
HY: At a concert, a man is performing.

Is this entailment, contradiction,
or neutral? Only write a one-word X, © 0O

= (oo |

S(x1)

X m
o | flx2)

— [envaiinent]

R, — R, = false

true false

metamorphic oracle
violation

Fig. 1. Real faulty behaviour detected by LLMORPH in the OpenAl gpt-4-1106 model.

we can identify the faulty behavior without needing to know
the expected results for either input. This highlights the key
advantage of MT: the same MRs can be applied to arbitrary
inputs, enabling automated testing with a vast amount of
data. This is crucial for testing LLMs, as faulty behavior often
manifests only for specific inputs [5].

Hyun et al. [20] recently presented the only work on MT
for LLMs on NLP tasks, showing its potential. They presented
the framework METAL implementing 13 MRs and evaluated
on six tasks on 3 LLMs. However, questions remain about the
effectiveness of MT for LLMs, as well as their true positive
rate and fault detection compared to traditional ML testing.
Further research is needed to fully understand the effectiveness
and limitations of MT for LLMs.

To address these gaps, this paper presents the most com-
prehensive study on MT for LLMs. We conducted the first
systematic literature search on MRs for NLP, reviewing 1,024
papers and identifying 44 that explicitly defined MRs. This
resulted in a catalog of 191 unique MRs across 24 tasks.
We then developed LLMORPH, an automated framework for
applying MT to LLMs, implementing a representative subset of
36 MRs. Finally, we conducted large-scale experiments using
LLMORPH on three LLMs (GPT-4, LLAMA3, and HERMES
2) and four datasets, leading to 561,267 test executions. Our
experiments yielded four key findings.

First, MT effectively exposes faulty behaviors, with an
average failure rate of 18%. While a ground-truth oracle detects
more faults, it requires costly manual labeling. MT, however,
works on unlabeled data and identifies 11% of failures missed
by traditional testing, highlighting its complementarity.

Second, a manual analysis of 937 metamorphic oracle
violations showed an average true positive (FP) rate of around
60%, with most false positives arising from the intrinsic
limitations of MT for NLP. The FP rate aligns with traditional
MT for NLP, showing no LLM-specific issues, and remains
unavoidable even with LLM-based input transformations.

Third, MR effectiveness depends on the relation and task,
with minimal variation across LLMs. While the FP rate can be
high, many MRs maintain an acceptable FP rate when applied
to LLMs, making them practical for testing. In particular, some
MRs are consistently more effective than others, with high
failure rate and low false positive rate (e.g., MRs 9, 142, 154).
Developers could prioritise these during testing.

2Inputs that satisfy the input relation, R;. See Section II.

Finally, our results show that several MRs are task-
independent and thus useful for evaluating fine-tuned LLMs.
Additionally, LLM flakiness is not a major concern.

In summary, this paper makes the following contributions:

« An exhaustive catalog of 191 MRs for NLP tasks®.

« LLMORPH, a framework for performing MT on LLMs,

implementing 36 MRs, of which can be easily extended.

o A series of experiments that shed light on the capabilities

and limitations of MT for LLMs.

o Release of the source code for LLMORPH* and all

experimental data® to foster future work in this area

II. METAMORPHIC TESTING FOR LLMS

This section provides the background of this work and
formulates the problem of MT for LLMs. We follow the
traditional definition of MRs by Chen et al. [13], [14]:

Definition 1: Let f be a target algorithm. A Metamorphic
Relation (MR) is a property of f involving multiple inputs
(x1,...,2,) and their outputs (f(x1),..., f(x,)), withn > 2.
Formally®, an MR is expressed as a logical implication R; =
R, from an input relation R; to an output relation R,

Ri (xlv o xn) = Ro(f(xl)v T f(xn))

Whenever a given input relation R; holds between two or
more inputs, a corresponding output relation R, is expected
to hold between the outputs. If R; is true, then R, should be
true. Thus, an MR can be used as a metamorphic test oracle.

Definition 2: Given an MR (R; = R,), a metamorphic
test oracle is an executable Boolean expression that reports a
faulty behavior if, for a specific set of inputs, the input relation
R; is satisfied (true), but the output relation R, is not (false).

For example, the MR of Figure 1 is formulated as: R; :=
X9 is a paraphrase of 1 = R, = f(x1) = f(x2). It reports
a faulty behaviour in Figure 1 because the input relation is
satisfied while the output relation is not.

Typically, metamorphic test cases are generated by first
obtaining an initial test input x; (existing or generated), then

3https://mtdnlp.github.io/

“https://github.com/steven-b-cho/llmorph

Shttps://doi.org/10.5281/zenodo. 16526643

%A more general definition of MRs allows inputs and outputs to also
appear in the output and input relations, respectively [14]. However, we use
the traditional definition (Definition 1) as it covers almost all collected MRs.
Exceptions are MRs 115-119, 165-166.

https://mt4nlp.github.io/
https://github.com/steven-b-cho/llmorph
https://doi.org/10.5281/zenodo.16526643

TABLE I
TOP PUBLICATIONS VENUES OF THE REVIEWED PUBLICATIONS

Venue # Papers

International Conference on Software Engineering (ICSE) 5
International Conference on Automated Software Engineering (ASE)
International Conf. on the Foundations of Software Engineering (FSE)
arXiv

International Workshop on Metamorphic Testing (MET)

ACM Transactions on Software Eng. and Methodology (TOSEM)
International Computer Software and Applications Conf. (COMPSAC)
Mathematics

Others

Total 44

NN W R AW

—_

applying a transformation [22] ~~ to z; to create new inputs
that satisfy the input relation [23]. In such cases, the initial
test input is called the source test input (or case), which is
z1 in Figure 1. The case(s) derived from it to satisfy the input
relation are called the follow-up test inputs (or cases), which
is xo in the example. We can thus formalise this as:

Definition 3: Given an MR (R; = R,) and a test input
r1, a (metamorphic) input transformation [24] ~~ is a
transformation z; ~~ xo that satisfies R; (i.e., x1 ~ T9 :
Ri(z1,z2) = true)

Given a single MR, MT can consider an arbitrary number
of source test inputs and use the input transformation to
automatically create the corresponding follow-up test inputs.
MT executes the function under test on each pair of inputs
and reports an oracle violation if the output relation is false.

To apply MT for LLMs, we need a few considerations. First,
we consider only the use of LLMs for NLP—that is, both the
input « and the output f(x) are natural language text. Second,
as our target algorithm f is an LLM, it only provides next token
prediction. To perform a task, LLMs require specific prompts
(instructions). In the example in Figure 1, the prompt p is given
for the natural language inference task, and is part of the input x
to execute the task with an LLM. To obtain comparable results
among outputs, the prompt must remain consistent between
the source and follow-up inputs; it should not be altered by the
input transformation. LLM prompt perturbation is a separate
topic [25] that falls outside the scope of this work. Formally,
an input x is a tuple (i,p), where ¢ is the textual input and
p is the prompt (instructions) on how to perform the NLP
task using the input <. The input transformation ~~ (R;) only
modifies (predicates on) the textual input ¢ (see Figure 1).

III. LITERATURE SEARCH OF MRS

Our objective is to test LLMs using MRs for tasks involving
natural language input and output. To that end, we systemat-
ically search for literature applying MT in natural language-
based systems to create a comprehensive list of such relations.

Literature search: For our search, we follow the
ACM/SIGSOFT systematic review standards’ as closely as

7https://www?2.sigsoft.org/EmpiricalStandards/docs/standards ?standard=
SystematicReviews

Number of Publications

0

2018 2019 2020 2021 2022 2023 2024
Year

Fig. 2. Number of the 44 papers published each year from 2018 to 2024

possible, though though some procedures are inapplicable as
our goal was is search, not a review. As MT for NLP and LLMs
is a relatively new area, we aimed for comprehensiveness and
queried Google Scholar, which indexes both formal digital
libraries (e.g., ACM, IEEE) [26] and preprint servers (e.g.,
arXiv). We used the following keyword search:

[“metamorphic test” \% “metamorphic testing” \%
[“Ilm(s)” V

model” V “nlp” V “natural language processing”]

“metamorphic relation(s)”] A “language

We include “11m” and “language model” as we wish
to also find MRs that have already been used for testing LLMs
and other language models. We searched papers indexed from
1 January 1998, the year when metamorphic testing was first
introduced [13], to 30 June 2024. This resulted in 1,024 papers.
Literature selection: The literature search we performed was
intentionally broad, as we intended to gather as many MRs
as possible. Many of the papers chosen were thus out of
scope. To filter these, we included only papers that use MT to
test a natural language-based system explicitly mentioning the
metamorphic relations used. We excluded papers not written in
English, and those that only test for fairness or biases, which
are outside our scope.

After this inspection, we performed backward and forward

snowballing, examining references to identify any relevant
papers we missed. The final result is 44 papers.
Literature analysis: Table I and Figure 2 show the top publi-
cation venues and years of the 44 papers found, respectively.
We did not find any papers that met our criteria published
before 2018, despite MT being introduced 20 years earlier.
This may indicate that the application of MT on NLP has
only recently begun to be explored. Figure 2 shows an upward
trend in the number of published papers over time, indicating
growing interest and research activity in the field.

Table I shows that the most frequent publication venues
are ICSE, ASE and FSE, the three top SE conferences. This
is logical, given that MT is fundamentally a software testing
concept. Four papers (9%) were published on ARXTV without a
corresponding peer-reviewed conference or journal publication.
However, given that the majority of the selected papers were
published in peer-reviewed venues, we believe that the quality
of the results is not compromised.

Catalog of metamorphic relations: Finally, we analysed the
44 papers and extracted 191 unique MRs related to NLP. To

https://www2.sigsoft.org/EmpiricalStandards/docs/standards?standard=SystematicReviews
https://www2.sigsoft.org/EmpiricalStandards/docs/standards?standard=SystematicReviews

TABLE II
191 METAMORPHIC RELATIONS FOR NLP TASKS.

ID Task Input Relation (R;) Output Relation (Ro) Ref. H ID Task Input Relation (R;) Output Relation (Ro) Ref.
1 Ga Replace characters with random Equivalence [20]] 97 QAm Add negation (for multi-choice) Difference [27]
2 G, Delete characters Equivalence [20]| 98 QAm Add background for testing industrial sectors to question Equivalence [27]
3Go Leet format conversion Equivalence [20]] 99 QAm Add security instruction to question Equivalence [27]
4G, Add random characters Equivalence [20]| 100 QAm Add irrelevant option Equivalence [27]
5G, Add spaces Equivalence [20]| 101 QAc Semantic invariance Equivalence [28]
6 G, Swap characters Equivalence [20]] 102 QAc Capitalisation (in question) Equivalence [19]
7 G, Shuffle characters Equivalence [20]| 103 QAc Rephrase comparative sentence (in question) Equivalence [19]
8 G, Synonym substitution Equivalence [20]| 104 QAc Replace comparative word with antonym (in question) Difference [19]
9 G, Word insertion Equivalence [20]] 105 QAc Replace subject with unrelated noun (in question) Difference [19]

10 G, Antonyms substitution Difference [20]| 106 QAc Capitalisation (in context) Equivalence [19]

11 G. Remove sentences Equivalence [20]| 107 QAc Reverse order of sentences (in context) Equivalence [19]

12 G. Replace sentences Equivalence [20]| 108 QAc Add irrelevant sentences (in context) Equivalence [19]

13 G4 Category-based substitution (names, pronouns) Equivalence [29]] 109 QAc Remove irrelevant sentences (in context) Equivalence [19]

14 G4 Category-based substitution (country) Equivalence [29]] 110 QAc Category-based substitution (numbers) (in context) Equivalence* [19]

15G4 Category-based substitution (occupation) Equivalence [29]] 111 QAc Add irrelevant sentence (to question) Equivalence [30]

16 G4 Replace punctuation Equivalence [29]| 112 QAc Add irrelevant sentence (to context) Equivalence [30]

17 G4 Synonym substitution (noun) Equivalence [29]] 113 QAc Combine two questions and contexts Answers both questions [30]

18 G4 Synonym substitution (verb) Equivalence [29]| 114 QAc Combine two questions and contexts Answers first question [30]

19 G4 Shuffle sentences Equivalence [29]| 115 QA Given a wh-ques. and answer, derive a wh-ques. Consistency [31]

20 Ge Append full stops to words or sentences Equivalence [32]| 116 QA Given a wh-ques. and answer, derive a gen-ques. Consistency [31]

21 CM Substitute characters with visually similar characters Equivalence [33]] 117 QA Given a gen- or alt-question and answer, derive a wh-ques. Consistency [31]

22 CM Split characters into visually similar characters Equivalence [33]| 118 QA Given a wh-ques., answer and extra info., derive a wh-ques. Consistency [31]

23 CM Combine characters into visually similar characters Equivalence [33]] 119 QA Given a wh-ques., answer and extra info., derive a gen-ques. Consistency [31]

24CM Add random characters Equivalence [33]| 120 QA Back translate Equivalence [34]

25CM Replace characters with special symbols Equivalence [33]] 121 QA Change position of adverbial clause Equivalence [34]

26 CM Swap characters Equivalence [33]| 122 QA Word insertion Equivalence [34]

27 CM Translate some words to other languages Equivalence [33]] 123 QA Synonym substitution Equivalence [34]

28 CM Homophone substitution Equivalence [33]] 124 QA Alias substitution Equivalence [34]

29 CM Abbreviation substitution Equivalence [33]] 125 QA Abbreviation replacement Equivalence [34]

30 CM Split words into sub-words Equivalence [33]] 126 QA Keyboard mistake Equivalence [34]

31 CM Add many irrelevant sentences Equivalence [33]] 127 QA Misspelled word Equivalence [34]

32DS Synonym substitution Equivalence [35]] 128 QA OCR recognition error Equivalence [34]

33DS Category-based substitution (numbers) Equivalence* [35]] 129 QA Repeated question mark Equivalence [34]

34DS Remove keywords Difference [35]| 130 QAb Antonym substitution (first adjective) Difference [36]

35DS Replace keywords with unrelated terms Difference [35]| 131 QAb Change tense Difference [36]

36 DS Change order of actions Difference [35]] 132 QADb Substitute between ‘before’ and ‘after’ Difference [36]

37DS Back translate Equivalence [37]] 133 QAb Add negation (for boolean) Difference [36]

38 DS Word insertion Equivalence [37]| 134 QAb Synonym substitution (adjective) Equivalence [36]

39 DSp Synonymous sentence substitution in persona Equivalence [38]] 135 QAb Change adverbial position Equivalence [36]

40 DSp Persona substitution Equivalence [38]] 136 QAb Change to active/passive voice Equivalence [36]

41 DSp Swap characters in only persona Equivalence [38]| 137 RE Category-based substitution Equivalence [39]

42 DSp Swap characters in only input Equivalence [38]| 138 RE Replace head/tail with coarser-grained entity Same or coarser relation [39]

43 DSp Swap characters in both persona and input Equivalence [38]| 139 RE Replace head/tail with co-related entity of different type Equivalence [39]

44 CR Synonym, antonym and mask substitution Consistency [40]| 140 RE Replace head/tail with coreferential entity Equivalence 391

45 FN Back translate Equivalence [41]| 141 RE Swap entities if they have a symmetrical relation Equivalence [39]

46 FN Shuffle sentences Equivalence [42]| 142RE Swap entities if they have an asymmetrical relation Opposite relation [39]

47FN Shuffle words within a sentence Difference in confidence [42]| 143RE f(wz1,z2) is asymmetrical and f(z1,x3) is symmetrical f(z3,z2) equals f(z1,z2) [39]

48 FN Add/remove negation Difference [42]| 144 RE f(x1,x2) is asymmetrical and f(z2,23) is symmetrical — f(z1,23) equals f(z1,22) [39]

49 FN No transformation Equivalence [42]| 145 SA =z is more pos./neg. than 2, add random sentence to both x3 more pos./neg. than x4 [43]

50 FN Give input twice Equivalence [42]| 146 SA Add positive/negative text More positive/negative [28]

SI FN Paraphrase text Equivalence [42]| 147 SA Abbreviation / contraction substitution Equivalence [18]

52FN Split a false =1 into multiple inputs At least one output is false [42]| 148 SA Synonym substitution (nouns) Equivalence [18]

53 FN Combine two inputs in which at least one is false Combination is false [42]| 149 SA Change singular/plural Equivalence [18]

54LSR f(z1,z2) and f(z2,x3) are true f(z1,z3) is true [43]| 150 SA Change . to ‘!’ Stronger [18]

55 NER Mask substitution (verbs, adjectives, noun phrases) Equivalence [44]| 151 SA Add emphasising adverbs Stronger [18]

56 NER Mask substitution (noun phrases) Equivalence [44]| 152 SA Add negation Difference [18]

57 NER Declarative sentence into interrogative sentence Is a declarative sentence [44]| 153 SA Reverse case of all characters Equivalence [18]

58 NER Shuffle same-category entities in a sentence Equivalence [44]| 154 SA Make nouns and adjectives uppercase Stronger [18]

59 NER Transform company names to sub-companies Recognise as sub-company [45]| 155 SA Change tense Equivalence [18]

60 NER Swap entities with the same type but different identities Identify the new identities [45]| 156 SA Swap phrases around joining words Equivalence [18]

61 NER Add sentence to another sentence Union of individual inputs [46]| 157 SA Substitute between ‘although’ and ‘but’ Equivalence [18]

62 NER Add sentence to a paragraph Union of individual inputs [46]| 158 SA Rephrase comparative sentence Equivalence [18]

63 NER Add paragraph to an article Union of individual inputs [46]| 159 SA Swap comparative objects Difference [18]

64 NER Add list of random words to another list of random words Union of individual inputs [46]| 160 SA Shuffle sentences Equivalence [18]

65 NER Remove list of words from sentence x1 minus removed output [46]| 161 SA Group sentences of same sentiment together Equivalence [18]

66 NER Remove sentence from paragraph 1 minus removed output [46]| 162 SA Group sentences by sentiment and confidence Equivalence [18]

67 NER Remove paragraph from article 21 minus removed output [46]| 163 SA Sequentially add positive sentences Gradually more positive [18]

68 NER Remove some words from list of random words 1 minus removed output [46]| 164 SA Sequentially add negative sentences Gradually more negative [18]

69 NER Shuffle paragraphs in an article Equivalence [46]| 165 SA Remove all sentences with same label as document Difference [18]

70 NER Shuffle words in a list of random words Equivalence [46]| 166 SA Remove all sentences with different label than document Equivalence [18]

71 NLI Synonym substitution (in both premise and hypothesis) Equivalence [47]| 167 SD z1 implies x2 and x1 implies 3 xo implies x3 [48]

72 NLI Synonym substitution (in premise) Equivalence [47]] 168 TS Deriving an abstract sentence/summary from the input Difference [28]

73 NLI Synonym substitution (in hypothesis) Equivalence [47]| 169 TR Translate to a different language first Equivalence [49]

74 NLI Substitute gendered words with words of same gender Equivalence [47]) 170 TR Category-based substitution Equivalence* [50]

75NLI Substitute gendered words with words of different gender Equivalence [47]] 171 TR Context-similar substitution Equivalence [51]

76 NLI Add negation (in hypothesis) Opposite [47]) 172 TR Mask substitution (nouns, adjectives) Structured format is similar [52]

77NLI Conjoin two premises that both imply hypothesis Equivalence [47]] 173 TR Replace words with random Difference [53]

78 NLI Conjoin two hypotheses that are both implied by premises Equivalence [47]] 174 TR Remove words Difference [53]

79NLI z; implies x> and x> implies =3 f(z1,®3) is not contr. [47]| 175 TR Reverse case of some characters Equivalence [54]

80NLI x; implies 2 and x1 implies 3 f(z2,x3) is not contr. [47]] 176 TR Reverse case of all characters Equivalence [55]

81 PST Change position of ‘because’ clause Equivalence [56]| 177 TR Remove full stops Equivalence [55]

82 PST Change position of ‘when’ clause Equivalence [56]| 178 TR Replace punctuation Equivalence [54]

83 PST Add irrelevant sentence to beginning of input Equivalence [56]| 179 TR Add noise Equivalence [55]

84 PST Add irrelevant sentence to end of input Equivalence [56]) 180 TR Category-based substitution (subject) Equivalence* [55]

85PD Paraphrase text Equivalence [57]] 181 TR Synonym substitution (verb) Equivalence [55]

86 PDq Swap first names and surnames Equivalence [58]| 182 TR Category-based substitution (object) Equivalence* [55]

87 PDq Reverse order of query Equivalence [58]| 183 TR Random word substitution (word at end of sentence) Equivalence* [54]

88 PDq Swap pairs of numbers Equivalence [58]| 184 TR Translate to target language and back first Equivalence [54]

89 PDq Abbreviate words Equivalence [58]| 185 TR Place a phrase in different contexts Phrase is equivalent [59]

90 PDq Category-based substitution (nationality, gender, numbers) Difference [58]) 186 TR Insert adjunct sentence Parse tree of x; found in zo [60]

91 PDq Category-based substitution (gender, numbers) Difference [58]] 187 TR Place a phrase in different contexts then back translate Phrase is equivalent [15]

92 PDq Category-based substitution (numbers) Difference [58]| 188 TR Back translate Proper nouns are the same [61]

93 QAm Numeric magnitude change Equivalence [27]| 189 TR Construct word closures Word closure comparison [62]

94 QAm Numeric precision change Equivalence [27]] 190 TR Convert to tree then prune Similarity of trees [63]

95 QAm Synonym substitution (industry-specific) Equivalence [27]| 191 TR Back translate Equivalence [64]

96 QAm Swapping order of options Equivalence [27]

“ To improve table readability we grouped the tasks SA, TC, TD, QA, SM, IR into G4, SA, TC, TD, QA into Gp, SM, IR into G, TS, SM, TC into G4, and TR, NER into G,
b Equivalence* means equivalence except for substitute
¢ Four papers: [31], [35], [42], [54]) are extensions of others: [16], [41], [55], [65]) of the same authors and share many MRs. Therefore, these shared MRs are attributed only to the latest paper.
4 1f we found the same MR in multiple papers applied on the same task we cite the most recent one.

TABLE III

DESCRIPTION AND BREAKDOWN OF THE NATURAL LANGUAGE PROCESSING (NLP) TASKS OF THE MRS IN TABLE II

ID Task Name Task Description # MRs
CM Content moderation Detecting inappropriate or harmful content in a text 11
CR Coreference resolution Determining which words in a text refer to the same entity 1
DS Dialogue system Conversing with humans 7
DSp Dialogue system (persona-based) Conversing with humans while maintaining a consistent personality 5
FN Fake news detection Detecting whether a text has false or misleading information 9
IR Information retrieval Finding relevant information from a text 10
LSR Lexical semantic relations Analysing relationship between words 1
NER Named entity recognition Identifying and classifying words into categories 17
NLI Natural language inference Determining whether a hypothesis follows from a premise 10
PD Plagiarism detection Detecting instances of copied or unoriginal text 1
PDq Plagiarism detection (query-based) Detecting instances of copied or unoriginal text using a specific query 7
PST Part-of-speech-tagging Classifying words into grammatical categories 4
QA Question answering Answering questions in natural language, using no context 25
QAb Question answering (boolean) Answering true or false questions, using no context 7
QAc Question answering (incl. context) Answering questions in natural language, using context 14
QAm Question answering (multi-choice) Answering multi-choice questions, using no context 8
RE Relation extraction Identifying relationships between two entities in a text 8
SA Sentiment analysis Determining how positive or negative a text is 32
SD Stance detection Determining the agreement between two texts 1
SM Summarisation Condensing text while retaining key information 17
TC Text classification Determining whether a text falls into predefined categories 17
TD Toxicity detection Identifying whether a text is offensive or harmful 10
TR Translation Converting text from one language to another 24
TS Text similarity Determining the similarity between two texts 8

do so, the first author read each selected paper and identified
all defined MRs, ensuring understanding of the MR, including
any specific notation. They then reformulated the MR using
our notation (for consistency) and wrote a brief description.

This process ensured that all MRs in each paper were captured.

Afterwards, to ensure consistency and correctness, all authors
reviewed the collated list. We collectively discussed each
MR, removed duplicates, and refined descriptions; and, when
necessary, we revisited the papers together to ensure accurate
interpretation and categorization until reaching a consensus.

The collected MRs are summarised in Table II, with the NLP
task descriptions and breakdown in Table III. Table II presents
a unique ID assigned to each MR, the input relation (R;), the
output relation (R,), the NLP task for which the MR was
presented, and the publication source. Note that, for improved
table readability, the input relation (R;) implicitly describes
the relation between the source and follow-up input(s), and the
output relation (R,) among their outputs. A formal description
of the 191 MRs can be found in our supplementary data.

MR discussion: We see that the most common output relation
is Equivalence. This is perhaps the simplest relation an
input relation could imply, leading to its prevalence. In the
context of NLP, Equivalence can be defined in two ways:
syntactic and semantic. Synfactic equivalence occurs when the
two values have the same structure or form, while semantic
equivalence refers to when they convey the same meaning,
regardless of structure. The choice between syntactic and
semantic equivalence depends on the task. For instance, NLI
with its triary output would use syntactic equivalence (see
Figure 1), while free-form QA would use semantic equivalence
(often implemented with BERT-like word embeddings [19],
[30]). Similarly, the second most common output relation is
Difference, and follows the same principle.

Many MRs share commonalities, but are distinct enough
to be considered separate. One example is the varying levels

of granularity that different papers use in defining MRs. For
instance, MR-8 [20] involves creating semantically similar
sentences by substituting words with their synonyms. MR-
17 [27] does this also, but only substitutes nouns. MR-72 [47]
adapts this specifically for NLI, substituting words only in the
premise of the input. These variations may have different
fault detection capabilities, and so are kept separate.
Task discussion: We identified 24 distinct NLP tasks, described
in Table III. It is important to mention that while some
MRs are specific to certain tasks (e.g., MR-188 is specific to
Translation (TR)), others have been applied to multiple tasks.
For example, we found that MR-1 to MR-20 were applied
across various tasks, with MR-1 to MR-4 being applied to the
highest number (SA, TC, TD, QA, SM, IR) (see footnote® of
Table II for the description of grouped notation G,). Moreover,
Table II associates tasks to MRs based on their use in the
papers we reviewed, not necessarily the tasks to which they
could be applied in other contexts. Indeed, MR-1 to MR-4 are
presumably general enough to be applied to any NLP task.
To note, the number of MRs for a task (Table III) is not
an indication of how well-studied that task is with MT. For
instance, sentiment analysis (SA)—with the highest number
of MRs—derives 20 out of its 32 relations from a single
paper (Table II), the rest from only three others. In contrast,
Translation (TR) sources its 24 MRs from 14 different studies.

IV. EXPERIMENTS

We conducted a series of experiments to address three
research questions:

RQ1 Failure Rate. 7o what extent does MT exhibit failures
in LLMs?

RQ2 Comparison. How does MT compare with traditional
testing that uses labeled data?

RQ3 Manual Validation. What is the true positive rate of the
reported failures?

RQ1 evaluates MT’s effectiveness at detecting oracle vio-
lations by running 561,267 test groups (source and follow-up
pairs) from 36 MRs on three popular LLMs. RQ2 compares
the results with the source input’s ground truth provided by the
datasets. Although MT is typically not applied when oracles
(e.g., labeled data) are present, we used labeled data to better
understand MT’s fault detection capabilities. RQ3 assesses
MT’s reliability through manual analysis of detected failures,
identifying true positives and limitations.

Chosen tasks and relations: We selected four tasks from
Table III-—question answering with context (QAc), natural
language inference (NLI), sentiment analysis (SA), and relation
extraction (RE)—as they provide a good range to evaluate
LLMs’ language understanding.

In Table II, we categorized the MRs based on the tasks they
were proposed for. However, this does not mean these MRs
cannot be applied to other tasks; indeed, several of the relations
were presented for multiple tasks or explicitly stated to be
generally applicable. Consequently, we chose 36 metamorphic
relations to implement, spread across the four selected tasks,
including MRs not necessarily originally proposed for that task.
We selected these based on: (i) inclusion in METAL [20] (MRs
1-12), (ii) common use across tasks, (iii) MRs proposed for
one task but suited to many, (iv) task-specific MRs, and (v)
ease of understanding to reduce misimplementation. The first
five columns of Table V show the implemented MRs and the
tasks to which we applied them.

LLMORPH implementation: To implement the input transfor-
mations ~ of the 36 MRs, we use two methods: function-based,
and LLM-based. For simple procedures, we use traditional
function-based methods to generate follow-up inputs (for MRs
1-7, 9, 19, 49, 84, 102, 120, 126, and 128). For instance,
randomly adding a sentence to the end of the input (MR-84)
was done through concatenation, obtaining the sentences from
an online source®. As another instance, introducing keyboard
mistakes (MR-126) was done through the NLPAug library®.

For more complex cases, we utilise an LLM (HERMES
2). This is done via few-shot prompting. For example,
we used the prompt Paraphrase the following
text: "{TEXT}" Only output the changed
text, nothing else. for the MR in Fig. 1. LLMs,
unlike traditional techniques, consistently outputs text that
is grammatically correct and thus viable test cases [66].
Without using LLMs, one would need check for grammatical
consistency and text sensicality [67].

While we did not formally validate HERMES 2 for input
transformation, preliminary tests showed reasonable alignment
with the MRs. GPT-4 may perform better, but HERMES 2 was
more practical due to GPT-4 rate limits.

We crafted the LLM prompts for both the tasks and input
transformations through an iterative process, following prompt
engineering principles [68] and refining them until we felt them

8https://randomwordgenerator.com/sentence.php
%https://github.com/makcedward/nlpaug

TABLE IV
DATASETS USED IN OUR EXPERIMENTS
NLP Task Dataset Name Avg. words Size Ref.
QA SQUAD2 137.0 142,000 [70]
NLI SNLI 20.4 570,000 [71]
SA SST2 19.2 70,000 [72]
RE RE-DOCRED 182.4 4,050 [73]

sufficiently effective. For the transformation prompts, as we
aimed to compare MRs across multiple tasks, we designed the
few-shot examples generically to be applicable across different
tasks, keeping the prompts and examples the same for all tests.
We used zero-shot for the implementation of tasks as we believe
this would give more insight into the generalisability of the task
performance, as well as minimising bias from any examples
we were to choose. While we did not rigorously evaluate the
prompts, preliminary checks show that they perform reasonably
well for the tasks at hand.

Although there is the risk of nondeterminism in the transfor-
mations performed by HERMES 2 (unfortunately not supporting
a random seed), we did not deem this a critical issue. This is
because: (i) the stochastic effect is diluted due to applying the
same input transformation to a myriad of different inputs; (ii)
in preliminary runs, we did not observe significant differences
when repeatedly transforming the same input; and (iii) repeating
the experiments would require excessive time and resources.

Some tasks have multiple components to their inputs—
for example, NLI has a premise and a hypothesis
(see Figure 1). We observe that, for these tasks, oftentimes
previous research would apply the same transformation to each
component and regard them as separate MRs (for example,
MR-71 to 73). This process can be applied to many of the 36
MRs we selected. Thus, for our chosen multiple-component
tasks (QA and NLI), we test MRs on every combination
when possible. For instance, in QA, we may apply the input
transformation on the first component, then the second, then
both, resulting in three distinct metamorphic test cases. This
effectively increases the variations of those MRs for these tasks
as well as the number of metamorphic test groups generated.

To measure semantic equivalence for computing the output
relation, we use BERT [69] to assess the similarity between
two texts, a common practice in NLP-related MT studies [19],
[30]. Specifically, we use PARAPHRASE-MINILM-L6-V2, a
popular model on HuggingFace. If the similarity score is above
a threshold, we consider the texts to be semantically equivalent.
To decrease potential false positives, we selected different
thresholds for MRs with equivalence and difference relations.
To obtain these thresholds, we initially adopted a threshold of
0.6 (inspired by METAL [20], though they employed a different
output comparison method) and applied it to preliminary test
data consisting of metamorphic output pairs. Through manual
analysis, we selected the thresholds where 75% of the true
positives were retained. This resulted in a similarity threshold
of 0.8, and a dissimilarity threshold of 0.4.

Datasets: For each task, we selected an existing labeled dataset
that is popularly used in the reviewed papers. Table IV provides
a summary of the four datasets. Due to the high computational
cost of running experiments with LLMs and the large size
of the datasets, we sampled them as described in Section I'V-
E. The sampled instances serve as our source input texts for
metamorphic testing. It is important to note that MT does not
require ground truth (e.g., labeled data); however, we chose
these datasets with labeled data to compare the effectiveness
of traditional testing with MT (RQ2).

SQUAD?2 [70] is a popular question answering dataset, with
five of the six MT for free-form question answering (QA)
papers using it [19], [30], [31], [34], [65]. SNLI [71] is a
widely used NLI dataset from Stanford University and is used
in the primary source of MRs for NLI [47]. SST2 [72] is a
popular sentiment analysis dataset from Stanford University.
RE-DOCRED [73] is a newer version of DOCRED, a popular
RE dataset. For each input, RE-DOCRED provides several
possible relations; we randomly selected one for each instance.

LLMs under test: We performed our experiments on three
LLMs. These are chosen as they are state-of-the-art models,
and are readily available at our Institution.
o gpt-4-1106'" (GPT-4) from OpenAl
e 1lama-3.1-70b-instruct!" (LLAMA3)
META, comparable to GPT-4 in many areas.
« nous-hermes—-2-mixtral-8x7b-dpo'? (HERMES
2), an open-source model. A fine-tuned version of MIX-
TRAL8XT7B.

from

Experimental setup: Using our four chosen tasks and 36 rela-
tions, LLMORPH takes input data from a dataset and transforms
each input into one or more follow-up inputs, forming so-called
metamorphic test groups—groups composed of a source
input and its corresponding follow-up(s). It then checks against
the output relation to determine possible metamorphic oracle
violations. Throughout, it assesses whether all source/follow-up
inputs/outputs adhere to any additional requirements of the MR.
If they do not, that metamorphic group is discarded. We run
1,000 instances randomly sampled from each dataset for each
task. This is performed for each MR and corresponding task,
resulting in 108 task-MR pairs for each LLM. Through this, we
get 178,180 unique metamorphic groups. We run these same
groups for each LLM to obtain comparable results. In total,
discounting discarded groups, we run 561,267 metamorphic
groups, spanning four tasks, three LLMs, and 36 MRs.

A. RQI: Failure Rate

Table V shows the results for RQ1 and RQ2 by MRs,
aggregating the outcomes for different tasks and LLMs.

Column “# groups” gives the number of metamorphic
test groups executed for each MR (range: 2,165-24,217;
average: 15,265; median: 20,120). Each metamorphic group

10https://platform.openai.com/docs/models
https://huggingface.co/meta-llama/Meta-Llama- 3-70B-Instruct
Zhttps://huggingface.co/NousResearch/Nous- Hermes-2-Mixtral-8x7B-DPO

TABLE V
RESULTS BY METAMORPHIC RELATIONS (RQ1 AND RQ2)

| NLP Tasks | RQI1 - failure rate |
MR | QA NLI SA RE | # groups A |
23,288

RQ2 - labelled data
@ ®

€]
®

1 0.23 0.53 0.08
2 23,288 0.19 056 024 0.12 0.07
3 23,256 0.11 063 027 0.06 0.05
4 23,256 0.17 058 025 0.11 0.06
5 23,256 0.12 062 026 0.07 0.05
6 23,288 0.18 057 025 0.12 0.07
7 23,292 0.15 0.60 026 0.09 0.06
8 24,175 0.19 056 025 0.11 0.08
9 11,216 0.17 055 029 0.09 0.07
10 18,131 0.27 041 023 022 0.14
19 . . 5,178 0.14 046 040 0.03 0.11
25 23,284 0.21 050 022 0.19 0.09
34 23,284 0.39 034 014 035 0.17
49 11,206 0.10 059 031 0.04 0.05
51 23,262 0.17 059 024 010 0.07
57 . 2,165 0.36 008 056 0.05 031
77 . 3,013 0.02 070 026 0.02 0.02
78 . 3,013 0.01 071 027 0.02 001
79 . 3,013 0.00 072 027 0.01 0.00
80 . 3,013 0.00 072 027 0.00 0.00
84 . . . 14,217 0.11 0.60 029 0.05 0.06
102 23,256 0.10 063 027 0.05 0.05
120 23,262 0.16 059 025 0.09 0.06
126 24,211 0.21 053 026 0.13 0.07
127 24,217 0.20 054 026 0.13 0.07
128 24,211 0.15 058 027 0.09 0.06
136 . . . 20,243 0.15 058 027 0.09 0.06
137 11,216 0.37 043 020 021 0.16
141 0 2,165 0.06 005 047 0.07 042
142 . 2,165 0.80 001 005 0.13 082
149 . . . 14,223 0.10 062 028 0.05 0.05
150 . 3,013 0.13 072 013 0.12 0.03
151 . 3,013 0.14 070 013 0.14 0.02
152 19,997 0.27 044 020 020 0.17
154 . 3,013 0.21 064 011 020 0.05
155 . . . 20,249 0.10 062 028 0.05 0.05
AVG 15,265 0.18 054 026 0.11 0.10
MED 20,120 0.15 058 026 0.09 0.06
TOT | | 549,548 0.18 |

t = (x1,....2,,) involves the inputs/outputs of two or more
invocations of the LLM under test (source and follow-up inputs,
see Sec. II). The number of groups varies across MRs as some
were applied to only one task, and others to more (see Column
“NLP Tasks”). Additionally, some instances from the datasets
did not satisfy the input relation and were thus discarded.
Column “\” gives the failure rate \ = %, the ratio
of test groups that lead to metamorphic oracle violations (i.e.,
the input relation R; is true, but the output relation R, is
false). The failure rates range from 0.00 (0%) to 0.80 (80%),
with an average of 0.18 (18%) and median of 0.15 (15%).

Tables VI and VII summarize results by tasks and LLMs,
respectively. QA tasks have the fewest failures (A = 0.12),
while RE tasks have the most (A = 0.32). Among LLMs,
GPT-4 has the lowest failure rate (A = 0.14).

Answering RQ1: The failure rate A of the 36 MRs averages
to 18%. There is significant variability in the ratio across
MRs (A from 0% to 80%), even within the same task.

B. RQ2: Comparison with Traditional Testing

To compare MT with traditional testing in the context of
LLMs, we computed the confusion matrix of two oracles: the
metamorphic oracle, and the ground truth of the source
output as provided by the original labeled dataset. Table VIII
describes the notation for each of the four possible outcomes.

Following Section II, consider a metamorphic test group
t = (x1,...,2,) with an associated MR R;(x1, - ,x,) =

https://platform.openai.com/docs/models
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO

100% -

80% -

60% -

40%

20% A

0% -
Hermes 2

100%

80% -

60% -

40% -

20% A

0% -

Yy v 5 9 0 A D O

8

100%

80% 1

60% -

40% A

20% A

0% -

O P PP DA D> O DD > OSSP D
L A A U R R L SRR AR R AR AR AN SR R AR AR g

Relation

mmm True Positive (TP) ~ mmm Input Transformation (FP;)

mmm Output Comparison (FP,)

mmm Other mmm Output QA (FPy. ga) mmm Output RE (FP, . re)

Fig. 3. Stacked bar chart of the manual labels by LLM, Task, and MR (RQ3)

TABLE VI
RESULTS BY NLP TASKS (RQ1 AND RQ2)

TABLE VIII
CONFUSION MATRIX OF THE MR AND GROUND-TRUTH ORACLES (RQ2)

RQ2 - labelled data

| RQ1 - failure rate
|

I
Task # tests A] O @ ® @
NLI 200,987 0.17 0.59 0.23 0.13 0.06
QA 205,179 0.12 0.67 0.21 0.09 0.03
RE 67,958 0.32 0.09 0.57 0.04 0.30
SA 75,424 0.25 0.59 0.13 0.22 0.05
AVG 137,387 0.22 0.48 0.29 0.12 0.11
MED 138,205.5 0.21 0.59 0.22 0.11 0.05
TABLE VII

RESULTS BY LARGE LANGUAGE MODELS (RQ1 AND RQ2)

| RQ1 - failure rate | RQ2 - labelled data

LLM | # tests A | @ @ ® @
GPT-4 169,787 0.14 064 021 0.10 0.05
LLAMA3 191,082 0.18 0.53 028 0.11 0.08
HERMES 2 188,679 0.21 051 026 0.13 0.10
AVG 183,183 0.18 056 025 0.11 0.08
MED 188,679 0.18 053 026 011 0.08
Ro(f(x1), -+, f(xn)). The metamorphic test oracle fails (an

oracle violation indicating incorrect behavior) if this Boolean
implication is false (® or @). Otherwise, it passes (O or @).

For the same group ¢, let f (1) be the ground truth (from
a labeled dataset) of the expected output for the source input
1. The ground truth oracle fails if f(z1) # f(z1) (@ or @),
and passes otherwise (O or @). When tasks require semantic
equivalence for the comparison, we follow the method described
in Section IV; otherwise, we compare the strings syntactically
(e.g., neutral versus entailment in Figure 1).

It is important to clarify that these oracle results are not
directly comparable. On one hand, we only have the ground
truth for the expected output of the source input, not for the
metamorphic relation or any follow-up outputs. On the other

F(x1) # £(x1)| ® ~ 53% Both oracles are passing

MR(t) | True False @ ~ 27% MT oracle passes, source output is incorrect
True | @ @ ® ~ 11% MT oracle fails, source output is correct
False | ® @ @ ~ 10% Both oracles are failing

hand, a failure in the metamorphic oracle does not necessarily
indicate that the source output is incorrect; it may also point to
issues with the follow-up output(s), or both. Nevertheless, we
can still draw meaningful conclusions by analysing the results.

We partition the 561,267 test groups into four disjoint sets
(®, @, ®, @) depending on whether the MR was satisfied or
violated, and whether the source output was correct or not
according to the ground truth. Columns @, @, @, and @ in
Tables V, VI, and VII present the confusion matrix results
grouped by MRs, tasks, and LLMs, respectively. Interestingly,
the average ratios across the three are quite similar (with some
exceptions). Thus, we can make some common observations:

® (~53% of all groups) Both oracles pass. This is the most
common case, which makes sense as the tested LLMs generally
have high capabilities, leading to mostly correct executions.

@ (~27% of all groups) The metamorphic oracle fails to
detect that the source output is incorrect. An incorrect source
output often leads to similarly incorrect follow-up outputs,
likely making metamorphic fault detection more challenging.

® (~11% of all groups) The metamorphic oracle detects a
faulty behavior that the ground truth oracle does not. As the
ground truth oracle on the source output passes, there is likely
a problem in the follow-up output. This is the most interesting
case, showing the complementary nature of the two oracles.

@ (~10% of all groups) Both oracles fail, indicating
overlapping fault detection capabilities.

TABLE IX
CLASSIFICATION OF MANUAL VALIDATION RESULTS (RQ3)

Label Description - True Positive (TP) and False Positive (FP)

TP The metamorphic relation correctly identified a faulty behavior
according to human judgment.

FP; The MR failed because the input transformation altered the source

input either too much or too little, depending on whether equivalence
or difference was intended.

FP, The output relation failed to correctly compare outputs (e.g., BERT’s
semantic similarity misidentifying equivalence or difference).

FPy.qa In QA tasks, outputs indicate the answer is unknown, but the output
comparison fails to recognize equivalence.

FPo.re In RE tasks, outputs specify different but correct textual relations, and
the output comparison fails to recognize correctness.

FPyr The input and output relations are correct, but the MR is nonsensical

for the given inputs.
FPyther Uncategorized cases (e.g., empty LLM output).

The exceptions to this trend are MR-57, 141, and 142—all
applied to RE—and the overall RE task itself. They show
fewer MR satisfactions (®) and more violations (®). This
likely stems from RE allowing multiple correct answers (e.g.,
“David Bowie” and “Space Oddity” could relate as both “singer”
and “author”). As a result, our semantic similarity method may
misclassify valid variations as failures.

Answering RQ2: Traditional label-based testing detects
more faults overall, but MT complements it by identifying
faults missed by labeled data, at zero human cost. Thus,
MT is valuable when labeled data is limited or costly.

C. RQ3 - Manual Validation

To validate the results, we manually assessed a sample of the
metamorphic violations to determine whether they were true
positive faulty behaviors. To reduce bias toward high-violation
MRs, we equally sampled from all combinations of LLM, task,
and MR. We randomly selected three for each combination,
totaling 967 violations distributed among three authors.

Each evaluator examined the inputs, outputs, and MR
descriptions. To facilitate this, we built a web interface
highlighting the textual difference between source and follow-
up inputs/outputs. The evaluators chose from the seven labels
described in Table IX. Note that FP,, FPq,, and FP,. are
disjoint sets. We chose to label FP,.q, and FP, . separately
from other output relation issues due to their prominence.

Figure 3 shows the stacked bar charts of the results grouped
by MR, task, and LLM, respectively. As only one violation
(of MR-155) was deemed nonsensical, we incorporated FPyr
into FPyype. On average, the TP rate is 62% across all 967
metamorphic oracle violations manually analysed. While the
bar chart of LLMs shows a similar proportion across different
LLMs (left top corner), the chart divided by task (right top
corner) provides more insight into which tasks MT is more
prone to have false positives. As expected, QA and RE pose
the greatest challenges because their free-form outputs require
semantic comparisons. The NLI task had no issues with
the output relation as it uses syntactic equivalence among
three possible outputs (see Figure 1). Similarly, sentiment

TABLE X
REPORTED FALSE POSITIVE RATES OF PREVIOUS WORK ON MT FOR NLP

Task Ref. Lower Upper Task Ref. Lower Upper
TR [63] 0.16 0.38 QAb [36] 0.07 0.07
TR [62] 0.30 043 QA [65] 0.00 0.19
TR [60] 0.13 0.37 QA [31] 0.00 0.38
TR [59] 0.00 0.22 QAc [30] 0.02 0.03
TR [53] 023 0.57 NER [44] 0.02 0.20
TR [52] 0.22 0.30 CR [40] 0.00 0.00
TR [51] 0.09 023 Various [28] 0.02 0.08
TR [15] 0.22 0.30

analysis had fewer issues due to the ease of comparison of its
numerical sentiment score. False positives derived from input
transformation issues is the most common category.

Answering RQ3: True positives are the most common
(62%), but some MRs have significant false positives.

V. DISCUSSION AND ANALYSIS

False positive discussion: We observe a high false positive
rate in our results. This is somewhat expected, as it is an issue
inherent to MT for NLP. In traditional MT for software systems,
MRs are usually defined exactly, such that the description and
the implementation are one and the same [14]. Under such
conditions, if a false positive occurs, the MR itself must have
been incorrectly specified and thus not a necessary property
of the system under test [13]. For example, consider the MR
22 = (—x)? for the square function. Given a number z, we
can apply the input transformation precisely to obtain —x. The
output relation of numerical equivalence (=) admits no FPs.

Conversely, in NLP, the MR serves more as a guideline;
there may be many possible implementations of the same MR.
Consider MR-35. The input relation “Replace keywords with
unrelated terms” specifies a vague implementation of detecting
keywords and identifying unrelated terms, a task complicated
by the inherently ambiguous nature of language. The semantic
nature of the output relation further increases FPs.

Table X summarizes the false positive rates reported by
previous work on MT for NLP, showing both the lower
and upper bounds from their experiments. Our results are
comparable to these. This suggests that MT for LLMs does
not produce substantially more false positives than traditional
MT for NLP, which is an important finding. Notably, prior MT
research on LLMs [20] did not evaluate FPs.

We find that the most common cause FPs is input trans-
formation errors. These issues typically fall into one of two
categories: (i) the transformation changes too little even though
the MR expects a different outcome, or (ii) it changes too
much while the MR still expects an equivalent result (e.g. MR-
127 misspell “What is the capital of Chile?” ~» “What is the
apitpul of Chile?”). Regarding output relation FPs, the BERT-
based semantic comparison commonly used in NLP cannot as
easily be used in LLM systems. In the QA task, 31% of the
false positives was due to the cosine similarity not being able

to recognise the equivalence between, for instance, “unknown”
and a similar response. In RE, 24% of FPs occur because
standard NLP assumes a single correct label, while LLMs
can produce multiple valid answers (e.g., “son” or “successor’
for “What is the relation between Charles I and Charles I1?").
These are intrinsic issues stemming from natural language’s
ambiguity and complexity.

’

While our results indicate that further research is needed
to enhance the effectiveness of input transformations and
output comparisons, it is unrealistic to expect these to perform
flawlessly across all tasks and contexts. A more attainable goal
is to devise methods for assessing the confidence or quality
of such transformations and comparisons, thereby filtering out
cases likely to be false positives. For instance, prioritising
failures by metrics such as MR type and the magnitude of
similarity score would help reduce the cost of inspecting failing
test cases in practical use. In addition, if the oracle violations
are used in an automated pipeline (e.g., for self-supervised
fine-tuning or adversarial training), some FPs are less critical.

Task dependency discussion: Our experiments confirm that
some MRs exhibit varying TP rates depending on the task.
For example, synonym substitution in QA (“What’s the tallest
building?” ~~ “What’s the highest building?”, which remains
equivalent) behaves differently in SA (“The movie was great”
~> “The movie was superb”, which may increase the sentiment
score). However, certain MRs (e.g., MR-9, MR-102) prove
effective across multiple tasks, consistently maintaining a high
TP rate. Notably, we applied some MRs to tasks they were
not originally designed for and found them to be effective.
This is crucial, as it suggests that some MRs can be leveraged
universally, demonstrating the potential of MT for evaluating
locally deployed, fine-tuned LLMs.

Flakiness analysis: LL.Ms, compared to many NLP tech-
niques, are non-deterministic in nature!3. Therefore, it is
important to understand how flaky (inconsistent) the results may
be. We selected all 99,099 metamorphic groups that initially
failed and re-ran them 9 additional times to measure flakiness
across 10 total runs. We used exactly the same groups for each
run, thus guaranteeing no variability in generating the follow-up
test cases and ensuring consistency across all experiments.

Table XI shows the results (all row). Most metamorphic
groups (62%) consistently failed in the majority of runs (6-10
times), with 28% failing in all 10 runs. These results indicate
that the observed issues reliably trigger MR violations and
are not artifacts of randomness behaviors inherent to LLMs
models. Moreover, although we re-ran only failing metamorphic
groups rather than all 561,267 groups (due to computational
constraints), our results suggest that even a few runs may still
reliably detect MR violations.

Table XTI also breaks down the failure rates between failure
types. The average 10/10 rates between true (TP 21%) and
false (FP,;; 23%) positives are similar, unexpectedly. This is

3Even when the temperature parameter is set to zero, some models or
tokenizers may still randomly choose between tokens with equal scores.

TABLE XI
FLAKINESS OF METAMORPHIC GROUPS WITH AT LEAST ONE FAILURE

\ # failures per 10 re-runs

Failure Type | 1/10 2/10 3/10 4/10 5/10 6/10 7/10 8/10 9/10 10/10
all 0.08 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.10 0.28
TP 0.08 0.08 0.14 0.06 0.11 0.08 0.06 0.09 0.10 0.21
FP. 0.08 0.10 0.11 0.10 0.11 0.06 0.06 0.07 0.09 0.23
FP; 0.03 0.04 0.03 0.03 0.04 0.04 0.10 0.05 0.16 0.46
FP, 0.11 0.05 0.16 021 0.11 0.00 0.05 0.11 0.11 0.11
FPo.qa 022 0.18 022 0.13 0.13 0.09 0.02 0.02 0.00 0.00
FPo:re 0.00 0.19 0.06 0.19 0.25 0.06 0.06 0.16 0.03 0.00
FPother 0.00 0.05 0.16 0.05 0.16 0.11 0.00 0.11 0.05 0.32

likely coincidental, however, as the 10/10 rates for input-based
false positives (46%) differ greatly from that of output-based
(0%-11%). The former is LLM-independent, leading to a higher
chance of consistent violation; the latter largely depends on
the LLM’s nondeterministic output, often resulting in true
satisfaction once the output has changed.

Envisioned use of LLMORPH: LLMORPH can be combined
with traditional testing by using MT to automatically identify
inputs where the LLM fails to satisfy an MR. Traditional testing
can then be applied to these inputs to define human-specified
oracles, enabling more targeted validation while reducing the
high cost of human labelling.

LLMORPH could be integrated into existing continuous
integration/continuous deployment pipelines for LLM-based
services. In particular, in the regression testing scenario,
LLMORPH could automatically detect if changes in the training,
prompts, or model architecture impacted the performance of
the system. This could be fully automated by checking if the
failure rate significantly increases after modifications.

VI. THREATS TO VALIDITY

Data leakage: A possible threat is data leakage, as the
data we used was likely trained on by the LLMs. Indeed,
during our manual inspection, we found that the LLM was
sometimes responding too well on very perturbed follow-up
inputs. However, this is not a severe issue; it simply means
that the LLM performs better than it should. We are still able
to detect issues using MT.

Implementation issues: Another potential threat concerns our
implementation of prompts, input transformations, and output
comparison. To mitigate this, we followed established practices
from related work and applied prompt engineering techniques
to refine our prompts where needed. All experimental data are
publicly available®, and we welcome external validation.

Input transformation bias: In our experiments, we relied on
HERMES 2 to perform complex input transformations. However,
HERMES 2 is also one of the LLM under test, so the input
transformation and output generation was done by exactly
the same MR. This might have introduced biases. Performing
more experiments possibly using a dedicated LLM for the
input transformation is an important future work, as well as
evaluating LLMORPH on more recent and advanced LLMs
(e.g., OpenAI’s 03, which has advanced reasoning).

VII. RELATED WORK

To the best of our knowledge, this is the first comprehensive
study of MT for LLMs through NLP. We now discuss the most
related work in MT surveys, LLMs for MT, and MT for LLMs.

MT surveys: Previous surveys on MT have not specifically
targeted MRs in the NLP domain. METWIKI'* [74] is a
repository for retrieving MRs, containing MRs extracted from
the MT survey by Segura et al. [75]. They do not discuss MRs
for NLP, however. Their survey was conducted in 2016, while
our literature search indicates that the first papers on MT for
NLP date to 2018. Indeed, Figure 5 of Segura et al.’s survey,
the MT applications over the years [75], does not include NLP
(or a related application). Another survey on MT by Xie et
al. [76] (conducted in 2011) provides a broader overview of
MT techniques for machine learning but does not mention MT
for NLP, which again aligns with our findings. Moreover, both
surveys discuss the properties of MT rather than specific MRs.

LLMs for MT: There is growing interest in leveraging LLMs
for various aspects of automated software testing, such as
generating test cases and oracles [77]-[80]. In the context
of MT, recent research has explored using LLMs for MT of
software systems [81]—[83], including generating MRs [84]—
[88]. Similarly, LLMORPH employs LLMs for implementing
MT, specifically for transformations. However, our focus is on
testing LLMs, whereas these work leverages LLM to target
MT for code-based software systems.

MT for LLMs: Adversarial attacks on prompts aim to per-
turbing prompts to evaluate the qualities of LLMs [25], [89]-
[91]. Some of these adversarial attacks partially resemble MRs
and MT [90]. However, these approaches focus on altering
the prompt to make the LLM respond differently, including
jailbreak techniques that assign specific roles to prompts to
induce privacy and security leaks [25]. In contrast, we focus
on MRs applied to inputs rather than prompts, which is an
orthogonal problem. Indeed, the MRs discussed in this paper
are generic to any NLP technique, whereas adversarial attacks
on prompts are specific to particular LLMs, with prompt-based
jailbreak methods working for some LLMs but not others [25].

Regarding MT for LLMs in the NLP domain, METAL [20]
is a recent framework for MT of LLMs. While the experimental
settings of METAL are similar to LLMORPH, including
investigating using LLMs to implement input transformations,
the two works differ substantially: (i) METAL experimented
with 13 MRs, whereas we chose 36, which includes all relevant
MRs in METAL™". (ii) The number of metamorphic test cases
generated in our experiments is orders of magnitude higher.
(iii) METAL did not manually investigate the false positive
rate of metamorphic oracle violations. We found that this is
crucial to truly understand the capabilities and effectiveness
of MT for LLMs. (iv) We compared the MT results with the

4Unreachable website http:/metwiki.net/
ISMETAL includes additional MRs targeting more general LLM qualities
(e.g., efficiency, fairness), which are outside the scope of this work.

ground truth of the source inputs to provide more insights into
the fault detection capabilities of MT.

Since we performed the literature search on MT for LLMs via
NLP (up to 30 June 2024), a few papers have been published in
this field. There have been studies on detecting fact-conflicting
hallucinations in LLM using MT [92]-[95], mainly in the areas
of question answering [92], [93]. In addition, there have been
papers on LLM-based dialogue systems [96] and evaluating
LLM in-context learning via sentiment analysis and question
answering [97]. However, these studies investigate specific
applications of MT for LLMs under specific tasks, domain, or
contexts. Conversely, our work aim at examining MT for LLM
more generally; indeed, we still exceed all of these works in
the breadth of our study, considering both the number of MRs
and the range of NLP tasks evaluated.

VIII. CONCLUSION AND FUTURE WORK

This paper presented the most comprehensive study on
applying Metamorphic Testing (MT) to Large Language Models
(LLMs). We systematically reviewed the existing literature and
compiled a list of 191 metamorphic relations for NLP. We then
introduced a framework called LLMORPH that implements 36
of these MRs, executing 561,297 metamorphic test groups on
three LLMs across four NLP tasks. Using this collection of
MRs, we explored the interactions between MRs, tasks, and
LLM response semantics.

As this framework uses the general NLP testing method
of Metamorphic Testing, it can also be used on any NLP
system, not just LLMs. While LLMORPH could still rely on the
power of LLMs for implementing input transformations, we can
replace the model under test with any NLP tool. In particular,
our catalog of 191 MRs represents the largest knowledge
base of MRs for NLP to date, which we believe is a useful
contribution for the entire NLP community beyond LLMs.

While MT for LLMs via NLP is promising, it remains a
relatively new research direction, and several challenges remain.
Based on our findings, we highlight several opportunities for
future research.

LLMORPH currently implements 36 out of the 191 collected
MRs. While implementing all MRs is a substantial task, we
hope that releasing the source code* will encourage the research
community to contribute to LLMORPH.

We investigated the same MRs applied across several tasks
and found that many exhibit task independence. With LLMs
increasingly being fine-tuned for tasks, it is important to find
more of such task-independent MRs to more effectively test
these systems automatically.

We found that false positive metamorphic violations is still a
major challenge in MT for LLMs. Given the inherent ambiguity
of language, completely eliminating FPs is difficult. Future
research should focus on detecting and filtering FPs to improve
the effectiveness of metamorphic testing for LLMs.

http://metwiki.net/

[1]

[2

—

[3

=

[4

=

[5

=

[6]

[7

—

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong et al., “A survey of large language models,” arXiv
preprint arXiv:2303.18223, 2023.

W. Wang, J. Shi, Z. Tu, Y. Yuan, J.-t. Huang, W. Jiao, and M. R. Lyu,
“The earth is flat? unveiling factual errors in large language models,”
arXiv preprint arXiv:2401.00761, 2024.

S. Guo, C. Xie, J. Li, L. Lyu, and T. Zhang, “Threats to pre-trained lan-
guage models: Survey and taxonomy,” arXiv preprint arXiv:2202.06862,
2022.

Y. Elazar, N. Kassner, S. Ravfogel, A. Ravichander, E. Hovy, H. Schiitze,
and Y. Goldberg, “Measuring and improving consistency in pretrained
language models,” Transactions of the Association for Computational
Linguistics, vol. 9, pp. 1012-1031, 2021.

Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi,
C. Wang, Y. Wang et al., “A survey on evaluation of large language
models,” ACM Transactions on Intelligent Systems and Technology,
vol. 15, no. 3, pp. 145, 2024.

H. Sun and M. van der Schaar, “Inverse reinforcement learning from
demonstrations for llm alignment,” in ICML 2024, 2024.

Y. Wang, W. Zhong, L. Li, F. Mi, X. Zeng, W. Huang, L. Shang, X. Jiang,
and Q. Liu, “Aligning large language models with human: A survey,”
arXiv preprint arXiv:2307.12966, 2023.

C. Tang, Z. Liu, C. Ma, Z. Wu, Y. Li, W. Liu, D. Zhu, Q. Li, X. Li,
T. Liu et al., “Policygpt: Automated analysis of privacy policies with
large language models,” arXiv preprint arXiv:2309.10238, 2023.

K. VM, H. Warrier, Y. Gupta et al., “Fine tuning 1lm for enterprise:
Practical guidelines and recommendations,” arXiv:2404.10779, 2024.
C. Trugalbandara, A. Mahendra, R. Daynauth, T. K. Arachchige, J. Dan-
tanarayana, K. Flautner, L. Tang, Y. Kang, and J. Mars, “Scaling down
to scale up: A cost-benefit analysis of replacing openai’s 1lm with open
source slms in production,” in ISPASS. IEEE, 2024, pp. 280-291.

V. Hanke, T. Blanchard, F. Boenisch, I. E. Olatunji, M. Backes, and
A. Dziedzic, “Open llms are necessary for current private adaptations
and outperform their closed alternatives,” arXiv:2411.05818, 2024.

E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle
problem in software testing: A survey,” IEEE transactions on software
engineering, vol. 41, no. 5, pp. 507-525, 2014.

T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A
new approach for generating next test cases,” Technical Report HKUST-
CS98-01, Department of Computer Science, The Hong Kong University
of Science and Technology, Tech. Rep., 1998.

T. Y. Chen, E-C. Kuo, H. Liu, P-L. Poon, D. Towey, T. H. Tse, and Z. Q.
Zhou, “Metamorphic testing: A review of challenges and opportunities,”
ACM Computing Surveys, vol. 51, no. 1, pp. 4:1-4:27, 2018.

W. Gao, J. He, and V.-T. Pham, “Metamorphic testing of machine
translation models using back translation,” in DeepTest, 2023, pp. 1-8.
J. Bozic and F. Wotawa, “Testing chatbots using metamorphic relations,”
in Testing Software and Systems, C. Gaston, N. Kosmatov, and P. Le Gall,
Eds., 2019, pp. 41-55.

M. T. Ribeiro, T. Wu, C. Guestrin, and S. Singh, “Beyond accuracy:
Behavioral testing of NLP models with CheckList,” in Proc. of the 58th
Annual Meeting of the Association for Computational Linguistics, 2020,
pp. 4902-4912.

M. Jiang, T. Y. Chen, and S. Wang, “On the effectiveness of testing
sentiment analysis systems with metamorphic testing,” Inf. Softw. Technol.,
vol. 150, no. C, 2022.

K. Tu, M. Jiang, and Z. Ding, “A metamorphic testing approach for
assessing question answering systems,” Mathematics, vol. 9, no. 7, 2021.
S. Hyun, M. Guo, and M. A. Babar, “Metal: Metamorphic testing
framework for analyzing large-language model qualities,” in /CST, 2024,
pp. 117-128.

S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large
annotated corpus for learning natural language inference,” in Proc. of
the 2015 Conf. on Empirical Methods in Natural Language Processing,
2015, pp. 632-642.

Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey, “Metamorphic relations
for enhancing system understanding and use,” IEEE Transactions on
Software Engineering, 2018.

C. Xu, V. Terragni, H. Zhu, J. Wu, and S.-C. Cheung, “MR-Scout:
Automated Synthesis of Metamorphic Relations from Existing Test Cases,”
TOSEM, vol. 33, no. 6, 2024.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

(38]

(391
[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

J. Ayerdi, V. Terragni, G. Jahangirova, A. Arrieta, and P. Tonella, “Gen-
Morph: Automatically Generating Metamorphic Relations via Genetic
Programming,” IEEE TSE, vol. 50, no. 7, pp. 1888-1900, 2024.

H. Li, D. Guo, W. Fan, M. Xu, J. Huang, F. Meng, and Y. Song, “Multi-
step jailbreaking privacy attacks on chatgpt,” arXiv:2304.05197, 2023.

Z. Zhang, B. G. Patra, A. Yaseen, J. Zhu, R. Sabharwal, K. Roberts,
T. Cao, and H. Wu, “Scholarly recommendation systems: a literature
survey,” Knowledge and Information Systems, vol. 65, no. 11, pp. 4433—
4478, 2023.

Z.Li, W. Qiu, P. Ma, Y. Li, Y. Li, S. He, B. Jiang, S. Wang, and W. Gu,
“An empirical study on large language models in accuracy and robustness
under chinese industrial scenarios,” arXiv:2402.01723, 2024.

P. Ji, Y. Feng, W. Huang, J. Liu, and Z. Zhao, “Intergenerational test gen-
eration for natural language processing applications,” arXiv:2302.10499,
2023.

L. Jin, Z. Ding, and H. Zhou, “Evaluation of chinese natural language
processing system based on metamorphic testing,” Mathematics, vol. 10,
no. 8, 2022.

Q. Shen, J. Chen, J. M. Zhang, H. Wang, S. Liu, and M. Tian, “Natural
test generation for precise testing of question answering software,” in
ASE 22, 2023.

X. Xie, S. Jin, and S. Chen, “qaasker+: a novel testing method for
question answering software via asking recursive questions,” Automated
Software Engg., vol. 30, no. 1, mar 2023.

C. Wu, L. Sun, and Z. Q. Zhou, “The impact of a dot: Case studies
of a noise metamorphic relation pattern,” in 2019 IEEE/ACM 4th Int.
Workshop on Metamorphic Testing (MET), 2019, pp. 17-23.

W. Wang, J.-t. Huang, W. Wu, J. Zhang, Y. Huang, S. Li, P. He, and
M. R. Lyu, “Mttm: Metamorphic testing for textual content moderation
software,” in ICSE, 2023, p. 2387-2399.

Z. Liu, Y. Feng, Y. Yin, J. Sun, Z. Chen, and B. Xu, “Qatest: A uniform
fuzzing framework for question answering systems,” in ASE, 2023.

J. Bozi¢, “Ontology-based metamorphic testing for chatbots,” Software
Quality Journal, vol. 30, no. 1, p. 227-251, mar 2022.

S. Chen, S. Jin, and X. Xie, “Validation on machine reading compre-
hension software without annotated labels: a property-based method,” in
ESEC/FSE 2021, 2021, p. 590-602.

Z. Liu, Y. Feng, and Z. Chen, “Dialtest: automated testing for recurrent-
neural-network-driven dialogue systems,” in ISSTA, 2021, p. 115-126.

Y. Chen, L. Li, X. Tao, and D. Zhou, “Persona-centric metamorphic
relation guided robustness evaluation for multi-turn dialogue modelling,’
arXiv:2401.12483, 2024.

Y. Sun, Z. Ding, H. Huang, S. Zou, and M. Jiang, “Metamorphic testing
of relation extraction models,” Algorithms, vol. 16, no. 2, 2023.

J. Cao, Y. Lu, M. Wen, and S.-C. Cheung, “Testing coreference resolution
systems without labeled test sets,” in FSE, 2023, p. 107-119.

Y. Ma, D. Towey, T. Yueh Chen, and Z. Quan Zhou, “Metamorphic testing
of fake news detection software,” in COMPSAC, 2021, pp. 1508-1513.
L. Miao, D. Towey, Y. Ma, T. Y. Chen, and Z. Quan Zhou, “Exploring
metamorphic testing for fake-news detection software: A case study,” in
COMPSAC, 2023, pp. 912-923.

E. Manino, J. Rozanova, D. Carvalho, A. Freitas, and L. Cordeiro,
“Systematicity, compositionality and transitivity of deep NLP models: a
metamorphic testing perspective,” in ACL, 2022, pp. 2355-2366.

B. Yu, Y. Hu, Q. Mang, W. Hu, and P. He, “Automated testing and
improvement of named entity recognition systems,” in FSE, 2023, p.
883-894.

Y. Xu, Z. Q. Zhou, X. Zhang, J. Wang, and M. Jiang, “Metamorphic
testing of named entity recognition systems: A case study,” IET Software,
vol. 16, no. 4, p. 386-404, 2022.

M. Srinivasan, M. P. Shahri, I. Kahanda, and U. Kanewala, “Quality
assurance of bioinformatics software: A case study of testing a biomedical
text processing tool using metamorphic testing,” in 2018 IEEE/ACM 3rd
Int. Workshop on Metamorphic Testing (MET), 2018, pp. 26-33.

M. Jiang, H. Bao, K. Tu, X.-Y. Zhang, and Z. Ding, “Evaluating natural
language inference models: A metamorphic testing approach,” in ISSRE,
2021, pp. 220-230.

A. Amo, F. Iwama, and M. Takeuchi, “Automated metamorphic testing
using transitive relations for specializing stance detection models,” in
ICSE-SEIP, 2023, pp. 467-470.

D. Pesu, Z. Q. Zhou, J. Zhen, and D. Towey, “A monte carlo method for
metamorphic testing of machine translation services,” in 2018 IEEE/ACM
3rd Int. Workshop on Metamorphic Testing (MET), 2018, pp. 38-45.

>

[50

[51]

[52]
[53]

[54]

[55]
[56]

(571

[58]
[59]
[60]
[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

L. Sun and Z. Q. Zhou, “Metamorphic testing for machine translations:
Mt4mt,” in ASWEC, 2018, pp. 96-100.

Z. Sun, J. M. Zhang, M. Harman, M. Papadakis, and L. Zhang, “Automatic
testing and improvement of machine translation,” in ICSE, 2020, p.
974-985.

P. He, C. Meister, and Z. Su, “Structure-invariant testing for machine
translation,” in ICSE, 2020, p. 961-973.

S. Gupta, P. He, C. Meister, and Z. Su, “Machine translation testing via
pathological invariance,” in ESEC/FSE, 2020, p. 863-875.

Z. Li, L. Xiao, R. Lin, and Z. Xiao, “Metamorphic robustness testing
for deepl translation,” Journal of Physics: Conf. Series, vol. 2456, no. 1,
p- 012018, 2023.

D.T.S. Lee, Z. Q. Zhou, and T. H. Tse, “Metamorphic robustness testing
of google translate,” in ICSEW, 2020, p. 388-395.

S. Jin, S. Chen, and X. Xie, “Property-based test for part-of-speech
tagging tool,” in ASE, 2021, pp. 1306-1311.

P. Y. P. Chan, J. Keung, and Z. Yang, “Uncertainty-based metamorphic
testing for validating plagiarism detection systems,” in Technology in
Education. Innovative Practices for the New Normal, 2024, pp. 299-314.
——, “Validating plagiarism detection systems with metamorphic testing,”
in ISET, 2023, pp. 132-137.

P. He, C. Meister, and Z. Su, “Testing machine translation via referential
transparency,” in /CSE, 2021, p. 410-422.

P. Ji, Y. Feng, J. Liu, Z. Zhao, and B. Xu, “Automated testing for machine
translation via constituency invariance,” in ASE, 2021, pp. 468-479.

B. Yu, Q. Mang, Q. Guo, and P. He, “Retromorphic testing: A new
approach to the test oracle problem,” arXiv:2310.06433, 2023.

X. Xie, S. Jin, S. Chen, and S.-C. Cheung, “Word closure-based
metamorphic testing for machine translation,” arXiv:2312.12056, 2023.
Q. Zhang, J. Zhai, C. Fang, J. Liu, W. Sun, H. Hu, and Q. Wang,
“Machine translation testing via syntactic tree pruning,” ACM Trans.
Softw. Eng. Methodol., 2024.

Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey, “Metamorphic relations
for enhancing system understanding and use,” IEEE Transactions on
Software Engineering, vol. 46, no. 10, pp. 1120-1154, 2020.

S. Chen, S. Jin, and X. Xie, “Testing your question answering software
via asking recursively,” in ASE, 2021, pp. 104-116.

Z. Wang, W. Wang, Q. Chen, Q. Wang, and A. Nguyen, “Generating
valid and natural adversarial examples with large language models,” in
CSCWD, 2024, pp. 1716-1721.

J.-t. Huang, J. Zhang, W. Wang, P. He, Y. Su, and M. R. Lyu, “Aeon: a
method for automatic evaluation of nlp test cases,” in ISSTA, 2022, p.
202-214.

B. Chen, Z. Zhang, N. Langrené, and S. Zhu, “Unleashing the potential
of prompt engineering in large language models: a comprehensive review,”
arXiv:2310.14735, 2023.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
of the Conf. of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1,
2019, pp. 4171-4186.

P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know:
Unanswerable questions for SQuAD,” in Proc. of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), 2018, pp. 784-789.

P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image
descriptions to visual denotations: New similarity metrics for semantic
inference over event descriptions,” Transactions of the Association for
Computational Linguistics, vol. 2, pp. 67-78, 2014.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in EMENLP, 2013, pp. 1631-1642.

Q. Tan, L. Xu, L. Bing, H. T. Ng, and S. M. Aljunied, “Revisiting
docred — addressing the false negative problem in relation extraction,”
in EMNLP, 2022.

X. Xie, J. Li, C. Wang, and T. Y. Chen, “Looking for an mr? try metwiki
today,” in 2016 IEEE/ACM 1Ist Int. Workshop on Metamorphic Testing
(MET), 2016, pp. 1-4.

S. Segura, S. Poulding, and G. Fraser, “Metamorphic testing: Testing
the untestable,” in /CSE, 2016, pp. 1-12.

[76]

(771

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

(871

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

X. Xie, J. W. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, “Testing
and validating machine learning classifiers by metamorphic testing,”
Journal of Systems and Software, vol. 84, no. 4, pp. 544-558, 2011.
M. Schifer, S. Nadi, A. Eghbali, and F. Tip, “Adaptive test generation
using a large language model,” arXiv e-prints, 2023.

Z. Yuan, Y. Lou, M. Liu, S. Ding, K. Wang, Y. Chen, and X. Peng,
“No more manual tests? evaluating and improving chatgpt for unit test
generation,” arXiv:2305.04207, 2023.

S. Ruberto, J. Perera, G. Jahangirova, and V. Terragni, “From imple-
mented to expected behaviors: Leveraging regression oracles for non-
regression fault detection using 1lms,” in ICSTW, 2025, pp. 37-40.

R. Ravi, D. Bradshaw, S. Ruberto, G. Jahangirova, and V. Terragni,
“LLMLOOP: Improving LLM-Generated Code and Tests through Auto-
mated Iterative Feedback Loops,” in ICSME. IEEE, 2025.

J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang, “Software
testing with large language models: Survey, landscape, and vision,” IEEE
Transactions on Software Engineering, 2024.

M. L. Siddiq, J. C. Da Silva Santos, R. H. Tanvir, N. Ulfat, F. Al Rifat,
and V. Carvalho Lopes, “Using large language models to generate junit
tests: An empirical study,” in Proc. of the 28th Int. Conf. on Evaluation
and Assessment in Software Engineering, 2024, pp. 313-322.

N. Alshahwan, J. Chheda, A. Finogenova, B. Gokkaya, M. Harman,
I. Harper, A. Marginean, S. Sengupta, and E. Wang, “Automated unit
test improvement using large language models at meta,” in FSE, 2024,
pp. 185-196.

S. Y. Shin, F. Pastore, D. Bianculli, and A. Baicoianu, “Towards
generating executable metamorphic relations using large language models,”
arXiv:2401.17019, 2024.

C. Tsigkanos, P. Rani, S. Miiller, and T. Kehrer, “Large language models:
The next frontier for variable discovery within metamorphic testing?” in
SANER. 1EEE, 2023, pp. 678-682.

Q.-H. Luu, H. Liu, and T. Y. Chen, “Can chatgpt advance software
testing intelligence? an experience report on metamorphic testing,”
arXiv:2310.19204, 2023.

D. Srinivas, R. Das, S. Tizpaz-Niari, A. Trivedi, and M. L. Pacheco,
“On the potential and limitations of few-shot in-context learning to
generate metamorphic specifications for tax preparation software,”
arXiv:2311.11979, 2023.

C. Xu, S. Chen, J. Wu, S.-C. Cheung, V. Terragni, H. Zhu, and J. Cao,
“Mr-adopt: Automatic deduction of input transformation function for
metamorphic testing,” in ASE, 2024, pp. 557-569.

F. Perez and I. Ribeiro, “Ignore previous prompt: Attack techniques for
language models,” arXiv:2211.09527, 2022.

K. Zhu, J. Wang, J. Zhou, Z. Wang, H. Chen, Y. Wang, L. Yang, W. Ye,
Y. Zhang, N. Z. Gong, and X. Xie, “Promptrobust: Towards evaluating
the robustness of large language models on adversarial prompts,” 2024.
X. Shen, Z. Chen, M. Backes, and Y. Zhang, “In chatgpt we trust? mea-
suring and characterizing the reliability of chatgpt,” arXiv:2304.08979,
2023.

W. Wu, Y. Cao, N. Yi, R. Ou, and Z. Zheng, “Detecting and reducing
the factual hallucinations of large language models with metamorphic
testing,” Proc. ACM Softw. Eng., vol. 2, no. FSE, Jun. 2025.

B. Yang, M. A. Al Mamun, J. M. Zhang, and G. Uddin, ‘“Hallucination
detection in large language models with metamorphic relations,” Proc.
ACM Softw. Eng., vol. 2, no. FSE, Jun. 2025.

N. Li, Y. Li, Y. Liu, L. Shi, K. Wang, and H. Wang, “Drowzee:
Metamorphic testing for fact-conflicting hallucination detection in large
language models,” Proc. ACM Program. Lang., vol. 8, no. OOPSLA2,
Oct. 2024.

N. Li, Y. Song, K. Wang, Y. Li, L. Shi, Y. Liu, and H. Wang, “Detecting
IIm fact-conflicting hallucinations enhanced by temporal-logic-based
reasoning,” arxiv:2502.13416, 2025.

G. Guo, A. Aleti, N. Neelofar, C. Tantithamthavorn, Y. Qi, and T. Y.
Chen, “Mortar: Multi-turn metamorphic testing for 1lm-based dialogue
systems,” arxiv:2412.15557, 2025.

T. Racharak, C. Ragkhitwetsagul, C. Sontesadisai, and T. Sunetnanta,
“Test it before you trust it: Applying software testing for trustworthy
in-context learning,” in Natural Language Processing and Information
Systems, R. Ichise, Ed., Cham, 2026, pp. 243-258.

	Introduction
	Metamorphic Testing for LLMs
	Literature Search of MRs
	Experiments
	RQ1: Failure Rate
	RQ2: Comparison with Traditional Testing
	RQ3 - Manual Validation

	Discussion and Analysis
	Threats to validity
	Related Work
	Conclusion and Future Work
	References

