LLMORPH: Automated Metamorphic Testing
of Large Language Models

Steven Cho
University of Auckland
Auckland, New Zealand
steven.cho@auckland.ac.nz

Abstract—Automated testing is essential for evaluating and
improving the reliability of Large Language Models (LLMs), yet
the lack of automated oracles for verifying output correctness
remains a key challenge. We present LLMORPH, an automated
testing tool specifically designed for LLMs performing NLP
tasks, which leverages Metamorphic Testing (MT) to uncover
faulty behaviors without relying on human-labeled data. MT uses
Metamorphic Relations (MRs) to generate follow-up inputs from
source test input, enabling detection of inconsistencies in model
outputs without the need of expensive labelled data. LLMORPH
is aimed at researchers and developers who want to evaluate the
robustness of LLM-based NLP systems. In this paper, we detail
the design, implementation, and practical usage of LLMORPH,
demonstrating how it can be easily extended to any LLM, NLP
task, and set of MRs. In our evaluation, we applied 36 MRs
across four NLP benchmarks, testing three state-of-the-art LLMs:
GPT-4, LLAMA3, and HERMES 2. This produced over 561,000
test executions. The results demonstrate LLMORPH’s effectiveness
in automatically exposing incorrect model behaviors at scale.

The tool source code is available at https:/github.com/
steven-b-cho/llmorph. A screencast demo is available at https:
/lyoutu.be/sHmqdieCfw4.

Index Terms—Ilarge language models, metamorphic testing,
machine learning testing, NLP, Software Engineering for AI

I. INTRODUCTION

Large Language Models (LLMs) have seen widespread
adoption across various domains thanks to their strong per-
formance in natural language understanding and generation
tasks [1]. Despite this success, serious concerns remain
regarding their reliability and trustworthiness (e.g., bias, hallu-
cination) [2]. Identifying these problems is critical to effectively
addressing and mitigating them. Therefore, automated testing
of LLM is crucial for evaluating the quality of LLM outputs.
Moreover, automated testing of LLMs is becoming more
important in industry, as many companies are moving away
from using public LLM services and instead are running their
own fine-tuned models locally [3]. This change is often due to
concerns about privacy, security, and legal rules, or simply the
need for better results in their specific tasks [3].

One of the primary challenges in automatically testing LLMs
is the oracle problem [4]; the problem of distinguishing
between correct and incorrect test executions. In Natural
Language Processing (NLP), generating new test inputs is
relatively easy because large amounts of text data are readily
available. However, checking whether the model’s outputs are

Stefano Ruberto
JRC European Commission
Ispra, Italy
stefano.ruberto@ec.europa.eu

Valerio Terragni
University of Auckland
Auckland, New Zealand
v.terragni @auckland.ac.nz

correct given an NLP task is much harder. This task usually
relies on human-annotated labels, which act as “oracle” to judge
correctness. Since manually creating these labeled datasets is
time-consuming and costly, there is a strong need for automated
oracles that can evaluate output quality without depending on
human-generated labels.

Metamorphic Testing (MT) [5] is a widely used technique
for addressing the oracle problem in software testing. Instead
of requiring expected results for every test case, MT relies
on Metamorphic Relations (MRs): expected relationships
among the outputs of related inputs. The key idea is that, even
if one cannot automatically determine whether a single output
is correct, we can use the relationships among the expected
outputs of multiple related inputs as a test oracle [5]. An MR
describes how the output should change (or remain consistent)
when the input is modified in a specific way. For example,
if two input texts are paraphrases of one another, then their
outputs should also be similar. If this expected relationship is
violated, the system may have produced an incorrect result.

To apply MT in practice, testing begins with a source input.
This input is then transformed to create one or more follow-up
inputs that satisfy the conditions of a given MR. The system
under test is executed on both the original and the transformed
inputs, and their outputs are compared. If the outputs do not
satisfy the expected relationship defined by the MR, the test
reports a failure. Thus, MT can detect faults even though the
exact ground truth labels are not required for either case. A key
advantage of MT is that the same MRs can be applied to many
different inputs, enabling automated testing at large scale. This
is particularly useful for testing LLMs, where failures often
emerge only under specific input conditions [2], and where
large volumes of unlabeled data are available.

Although MT has been applied across many NLP tasks, its
use with LLMs remains relatively understudied [6]. To fill this
gap, we recently presented the most comprehensive study on
MT for LLMs in NLP to date. Our study was recently accepted
at ICSME 2025 [7]. We conducted the first systematic literature
search on MRs for NLP, reviewing 1,024 papers and identifying
44 that explicitly defined MRs. This resulted in a catalog of 191
unique MRs across 24 tasks. We also presented LLMORPH,
an automated test tool for MT on LLMs, implementing 36 of
the 191 MRs across four tasks.

https://github.com/steven-b-cho/llmorph
https://github.com/steven-b-cho/llmorph
https://youtu.be/sHmqdieCfw4
https://youtu.be/sHmqdieCfw4

Input :

g °‘<‘
(o

source
testinput

Input ;
Transformation —_—
follow-up
testinput

Metamorphic

Relations (MRs) Fio. 1
ig. 1.

LLMORPH was originally produced as a means to conduct
our study [7]. In this demonstration paper, we focus specifically
on the tool itself, giving details on its design, implementation
and usage. The intended users of LLMORPH are researchers
and developers who wish to verify the robustness of an LLM
system for the purpose of verification or improvement. Given an
LLM and a list of test inputs, LLMORPH produces a list of fail-
ing metamorphic test pairs, allowing users to identify potentially
unknown faults. The source code of LLMORPH can be found
at: https://github.com/steven-b-cho/llmorph

II. LLMORPH

The tool leverages metamorphic testing to measure the
robustness of an LLM system. It enables users to apply
metamorphic relations to any natural language task of their
choice. Figure 1 illustrates the logical architecture of the tool.

A. Input
LLMORPH takes as input four items:

LLM under test. Currently, LLMORPH supports LLMs via
any endpoint compatible with the OPENAI API format!, and
thus it is not necessary to host a local model. However, the
tool can easily be extended to work with other APIs as well
as locally deployed LLMs, if desired.

Input data. The input test data is structured as a list of textual
source inputs of arbitrary length. Unlike in traditional testing,
the inputs in LLMORPH do not need to be labelled, as it is a
metamorphic testing tool. This allows for a much larger amount
of data to be used, since the cost associated with labelling the
data is no longer a concern.

Task(s) prompts. The user can choose which NLP tasks to
test the LLM on. LLMORPH currently supports four built-in
tasks: context-based question answering (QA), natural language
inference (NLI), continuous sentiment analysis (SA), and
relation extraction (RE). These tasks are implemented using
zero-shot prompts to the LLM under test. Users can easily
extend the tool by adding new tasks or modifying the existing
ones through simple JSON files, which define the prompts

Uhttps://platform.openai.com/docs/api-reference/

LLMorph @Q

I
I
1
TEST PASS @ ' Output
! ~
source » i >
% output Outpgt Ix . v
Comparison |
)
D — I
} [J‘B TEST FAIL 1Test Results
follow-up q 1 Report
output '

{JSON}

Logical architecture of LLMORPH

used for each task. This is particularly useful when testing a
fine-tuned LLM on any arbitrary task.

Metamorphic Relations (MRs). The user can choose which
MRs to test the LLM using. Some relations can be used in
multiple tasks, while others are specific to only one. In our
recent work, we performed a systematic literature review and
identified 191 MRs for NLP [7]; of these, LLMORPH currently
implements 36 (see [7] for more details). This subset was
chosen based on commonality, applicability across different
tasks, specificity to individual tasks, and ease of understanding.

B. Output

LLMORPH produces as output a test result report, which is a
JSON file containing information about all test runs. It includes
the original source inputs, the generated follow-up inputs, the
corresponding source and follow-up outputs produced by the
LLM under test, and whether the metamorphic relation was
violated or not in each case.

C. Process

For each combination of source input, task, and MR,
LLMORPH uses the input transformation specified by the MR
to produce a follow-up input. Both inputs are processed through
the same LLM under test using the task prompt to produce
the respective source and follow-up outputs. These are then
compared to determine whether they satisfy the output relation
specified by the MR.

Example. Given GPT-40 as the LLM under test, and the
source test input: "The area in which a glacier
forms is called a cirque. What geological
features formed by glaciers?", let us assume the
user selects the Question Answering (QA) task and the
metamorphic relation: "Adding random spaces to
the input should not change the output."

LLMORPH begins by applying the transformation as-
sociated with the MR, resulting in the follow-up in-
put: "Th e a rea in wh ich a gl acier forms
is cal 1 ed a ci rque. Wha t geologi cal £
eatures form ed by glaci ers?"

The QA task is defined by the following prompt:

https://github.com/steven-b-cho/llmorph
https://platform.openai.com/docs/api-reference/

Here is some information: "INPUT_O"
Using only this information,
nothing else, answer the following

question: "INPUT_1" Keep your
answer to a short sentence. If
you cannot give an answer, write

"unknown’ .

Given this prompt, the LLM is queried twice: once with the
original input and once with the transformed input. The source
output is unknown, the follow-up output is cirque.

The output comparison based on the MR expects that
both outputs should be the same. Since they differ, the MR is
violated, and a faulty execution is detected. Note that we can
find this real fault in GPT-40 without the need for labeled data
specifying that unknown should be the correct output?.

This simple example illustrates how LLMORPH automati-
cally detects bugs in LLMs using MT. LLMORPH supports a
broader set of more complex (and potentially more insightful)
MRs across three additional, more advanced NLP tasks. A
key strength of LLMORPH is its extensibility: additional
metamorphic relations and tasks can be easily incorporated by
simply adding to corresponding files.

D. Implementation Details

LLMORPH is implemented as a PYTHON3 project. It uses
the openai library for communication with the LLM, the
sentence_transformers library for semantic similarity
calculation, and the nlpaug library to implement some MRs.

The implementation of the MRs are, on the whole, de-
rived from semantic, non-precise definitions. The relations
implemented currently have the following properties: An input
transformation function that takes a source input and transforms
it to create a follow-up output; a output comparison function
that takes two outputs and compares them to determine whether
they satisfy the MR’s output relation; and (optionally) a set of
verifications, which are restrictions to the inputs and outputs
that must hold for the MR to be valid. This latter property is
not how MRs are typically definitionally structured; however, it
was done this way for ease of implementation. We implement
the MRs through both function-based and LLM-based means.
Simpler relations, such as MR-84: Concatenating a random
sentence, are done through traditional functions, or a library.
More complex MRs — for instance, MR-51: Paraphrasing —
are implemented using a few-shot prompted LLM. The use of
LLMs to test LLMs is a commonly used technique, enabling
processes which would be much harder to achieve through
traditional means. This transformation LLM is not (necessarily)
the LLM under test, and is specified in the configuration file.

For tasks with multiple inputs (e.g., premise and hypothesis
in NLI), if applicable, the relation will be applied to as many
combination of inputs as possible. For instance, a relation could
be applied to an NLI input’s premise; to its hypothesis; or to

2A cirque is a geological feature that forms glaciers, not formed by them.
The correct answer should be unknown

both at once. This may result in multiple possible follow-up
inputs from a single source input and MR.

Syntactic output comparisons may be done by direct equiva-
lence, difference, set comparison, or another method, depending
on the MR. Semantic output comparisons are done using
cosine similarity via the BERT-based model PARAPHRASE-
MINILM-L6-v2. We specify similarity thresholds to determine
(depending on the MR) if two outputs are equivalent (0.8 by
default) and different (0.4 by default). Numerical equivalence
is determined by direct comparison with a 0.1 error window.

III. TooL USAGE

Installation. LLMORPH
Dependencies are installed
-r requirements.txt. An APl key compatible
with the OPENAI API format should be put into
security/token-key.jwt. This key is used for
both the LLM under test and the LLM-based MRs.

requires PYTHON 3.10.
via python install

A. Running the tool

LLMORPH can be run using two methods: through a
command line interface (CLI), or through a configuration file
where we can set more parameters.

CLL To run using CLI, execute python src/main.py
with the the following arguments:

e 11m: The ID of the LLM to test. This is the model name

to be sent through the APIL.

o task: The name of the NLP task to test on. The list
of tasks can be found in src/config/list_tasks.
json.

e mr: The name of the metamorphic relation to test using.
The list of relations can be found in src/config/
list_relations. json.

e input_data: The path to the JSON file containing the
inputs. Structured as an array of data points.

e base_dir: The path to the directory where caches and
outputs will be stored.

Configuration file. To run using the config file (found
at src/config/run_config. json), execute python
src/mt_main.py. Some notable parameters include:

e 11m list: A list of LLM names. All LLMs in the list

will be tested.

e tasks: A dictionary of lists, with task name as the key
and a list of MRs as the value. An empty list will run all
available MRs.

e checkpoint_interval: The number of instances
processed before saving a checkpoint.

e continue_from_checkpoint: If true, will con-
tinue run from the checkpoint with the latest creation
time.

e 11m_endpoint: The endpoint for the LLM under test,
as well as the LLM for MR implementation. Change if
not using the default OpenAl endpoint.

e 11lm for_transformation: The LLM used for MR
implementation. Defaults to the LLM under test.

More parameter details can be found in README . md.

B. Reading the output

The results can be found in {base_dir}/results (with
base_dir being specified in the run parameters). The output
is a JSON file with a list of responses, with each instance
specifying the following:

e source_input: The original test input.

e source_output: The response of the LLM from the

source input.

e followup_inputs: A list containing the transformed

input(s).

e followup_outputs: A list containing the responses

of the LLM from the follow-up input(s).

e relation: A list specifying whether the follow-up

output(s) satisfied the output relation.

e verification_failure: Whether the metamorphic

group was valid according to any restrictions specified for
the metamorphic relation.

C. Adding and modifying tasks, relations, and LLMs

Tasks. The currently implemented NLP tasks are
done via prompts to the LLM. These prompts can
be modified, and new tasks added, through editing
src/config/list_tasks.json and src/config/
template/sut_prompt_templates. json.

Metamorphic relations. The currently implemented
MRs are done via either traditional function
implementation, or prompts to an LLM. These can
be modified, and new relations added, through editing
the following: src/relations/func_it.py and
src/relations/func_or.py for the implementation of
the input transformation and output relation, respectively; src/
config/template/it_prompt_templates. json

or src/config/template/or_prompt_templates.

json if using a prompted LLM for transformation or
comparison; and src/config/list_relations. json
to specify the particular MR.

LLMs. Currently, LLMORPH supports LLMs via compat-
ibility with the OPENAI API format. This is controlled by
the 11m_list and 11m_endpoint parameters in the config
file. To use another API format, or to run a local model, modify
src/llm_runner.py.

IV. EVALUATION

To evaluate the ability for LLMORPH to detect faulty
behaviour, we conducted large-scale experiments using LL-
MORPH on three popular LLMs (GPT-4, LLAMA3, and
HERMES 2) and four datasets (SQUAD?2, SNLI, SST2, and
RE-DOCRED), leading to 561,267 test executions. We found
that LLMORPH effectively exposes faulty behaviours, with an
average failure rate of 18%. Comparing with traditional testing
with hard-to-obtain labelled data, we found it complementary,
with MT being able to detect bugs not found by the former.
We also manually analysed 937 metamorphic oracle violations
and found a range of false positive rates, varying from 0%
to 70%, depending on the MR and task. Most of these arise

from the intrinsic limitations of MT for NLP and aligns with
traditional MT for NLP [7]. In addition, we found that the
evaluation of each input was fast, usually depending only on
the speed of the 2-3 calls to the LLM per source input.

For more details (including on mitigating FPs and the
efficacy of specific MRs), please refer to our ICSME paper [7].

V. RELATED WORK

Traditionally, testing of LLMs use benchmarks (e.g.,
MMLU [8]), where LLM outputs are compared to ground
truths to determine effectiveness in the area of test. However,
this requires labelled data, which is costly to obtain. LLMORPH
instead utilises Metamorphic Testing, which does not require
any labelled data, allowing cheaper fully automated testing.

Hyun et al. [6] recently presented METAL, a framework for
MT for LLMs on NLP tasks. There are some limitations to their
work, however, which we address in ours. They investigate 13
MRs, while we implement 36; they use zero-shot prompting in
their LLM MR implementation, while we use few-shot; we have
a CLI availability as well as a large number of configuration
parameters, while they do not; our users can choose what MR
to run, while theirs cannot; in ours it is easy to add new tasks
and relations, while in theirs it is not; and ours is fully realised
and modular, rather than a simple Jupyter Notebook.

VI. CONCLUSION AND FUTURE WORK

Despite the vast resources poured into producing and testing
large language models, using Metamorphic Testing in this area
is still unexpectedly underexplored. LLMORPH is one of the
first to explore this space, providing a foundation from which
to investigate MT for LLM:s.

LLMORPH currently implements 36 out of the 191 Metamor-
phic Relations (MRs) we have collected [7]. By open-sourcing
the tool and designing it to be modular and easily extensible,
we hope the community will contribute to expanding its support
for additional MRs and NLP tasks.

REFERENCES

[1] V. Terragni, A. Vella, P. Roop, and K. Blincoe, “The future of ai-
driven software engineering,” ACM Transactions on Software Engineering
Methodology (TOSEM), 2025.

Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi,

C. Wang, Y. Wang et al., “A survey on evaluation of large language

models,” ACM Transactions on Intelligent Systems and Technology, 2024.

[3] V. Hanke, T. Blanchard, F. Boenisch, I. E. Olatunji, M. Backes, and
A. Dziedzic, “Open llms are necessary for current private adaptations and
outperform their closed alternatives,” arXiv, 2024.

[4] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle
problem in software testing: A survey,” IEEE transactions on software
engineering, vol. 41, no. 5, pp. 507-525, 2014.

[5] T.Y. Chen, E-C. Kuo, H. Liu, P-L. Poon, D. Towey, T. H. Tse, and Z. Q.

Zhou, “Metamorphic testing: A review of challenges and opportunities,”

ACM Computing Surveys, vol. 51, no. 1, pp. 4:1-4:27, 2018.

S. Hyun, M. Guo, and M. A. Babar, “Metal: Metamorphic testing

framework for analyzing large-language model qualities,” in International

Conference of Software Testing and Verification (ICST), 2024.

[7]1 S. Cho, S. Ruberto, and V. Terragni, “Metamorphic testing of large

language models for natural language processing,” in International

Conference on Software Maintenance and Evolution (ICSME), 2025.

D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and

J. Steinhardt, “Measuring massive multitask language understanding,”

International Conference on Learning Representations (ICLR), 2021.

[2

—

[6

—_

[8

—

	Introduction
	LLMorph
	Input
	Output
	Process
	Implementation Details

	Tool Usage
	Running the tool
	Reading the output
	Adding and modifying tasks, relations, and LLMs

	Evaluation
	Related Work
	Conclusion and Future Work
	References

