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Abstract—Automated unit test generation aims to improve
software quality while reducing the time and effort required for
creating tests manually. However, existing techniques primarily
generate regression oracles that predicate on the implemented
behavior of the class under test. They do not address the oracle
problem: the challenge of distinguishing correct from incorrect
program behavior.

With the rise of Foundation Models (FMs), particularly Large
Language Models (LLMs), there is a new opportunity to generate
test oracles that reflect intended behavior. This positions LLMs
as enablers of Promptware, where software creation and testing
are driven by natural-language prompts.

This paper presents an empirical study on the effectiveness
of LLMs in generating test oracles that expose software failures.
We investigate how different prompting strategies and levels of
contextual input impact the quality of LLM-generated oracles.
Our findings offer insights into the strengths and limitations
of LLM-based oracle generation in the FM era, improving our
understanding of their capabilities and fostering future research
in this area.

Index Terms—Large Language Models, Foundation Models,
Software Testing, Test Oracle Problem, Automated Test Genera-
tion, Prompt Engineering, Promptware, AI4SE

I. INTRODUCTION

Software testing is crucial for ensuring software quality
and reliability. However, manually creating test oracles is
labor-intensive. While automated test generation tools like
EVOSUITE [1] and RANDOOP [2] typically rely on regression
oracles, which assume the current version is correct [3], [4].
This limits their ability to detect faults in the given version,
this is the long-standing oracle problem in test automation [5],
[6], [3].

In the era of Foundation Models (FMs), Large Lan-
guage Models (LLMs) offer new opportunities to address
this problem [7]. With their capabilities in natural language
understanding, pattern recognition, and contextual reasoning,
LLMs can help bridge the gap between automated test genera-
tion and meaningful oracle creation [8], [9], [10], [11], [12].
By interpreting developer intent through prompts, LLMs can
generate oracles that align with expected behaviors rather than
implemented ones [4], [13], [3], [14].

Recent research has started to explore LLMs for generating
tests and oracles [13], [4], [15], [16], [9], [17], but critical
questions remain. In particular, regarding how prompting
strategies and input context affect oracle quality. Understanding
these factors is essential as we transition toward Promptware,

where software validation may be driven by natural-language
prompts crafted by both developers and non-developer prompt
experts.

To address this gap, this paper present an empirical study
on how prompting techniques (zero-shot, few-shot, chain-of-
thought [CoT], and tree-of-thoughts [ToT]) and contextual
inputs (test prefix alone, test prefix plus method under test
[MUT], and test prefix plus class under test [CUT]) influence
the quality of LLM-generated test oracles. Our study isolates
the oracle-generation capability of LLMs rather than the broader
task of fault reproduction. We therefore do not include failure
descriptions or bug reports in the prompt. Incorporating
such inputs would shift the task toward bug reproduction or
localization, which are orthogonal to the oracle problem. To
the best of our knowledge, this is the first study to conduct
such an analysis.

We used the GitHub Recent Bugs (GHRB) benchmark [18],
a dataset designed to evaluate LLMs on real-world Java bugs
while mitigating data leakage risks. For each bug, we provide
to LLMs the buggy code and its triggering test input – omitting
the original oracle – and analyze oracle quality based on
compilation success and bug exposure. Our experiments
involved 36 representative GHRB bugs and two LLMs, GPT-
4O and STARCODER.

Our results reveal several important trends:

① Oracles generated with more context compile and detect
bugs more reliably. CUT-level context significantly outperforms
other configurations, achieving 53.64% accuracy versus 40.74%
(MUT) and 40.38% (test prefix only). This is an expected result.

② Prompting style matters: zero-shot and few-shot prompts
yield higher compilation rates (67.38% and 72.96%) and
accuracy (54.56% and 51.30%) than CoT and ToT, which
struggle with low compilation (both below 50%).

③ Incorporating the CUT in the input prompt, along with
zero-shot and few-shot prompting techniques, leads to the most
consistently accurate LLM-generated test oracles. However,
our findings show there is potential for reasoning based prompt
techniques like CoT and ToT to be able to produce accurate
test oracles given their high accuracy when they do produce
compilable assertions.

④ While STARCODER slightly outperforms GPT-4O in
average accuracy, GPT-4O paired with CUT context delivers
the most consistently accurate oracles across all combinations.



⑤ Prompting strategy has a stronger impact on oracle
effectiveness than LLM choice.

These findings suggest that prompt design and context
play a critical role in the effectiveness of LLM-based oracle
generation. While reasoning-driven prompting (e.g., CoT,
ToT) shows potential when it compiles, zero-shot and few-shot
prompting currently offer the best tradeoff between accuracy
and robustness. Our study offers guidance for AI-assisted
testing tools usable by both testing and prompt experts in the
FM era.

In summary, this paper makes the following contributions:

• An empirical study of how prompt types and contextual
inputs affect LLM-generated test oracle quality.

• In support of Promptware, a series of insights into the
effectiveness of LLMs in generating test oracles, providing
guidance for the future of LLM-driven oracle generation.

• Public release of code to ensure reproducibility and support
future research in this area [19].

II. EXPERIMENTAL DESIGN

Our study aims to assess the ability of LLMs to generate
accurate and correct test oracles using different input prompt
variations. These variations fall into two categories: the content
of the prompt and the prompting technique. Specifically, our
empirical study investigates the following research questions:
RQ1 - Input Context What influence does the content and
context within the prompt have on the accuracy of LLM
generated test oracles?
RQ2 - Prompt Engineering How do different prompt engi-
neering techniques impact the accuracy of LLM generated test
oracles relative to each other?
RQ3 - Model Comparison How do different LLMs impact
the accuracy of LLM generated test oracles?
RQ4 - Impact Analysis Which factor has the most significant
impact on LLM-generated test oracles?

RQ1 studies how the content of the prompt influences LLM-
generated test oracles. This helps determine what content
provides the best context for test oracle generation. We use
three levels of context: Test Prefix, Test Prefix with Method
Under Test, and Test Prefix with Class Under Test.

RQ2 investigates the impact the prompting technique has
on the accuracy of LLM generated test oracles. This allows us
to compare the effectiveness of different prompting techniques
in generating test oracles from existing test prefixes. In this
study, we will be using four prompting techniques: zero shot,
few shot, chain of thought, and tree of thoughts.

RQ3 examines how different LLMs impact test oracle
generation based on their training differences.

RQ4 analyses the impacts the prompt content, prompting
technique, and LLM have on the accuracy of the generated test
oracles relative to each other. This allows us to determine the
relative importance of each of these factors for LLM driven
test oracle generation. In this study, we will measure the

impact each variable we study has using the range of average
accuracies for that variable. We also compare each result to find
the factors which contribute to the highest average accuracy.

To answer these RQs, we conducted an experiment asking
the selected LLMs to generate test oracles for each prompt,
where the prompt is a unique combination of the prompt context
and prompting technique. The test cases used fail on the buggy
version of the code but pass on the corrected version. We
remove the test oracle and provide the modified test case and
the buggy code as input to the LLM. We then prompt the LLM
to generate a suitable test oracle. We evaluate the correctness
based on whether the generated oracle fails the buggy version
and passes the correct version. This allows us to analyse
how prompt content, prompting technique, and LLM influence
oracle performance.

A. Dataset

This study uses the GitHub Recent Bugs (GHRB) [18]
benchmark, a dataset designed for evaluating the performance
of LLMs on real world code. GHRB ensures bugs and fixes
come from real repositories updated after the training period
of popular LLMs, including STARCODER and GPT-4O. This
avoids data leakage and model memorisation [18]. As of
December 2024, GHRB contains 107 bugs from 16 popular
open source Java repositories. We selected 36 bugs from
this dataset, based on criteria designed to ensure experimental
consistency and validity.
1) Absence of compile errors: Both the buggy and correct
versions of the selected repositories were verified to be free of
compile-time errors. This criterion was critical for eliminating
confounding factors that could distort the evaluation of the
generated test oracles. Ensuring compilability allowed the
analysis to focus solely on the semantic correctness of the
generated oracles. Compilation errors were likely due to
incomplete fixes, missing dependencies, or build configuration
issues present in certain repositories within the benchmark
dataset.
2) Random sampling: To minimise selection bias and enhance
the generalisability of the findings, the subset of bugs are
randomly sampled from those without compilation errors in
the benchmark [20]. This approach ensures that the selected
bugs represent a diverse and unbiased subset of the dataset [21].
We choose to select 36 bugs only due to the high computation
cost required for larger subsets.

Similar to established bug benchmarks such as DE-
FECTS4J [22], each repository in the dataset includes a buggy
version, where bug-revealing test cases fail, and a corresponding
correct version, where the same test cases pass. We also ensure
that the bug requires a test assertion to be exposed and does
not result in unwanted exceptions, which makes the test fails
without the need of assertions.

Figures 1 and 2 illustrate a concrete example from the
JSOUP repository in the GHRB benchmark. Specifically,
Figure 1 presents a bug-revealing test case designed to verify



1 @Test
2 public void testCopyConstructor_noSideEffectOnAttributes()←↩

{
3 Safelist safelist1 = Safelist.none().addAttributes(←↩

TEST_TAG, TEST_ATTRIBUTE);
4 Safelist safelist2 = new Safelist(safelist1);
5 safelist1.addAttributes(TEST_TAG, "invalidAttribute");
6
7 assertFalse(safelist2.isSafeAttribute(TEST_TAG null new

Attribute("invalidAttribute" TEST_VALUE)));
8 }

Fig. 1. Bug-revealing test case exposing incorrect copy behavior in Jsoup’s
Safelist class (GHRB benchmark)

the correctness of the copy constructor in the Safelist
class. The test case first creates an instance of the Safelist
(safelist1), copies it into a second instance (safelist2),
and subsequently modifies the original object by adding an
additional attribute ("invalidAttribute"). The assertion
(highlighted in violet) explicitly checks that this newly added
attribute in the original object should not be recognized as safe
in the copied instance, confirming that the copy constructor
correctly creates an independent copy.

However, the buggy implementation of the copy constructor
(shown in Figure 2) fails to perform a deep copy. Instead, it
simply reuses references to internal collections (attributes,
tagNames, etc.), leading to unintended side effects. As a
result, any subsequent changes made to the original instance
incorrectly propagate to the copied instance, causing the test
case to fail. The goal of our study is to investigate the key
factors influencing the effectiveness of LLMs in generating
test oracles that accurately detect software faults.

B. Prompt Construction

This study evaluates the impact of four prompting techniques
on test oracle generation: zero shot, few shot, chain of
thought, and tree of thoughts. These were chosen for their
ability to capture different dimensions of model reasoning and
generalization [23].

Zero-Shot prompting (Z) involves asking the model to
perform a task without providing any prior examples or
structured guidance [24]. For test oracle generation, this
technique entails supplying the model with a task description
to generate test oracles for the given test prefix. This approach
evaluates the model’s inherent understanding of the task based
solely on the prompt content and the model’s pre-training.

Few-Shot prompting (F) involves providing the model with
a limited number of examples illustrating the task at hand [24],
[25]. In this study, we use three test oracle examples from
the same repository as the test prefix to balance prompt length
with relevant context [24], [25]. Using examples from the
same repository ensures consistency, and the same examples
are used for all bugs in that repository to reduce variability
and focus on prompt variations.

Chain of Thought (CoT) prompting (Ch) guides the model
through a structured reasoning process [26]. Following prior
work [25], the CoT prompt for generating oracles includes the
following steps:

1 /**
2 Deep copy an existing Safelist to a new Safelist.
3 @param copy the Safelist to copy
4 */
5 public Safelist(Safelist copy) {
6 this();
7 tagNames.addAll(copy.tagNames);
8 attributes.putAll(copy.attributes);
9 enforcedAttributes.putAll(copy.enforcedAttributes);

10 protocols.putAll(copy.protocols);
11 preserveRelativeLinks = copy.preserveRelativeLinks;
12 }

Fig. 2. Buggy implementation of the Safelist copy constructor causing
unintended side-effects (GHRB benchmark)

• Identifying the purpose of the test prefix and code under
test (if provided)

• Determining the expected outcome of the code and test
• Formulating the correct test oracles

This approach is designed to encourage logical reasoning to
improve the accuracy of the generated oracles.

Tree of Thoughts (ToT) prompting (Tr) extends chain
of thought reasoning by exploring multiple potential paths to
solve the problem before converging on the most plausible
solution [27]. As per previous work [28], in the context of test
oracle generation, the prompt includes the following steps to
construct a ToT prompt:

• Root thought: Initial understanding of the test prefix and
code under test (if provided).

• Branching: Exploring different paths of reasoning.
• Expansion: Developing each reasoning path further.
• Pruning: Removing invalid or redundant paths.
• Combinations: Combining insights from valid branches

into a set of coherent and accurate test oracles.

This method leverages the model’s ability to consider diverse
reasoning paths, potentially improving robustness in scenarios
with complex or ambiguous prompts.

To further analyse the impact of different prompt configs,
each prompting technique was tested with three levels of input
content:

Test Prefix (T): The minimal context consisting of the test
code without the test oracles. Figure 1 is an example of a bug
revealing test that is used in the prompt input but with the test
oracle on line seven removed.

Test Prefix + MUT (M) : Adds the method being tested to
provide additional context for the oracle generation. Figure 2
is an example of the method under test to be added to the
prompt input corresponding to the test case in Figure 1.

Test Prefix + CUT (C): Adds the class containing the test
and method, providing more comprehensive context.

In the prompts, all test assertion oracles are removed from
the test prefix, which may contain multiple assertions. The
prompt let the LLM decide how many assertions should be
generated. The provided CUT and MUT come from the buggy
version, but we do not indicate in the prompt that the test
exposes a bug. This reflects a realistic scenario where the goal
is to generate an oracle without prior knowledge of whether the
test reveals a bug. We refine the prompt iteratively, following



established prompt engineering guidelines and prior work on
LLM-driven test oracle generation [13], [15], [4], [16], [9],
[29]. We manually identified MUT and CUT by examining
the code changes in the corresponding corrected version in
the GHRB repository. Due to space constraints, prompts are
omitted but available in the supplementary material [19]

C. Models

For this study, we selected two LLMs: STARCODER and
GPT-4O, enabling comparison between a domain-specific and a
general-purpose model regarding prompt effects on test oracle
generation. These models were chosen for their popularity
and because the GHRB benchmark avoids data leakage in
them [18].

STARCODER (S) (v. 1.0) is a domain-specific LLM for
code completion, trained on a large code corpus as part of the
BigCode Project [30]. Its focus on code generation makes it
well suited for generating test oracles from test prefixes.

GPT-4O (G) (gpt-4o-mini-2024-07-18) is a general-
purpose LLM trained on diverse data across domains (including
source code) [31], enabling it to handle tasks like code
generation.

The inclusion of GPT-4O allows for an exploration of
how prompt input influences oracle generation in a general-
purpose model, providing a useful benchmark for comparing
the performance of specialised and non-specialised models.

While other advanced reasoning-oriented models, such as
GPT-4O1, are available, we intentionally selected STARCODER
and GPT-4O due to their documented effectiveness in code-
related tasks [30]. Although including reasoning-focused
LLMs might offer additional insights, it remains uncertain
whether using these newer models is feasible. The GHRB
benchmark was specifically designed to prevent data leakage in
STARCODER and GPT-4O, but it does not explicitly account
for more recent models [18]. Moreover, STARCODER is a state-
of-the-art model specialized for coding tasks, while GPT-4O
is commonly used as a baseline in code generation.

D. Experimental Setup

We implement an automated framework to run our exper-
iments. It first runs tests on the buggy and correct GHRB
repositories and records which tests fail or pass to confirm
expected behavior. It then removes the test oracle from the
bug-revealing test in both versions and appends the oracleless
test, along with other relevant information, to the LLM input.
The framework inserts the LLM-generated oracles into both
versions, compiles, and runs the tests. It checks whether tests
compile and which tests pass or fail, comparing results to
the original output to assess accuracy and correctness. Each
experiment is repeated five times to account for variability in
LLM outputs.

This controlled configuration simulates a workflow in which
an automated test generator (e.g., EVOSUITE [32]) produces

numerous assertion-free tests. The assertions typically gener-
ated by EVOSUITE are regression oracles that replicate existing
behavior and are therefore not suitable for detecting faults in
the current version. In our setup, the LLM complements such
tools by generating new, potentially fault-revealing assertions.
Similar hybrid pipelines have been explored in prior work, such
as TOGLL [13]. Hence, although our setup is artificial, it
closely mirrors a plausible integration of LLMs within modern
automated testing workflows.

Each experiment combines an LLM, prompting technique,
and prompt content. Since STARCODER is code-only [30],
it supports zero-shot and few-shot prompting. GPT-4O, with
NLP capabilities, also supports CoT and ToT [33]. This results
in 2,160 total runs = 36 bugs × 3 prompt contexts × (2 + 4)
techniques × 5 repetitions.

In all experiments, we set the LLM temperature to 0 and
top-p to 1, following prior studies [34], [35], [36]. Indeed,
lower temperatures are often preferable when generating
code [37].

E. Metrics

We evaluated the accuracy of the generated test oracles
by comparing the outputs of tests with the replaced oracles
to those with the original oracles on both the buggy and
correct versions [38]. To assess correctness, we measured
the following:

- Accuracy: Tests correctly differentiating between buggy
and correct versions: The number of cases in which the oracle(s)
demonstrated consistent behaviour by correctly failing for the
buggy version and passing for the correct version of the code.
This is the optimum result.

- Buggy Accuracy: Tests correctly failing on buggy version:
The number of test cases where the generated oracle(s) correctly
identified a failure in the buggy version of the code.

- Correct Accuracy: Tests correctly passing on correct
version: The number of test cases where the generated oracle(s)
correctly passed the relevant tests in the correct version of the
code.

- Compilation Rate: The rate at which generated test oracles
compile.

These metrics evaluate the accuracy and performance of
LLM-generated oracles, enabling a comparative analysis across
various prompt configurations.

III. RESULTS

A. RQ1 - Input Context

RQ1 : What influence does the content and context within the
prompt have on the accuracy of LLM generated test oracles?

Table I presents the average accuracy across all experiments
for all 36 bugs for each prompt content scenario studied.
We report the average across five runs, as the observed
variation between runs was minimal. The results indicate that
providing more context in the prompt improves compilation



TABLE I
PROMPT CONTENT COMPARISON (RQ1)

Content Acc.% Buggy Acc.% Correct Acc.% Comp. Rate%

Test Prefix 40.74 47.78 42.22 49.36
Prefix + MUT 40.38 53.08 43.85 59.23
Prefix + CUT 53.64 70.84 58.13 76.26

rates. Specifically, prompts containing only the test prefix
achieve an average compilation rate of 49.36%, while adding
the MUT increases this rate to 59.23%, and incorporating the
CUT raises it further to 76.26%.

Table I also shows that the LLM-generated oracles cause
buggy versions to fail correctly more often than they enable
correct versions to pass correctly. For instance, with just the
test prefix, buggy versions fail correctly 47.78% of the time,
compared to passing 42.22% of the time for correct versions.
When the MUT is included, these rates increase to 53.08%
and 43.85%, respectively. Incorporating the CUT results in
further improvements, with buggy versions failing correctly at
70.84% and correct versions passing correctly at 58.13%. These
findings suggest that while LLMs can generate bug-revealing
oracles, the generated oracles may still incorrectly fail on the
correct versions of the code, indicating that some identified
bugs may not align with the expected program behaviour.

The results show that adding the CUT yields a greater
improvement than adding the MUT. Transitioning from the
test prefix to the MUT increases the buggy version failure rate
by 5.30% and the correct version pass rate by 1.63%. However,
moving from the MUT to the CUT leads to much larger gains:
a 17.76% increase in the buggy failure rate and a 14.28%
increase in the correct pass rate. These findings indicate that
while the MUT offers some useful context, the CUT provides
far more critical information, greatly enhancing the LLM’s
ability to generate accurate test oracles.

When considering overall accuracy, test oracles generated
with only the test prefix achieve 40.74%, which slightly
decreases to 40.38% when the MUT is added. However,
including the CUT leads to a significant increase, with accuracy
reaching 53.64%. The negligible change between the test prefix
and MUT scenarios, compared to the substantial improvement
when introducing the CUT, reinforces the conclusion that
greater contextual information in prompts enhances the LLM’s
ability to generate correct and accurate test oracles. This result
suggests that the absence of CUT context may hinder the LLM’s
understanding of the code under test, reducing the quality of
the generated oracles.

Answering RQ1: LLMs generate compilable and accurate
test oracles more consistently when the prompt includes
the CUT.

B. RQ2 - Prompt Engineering

RQ2 : How do different prompt engineering techniques
impact the accuracy of LLM generated test oracles relative to
each other?

TABLE II
PROMPTING TECHNIQUE COMPARISON (RQ2)

Technique Acc.% Buggy Acc.% Correct Acc.% Comp. Rate%

Zero-Shot 54.56 64.47 57.28 67.38
Few-Shot 51.30 68.33 55.00 72.96
CoT 31.11 38.52 32.59 44.44
ToT 29.26 41.11 32.22 44.81

Table II presents the average accuracy across all bugs for
each prompting technique studied. We report the average
across five runs, as the observed variation between runs was
minimal. The results demonstrate that few-shot and zero-shot
prompting techniques produce LLM-generated oracles with
higher compilation rates compared to CoT and ToT techniques.
Specifically, zero-shot scenarios achieve a compilation rate of
67.38%, few-shot scenarios reach 72.96%, while CoT and ToT
techniques result in lower compilation rates of 44.44% and
44.81%, respectively.

The data also reveal a significant increase in the rate of
buggy versions failing correctly compared to correct versions
passing correctly across all prompting techniques. For zero-
shot prompting, the rate increases from 57.28% for correct
versions passing to 64.47% for buggy versions failing correctly.
Similarly, for few-shot prompting, the rate rises from 55.00%
to 68.33%. CoT and ToT prompting exhibit smaller but still
notable increases with CoT going from 32.59% to 38.52% and
ToT from 32.22% to 41.11%. These results, consistent with the
findings from RQ1, suggest that LLM-generated test oracles
may not fully align with the expected behaviour, leading to
failures on both buggy and correct versions of the code.

Zero-shot prompting achieves the highest accuracy at 54.56%,
followed by few-shot prompting at 51.30%. CoT and ToT
show significantly lower accuracies at 31.11% and 29.26%,
respectively. The slight drop from zero-shot to few-shot may
result from examples in few-shot prompts leading the LLM to
deviate from expected behavior. The low performance of CoT
and ToT may stem from their broader reasoning scope, which
can cause the LLM to generate oracles that address general
scenarios rather than the specific test prefix.

However, when just considering compiling oracles, zero-shot
scenarios have an accuracy of 80.97%, few-shot scenarios with
70.31%, CoT scenarios with 70.00%, and ToT scenarios with
65.30%. This shows, when generating oracles that compile,
while still demonstrating worse accuracy than zero-shot and
few-shot scenarios, CoT and ToT scenarios are not significantly
less accurate as the raw accuracies would suggest. Therefore,
alongside the broadened scope for CoT and ToT prompts, a
major issue is ensuring the LLM produces compilable oracles
using these prompting techniques.

Answering RQ2: LLMs more consistently generate
compilable and accurate test oracles with zero-shot and
few-shot prompting technique compared to reasoning based
techniques like CoT and ToT.



TABLE III
LLM COMPARISON – ZERO-SHOT AND FEW-SHOT (RQ3)

LLM Acc% Buggy Acc.% Correct Acc.% Comp. Rate%

STARCODER 56.31 79.42 61.36 83.69
GPT-4O 49.63 54.07 51.11 57.41

TABLE IV
LLM COMPARISON – ALL PROMPTS (RQ3)

LLM Acc.% Buggy Acc.% Correct Acc.% Comp. Rate%

STARCODER 56.31 79.42 61.36 83.69
GPT-4O 39.54 46.94 41.76 51.02

C. RQ3 - Model Comparison

RQ3 : How do different LLMs impact the accuracy of LLM
generated test oracles?

Table III shows the average results for each LLM using zero-
shot and few-shot prompts. STARCODER achieves a much
higher average compilation rate than GPT-4O, which is ex-
pected given STARCODER’s focus on code generation [30], un-
like the more general-purpose GPT-4O. This limits GPT-4O’s
performance, with an average accuracy of 49.63% compared
to STARCODER’s 56.31%. STARCODER also outperforms
GPT-4O in both average buggy and correct accuracy for these
prompting techniques.

Table IV includes the CoT and ToT scenarios used with
GPT-4O which could not be used with STARCODER. Here, we
see the CoT and ToT prompts significantly decrease GPT-4O’s
average compilation rate and accuracies – GPT-4O’s average
compilation rate and accuracy are reduced to 51.02% and
39.54% respectively.

However, when considering only test oracles that successfully
compile, GPT-4O demonstrates a competitive capacity for
generating accurate oracles. Specifically, the accuracy of
GPT-4O’s compiling test oracles is 86.45% compared to
STARCODER’s 67.28% when considering zero-shot and few-
shot scenarios. Even when including compiling oracles from
CoT and ToT prompts, GPT-4O achieves an accuracy of
77.50%. Though lower than zero-shot and few-shot accuracy,
this shows GPT-4O’s potential for reliable oracle generation
in specific conditions.

Answering RQ3: STARCODER-generated test oracles
demonstrate a higher average compilation rate than GPT-
4O generated ones resulting in higher accuracies.

D. RQ4 -Impact Analysis

RQ4 : Which factor has the most significant impact on LLM
generated test oracles?

Table I shows that including the test prefix and the CUT
has the highest average accuracy of 53.64% and including the
test prefix and the MUT has the lowest average accuracy of
40.38%, giving a range of 13.26%. Considering the prompting
technique, from Table II, zero-shot has the the highest accuracy

TABLE V
AVERAGE RESULTS FOR EACH CONFIGURATION (RQ4)

Config Acc. Rank Acc.% Buggy Acc.% Correct Acc.% Comp. Rate%

S.Z.T. 4 66.67 77.78 66.67 77.78
S.Z.M. 3 68.57 84.29 71.43 88.57
S.Z.C. 6 55.29 88.24 60.00 92.94
S.F.T. 5 55.56 66.67 55.56 66.67
S.F.M. 9 44.44 77.78 55.56 83.33
S.F.C. 7 50.00 83.33 61.11 94.44
G.Z.T. 18 22.22 22.22 31.11 31.11
G.Z.M. 10 44.44 44.44 44.44 44.44
G.Z.C. 2 73.33 75.56 73.33 75.56
G.F.T. 12 37.78 44.44 37.78 44.44
G.F.M. 8 45.56 51.11 45.56 62.22
G.F.C. 1 74.44 86.67 74.44 86.67
G.Ch.T. 15 26.67 33.33 26.67 33.33
G.Ch.M. 17 22.22 28.89 28.89 44.44
G.Ch.C. 11 40.00 53.33 42.22 55.56
G.Tr.T. 13 35.56 42.22 35.56 42.22
G.Tr.M. 16 23.33 38.89 23.33 38.89
G.Tr.C. 14 28.89 42.22 37.78 53.33

of 54.56% and ToT has the lowest accuracy of 29.26%, giving
a range of 25.30%. Considering the LLM used, from Table IV,
STARCODER has the highest accuracy of 56.31% and GPT-
4O has the lowest accuracy of 49.63% for cases where the
same prompting techniques are used, giving a range of 6.68%.
These findings indicate the prompting technique is the most
significant factor out of these because of the far greater range
of results observed compared to the content and LLM. This is
followed by the prompt content, and then the LLM.

Table V ranks each scenario’s average accuracy. Col-
umn ”Config” represents the LLM. Prompt-Strategy.
InputContent setup (e.g., G.Ch.C. denotes GPT, CoT, and
Text Prefix + CUT). We have introduced the Labels when
describing the components individually (e.g., Text Prefix +
CUT (C) in Section II).

Column “Acc. Rank” gives the ranking of the configurations
ordered by Column ‘Acc.%’. From this column we can
calculate average rank of each different component. Out of
the 18 scenarios conducted, the average rank of STARCODER
scenarios is 5.67 and the average rank of GPT-4O scenarios is
11.42. The average rank of zero-shot is 7.17, few-shot is 7.00,
CoT is 14.33, and ToT scenarios is 14.33 too. The average
rank for just test prefix scenarios is 11.17, for test prefix and
MUT scenarios is 10.5, and for test prefix and CUT scenarios
is 6.83. Because STARCODER is not tested with CoT and ToT
techniques, if we remove these six scenarios, the average rank
of STARCODER is 5.67, GPT-4O is 7.33, zero-shot scenarios
is 6.17, few-shot scenarios is 6.83, test prefix scenarios is 8,
test prefix and MUT scenarios is 7.5, and test prefix and CUT
scenarios is 4.00.

Figure 3 ranks the data from Table V in descending order by
average accuracy. From this, we compute the average rank of
each factor across the 18 combinations. STARCODER scenarios
rank highest with an average of 5.67, followed by prompts
with the CUT at 6.83, and few-shot prompts at 7. In contrast,
CoT and ToT have the lowest average rank at 14.33. These
results suggest that prompting technique is the most influential
factor, as it shows the greatest variation in performance across
the rankings.

We expect STARCODER to rank among the highest in
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Fig. 3. Bar chart of results from all experiments ordered by average accuracy grouped by configuration (RQ4)

accuracy due to its code-focused training and exclusion from
CoT/ToT prompts. Without these scenarios, STARCODER still
outperforms GPT-4O (5.67 vs. 7.33), but CUT scenarios now
have the highest rank (4), highlighting their importance for
generating accurate test oracles.

Answering RQ4: The prompting technique has the
greatest impact on the accuracy of LLM-generated test
oracles.

IV. DISCUSSION

A. Improvements with the CUT (RQ1)

The findings for RQ1 show that including the CUT signifi-
cantly improves both accuracy and compilation rates of LLM-
generated oracles. While adding the MUT boosts compilation
over the test prefix alone, likely due to added method context,
it results in lower overall accuracy. This suggests the MUT
provides limited guidance, whereas the CUT offers essential
functional context and usage patterns for accurate oracle
generation.

B. Prompting Strategies (RQ2)

For RQ2, it is evident that zero-shot and few-shot prompting
scenarios outperform CoT and ToT strategies across all met-
rics. We attribute this to CoT and ToT encouraging broader
reasoning, which often seem to lead to oracles that include
irrelevant or unintended behavior. This findings suggest that
while useful for general reasoning [25], these strategies may
hinder concise, behavior-specific oracle generation. Future
work could combine CoT/ToT with few-shot examples aligned
with expected behaviour to balance reasoning strength with
improved accuracy and compilation.

C. Model-Specific Performance (RQ3)

The comparative analysis of STARCODER and GPT-4O
in zero-shot and few-shot scenarios reveals key differences.

STARCODER, trained exclusively on code, achieves higher
accuracy and compilation rates than GPT-4O, producing
compilable code more consistently [39]. However, GPT-4O
better reflects expected program behaviour despite a lower
compilation rate. Addressing these contrasting strengths and
weaknesses could involve combining insights from both models
to design prompting techniques or hybrid approaches that
leverage STARCODER’s compilation strength and GPT-4O’s
capacity for accurate behaviour representation.

D. Other Considerations (RQ4)

The findings from RQ4 show that using STARCODER gives
the most accurate test oracles overall. However, STARCODER
was not tested with CoT and ToT, which lowers the average
accuracy of the other scenarios since CoT and ToT perform
poorly. When we remove CoT and ToT, we see that adding
the CUT has a bigger positive effect on accuracy than using
STARCODER.

From Figure 3, we see that the highest average accuracies
come from using GPT-4O with the CUT. RQ3 also shows that
for compiling oracles, GPT-4O has higher average accuracy
than STARCODER. This is clear in Figure 3, especially in the
S.Z.C., S.F.C., and S.F.M. cases, where the oracles compile
well but have lower accuracy. With more context, GPT-4O
generates more accurate oracles than STARCODER, but with
less context, STARCODER performs better. Thus, the best LLM
depends on the prompt’s level of context.

Although the evaluation scenario is controlled, it remains
useful for understanding how prompting and context influence
oracle synthesis. We assume the faulty region is already local-
ized and the test prefix exercises that region. This abstraction
removes confounding factors such as bug localization or test
generation, focusing instead on the LLM’s ability to complete
a potentially fault-revealing test.



1 public void testCopyConstructor_noSideEffectOnAttributes()←↩
{

2 Safelist safelist1 = Safelist.none().addAttributes(←↩
TEST_TAG, TEST_ATTRIBUTE);

3 Safelist safelist2 = new Safelist(safelist1);
4 safelist1.addAttributes(TEST_TAG, "invalidAttribute");
5
6 \\ Original Oracle

assertFalse(safelist2.isSafeAttribute(TEST_TAG,
null, new Attribute("invalidAttribute",
TEST_VALUE)));

7 \\ Generated Oracle
assertFalse(safelist2.isSafeTag(TEST_TAG));

8 }

Fig. 4. Example of LLM-generated oracle Lacking Context

E. Further LLM Output Analysis

We manually examined a subset of eight test oracle gen-
erations from STARCODER and eight from GPT-4O to gain
further insights into their behaviour.

For STARCODER, cases where oracles correctly identified
failures in buggy code but incorrectly flagged correct code
tended to fall into two main categories: over generation of
oracles [6] and insufficient input context. Regarding over
generation, STARCODER often produced more oracles than
necessary. While this set might include the correct oracles, it
also contains irrelevant ones that fail due to the limited context
provided by the test prefix. For example, it was common
to see oracles testing multiple unrelated functionalities. This
limitation likely results from the narrow scope of the input
prompt used in our experiments. Supplying broader context,
such as the entire test class or suite, could help the model assign
oracles to the correct test cases and improve their relevance.
The second issue relates to the lack of context in the input
itself. When only the test prefix is provided, STARCODER lacks
sufficient information to generate reliable oracles. Without
enough details about the code’s purpose and usage, the model
struggles to create representative oracles. Figure 4 shows
a STARCODER-generated oracle failing to compile due to a
missing isSafe method.

GPT-4o, often failed correct code for similar reasons to STAR-
CODER, but also frequently overcomplicated comparisons. Fig-
ure 5 is an example where instead of using assertEquals
to compare two values, it would use assertArrayEquals.
This likely stems from GPT-4O trying to compare entire
objects rather than just method results, aiming for content-based
comparison. However, this can leads to both false positive
and false negative results as they are comparing objects which
were not originally intended to be compared as a part of the
particular test case. For instance, the constructor and overridden
equals method of the objects could mean the two instances
of the object being compared are considered equal despite
the values the test actually wants to compare being different,
thus potentially resulting in a false positive. Conversely, if
the equals method for the objects being compared has not
been overridden or uses object references to compare, the two
instances being compared (if they are different instances) will
be returned as not equal, thus resulting in a false negative.

Both STARCODER and GPT-4O struggled with generating
oracles that failed to compile, mainly due to missing context and

1 public void testLazilyParsedNumberDeserialization() {
2 LazilyParsedNumber expected = new LazilyParsedNumber("←↩

1.5");
3 LazilyParsedNumber actual = gson.fromJson("1.5", ←↩

LazilyParsedNumber.class);
4
5 \\ Original Oracle

assertEquals(expected, actual);
6 \\ Generated Oracle

assertArrayEquals(new LazilyParsedNumber[]expected,
new LazilyParsedNumber[]actual);

7 }

Fig. 5. Example of overcomplicated LLM-Generated Oracle

over generation of code. When given only the test prefix, the
models lacked details about methods, arguments, or expected
outputs, leading to guesswork and compilation errors. Including
the MUT helped but didn’t fully resolve the issue, as it provided
context for only one method. Without including the CUT,
aligning output with the full test scenario remained difficult.
Over generation of code was especially the case for Chain-
of-Thought and Tree-of-Thought prompts, where the models
often added unnecessary test logic.

To address these limitations, future work could explore
providing more comprehensive prompts, such as including
the test class or suite, to give LLMs a clearer understanding
of the broader context. This might enable the models to
allocate oracles to the appropriate test cases and reduce over
generation of irrelevant test logic. Additionally, ensuring that
prompts guide LLMs toward simpler, more direct assertions
could help avoid overcomplicated oracle logic and improve
both the accuracy and reliability of generated test oracles.

V. THREATS TO VALIDITY

Data leakage. To reduce the risk of data leakage, we use
the GHRB dataset [18], which includes bugs reported after
STARCODER and GPT-4O training cutoff dates, ensuring the
models have not seen these faults.

Sample size and generalisation. We used 36 randomly selected
bugs from GHRB. The nature of these bugs may affect our
findings, and results may not generalise beyond this sample.

Bug-revealing test case prefixes. Our study uses test case
prefixes known to expose bugs. This limits our ability to
assess whether LLMs can generate effective oracles without
such prefixes or in correct code scenarios.

Lack of false positives analysis. We evaluate only buggy
scenarios. However, in practice, most code is correct. It
is also important to check whether LLMs generate false
positives: assertions that wrongly fail on correct code [40],
[41]. Evaluating oracle generation for bug-free units is an
important direction for future work.

Randomness in LLM outputs. To account for the non-
deterministic nature of LLMs [42], we ran prompts with each
parameter combination five times. Our results indicate that the
variance across these runs was low. Additionally, we used fixed
values for temperature and top-p parameters. We acknowledge
that exploring a broader range of values for these parameters
may affect results and consider this an avenue for future work.



Prompt configuration scope. A potential threat to validity lies
in the limited range of input prompt configurations explored.
We only evaluated three scenarios (test prefix alone, test prefix
with MUT, and test prefix with CUT), while excluding other
possible variations such as removing comments, including
dependencies, or using only method and class signatures. These
alternative configurations may influence LLM behaviour and
the resulting oracle generation in ways we did not capture. As
such, our findings may not fully generalise across different
prompt structures.
Scope of LLM selection. Finally, our study evaluates only
one representative LLM from each category—one code-specific
(STARCODER) and one general-purpose (GPT-4O). This choice
was made for feasibility reasons and because the GHRB dataset
is specifically designed to address data leakage concerns related
to these models. Future studies should explore a broader range
of LLMs to assess the generality of our findings.

VI. RELATED WORK

Automated unit test and oracle generation is a research
area that has gained significant attention [14], [43]. Tools
like EVOSUITE [32] and RANDOOP [2] generate tests with
regressions assertions, while recent methods use neural models
to generate assertions from test prefixes [38], [44], [45], [40],
[46], [47]. Due to space constraints, in this section we highlight
only key studies on LLM-based test and oracle generation.

LLMs for Test Case/Suite Generation. Recent studies have
explored LLMs for automated test generation, focusing on their
effectiveness, prompt design, and limitations. Yang et al. [9]
found that LLM-generated unit tests had lower compilation
rates and coverage compared to EVOSUITE. Alshahwan et
al. [48] introduced TESTGEN-LLM, deployed at Meta, which
improved 11.5% of test cases, with 73% accepted in production.
Siddiq et al. [35] analyzed CODEX, GPT-3.5, and STARCODER,
highlighting the impact of code context. Schäfer et al. [34]
evaluated the LLM-driven test tool TESTPILOT, in terms of
code coverage and failure detection. Lops et al. [36] introduced
AGONETEST, noting low compilation rates and the influence
of prompting strategies. Ouédraogo et al. [49] found that
structured prompts improved test quality but struggled with
complex code.

All of the mentioned studies focus on generating full test
cases using LLMs. In contrast, our study addresses a more
specific challenge: automated test oracle generation. This
focus is well justified, as the oracle problem is one of the main
bottlenecks in achieving full test automation [5]. By isolating
test oracle generation, we remove confounding factors related
to the test prefix (e.g., coverage, code quality) and focus solely
on the test oracle’s fault detection effectiveness.

LLMs for Test Oracle Generation Research related to
test oracle generation with LLMs has advanced significantly,
with various approaches exploring the potential of LLMs to
automate and improve software testing processes. The work
by Molina et al. [50] presents a roadmap for future research

on the usage of LLMs for test oracle automation. Hossain et
al. [13] introduced TOGLL, a method that leverages LLMs for
generating test assertions while relying on the EVOSUITE tool
for test prefix generation. The authors evaluate six different
levels of contextual information. Hayet et al. [15] introduce
CHATASSERT, an LLM-based test oracle generation tool with
two modes of execution: generation and repair. In generation
mode, it uses ChatGPT with a fixed prompt that includes
summaries of the methods used in the test prefix, as well as
similar examples in the form of other tests from the same test
file. Konstantinou et al. [4] studied whether LLMs generate test
oracles that focus on the implemented behaviour of the code or
whether they are capable of producing non-regression oracles
that capture the expected behaviour. The authors reuse the best-
performing prompts from previous works such as TOGLL [13]
and CHATTESTER [16]. Zhang et al. [29] investigated the
performance of LLM-based assertion generation in terms of
bug detection. The prompts employed by the authors contain
the test prefix and MUT.

Our study is the first of its kind, substantially differing
from previous works. First, most prior studies evaluate a
single prompt type, varying only the fixed information about
the MUT or CUT. The exception is Hossain et al., who
explored multiple prompts with different levels of MUT context.
However, no study has examined the combination of both input
and prompt strategies. Second, we are the first to use the
GHRB dataset—designed to reduce data leakage—for oracle
generation, addressing a key limitation in earlier Java-based
studies.

VII. CONCLUSIONS AND FUTURE WORK

This study provides a baseline for LLM-driven fault-revealing
test oracle generation, an essential step toward reliable Prompt-
ware. We evaluated two LLMs (STARCODER and GPT-4O)
across four prompting techniques (zero-shot, few-shot, CoT,
ToT) and four input contexts (test prefix, method under test, full
class). Our large-scale evaluation (over 2,000 runs) highlights
key challenges and insights that can help improve oracle
generation in the FM era. Assertion compilability remains
a major obstacle, and including full class context improves
oracle quality by 12.9%. Simpler prompting techniques out-
perform CoT and ToT by 23%, and STARCODER consistently
outperforms GPT-4O. Prompting technique emerges as the
most impactful factor.

Future work should focus on improving assertion com-
pilability, possibly through static analysis or LLM-driven
refinement prompts [17]. Additionally, hybrid prompting
strategies that combine structured reasoning (e.g., CoT) with
simpler approaches (e.g., zero-shot or few-shot) may improve
both accuracy and reliability.
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