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Abstract—The growing application of DL makes detecting
and fixing defective DL programs of paramount importance.
Recent studies on DL defects report that TensorFlow API misuses
represent a common class of DL defects. However to effectively
detect, fix, and verify them remains an understudied problem.
This paper presents the TensorFlow API misuses Detector And
Fixer (TADAF) technique, which relies on 11 common API
misuses patterns and corresponding fixes that we extracted from
StackOverflow. TADAF statically analyses a TensorFlow program
for identifying matches of any of the 11 patterns. If it finds a match,
it automatically generates a fixed version of the program. To verify
that the misuse brings a tangible negative effect, TADAF reports
functional, accuracy, or efficiency differences when training and
testing (with the same data) the original and fixed versions of the
program. Our preliminary evaluation on five GitHub projects
shows that TADAF detected and fixed all the API misuses.

Index Terms—Deep Learning, TensorFlow, Static bug detection,
APIs, Automated Program Repair, Differential Testing

I. INTRODUCTION

Deep Learning (DL) has become an increasingly popular
and promising Machine Learning (ML) method that often
achieves human-like performance in a wide range of areas.
DL is often used where failures or unexpected behaviors can
have catastrophic consequences, such as self-driving cars [1]
or medical diagnostic [2]. For this reason, exposing defects in
DL programs is an extremely important problem [3].

Developers often rely on ML frameworks to efficiently
design and train DL models. The TENSORFLOW library [4] is
the most popular of such frameworks [5]. TENSORFLOW is
continually extending its dominance over other DL frameworks
(e.g., PyTorch and Theano). As in January 2022, the GitHub
repository of TENSORFLOW is the top 10 most starred
repositories in GitHub with over 160K stars [6].

TENSORFLOW exposes an Application Programming Inter-
face (API) that developers use to implement a ML pipeline that
trains and tests a DL model. Like any other library, developers
can violate the (implicit) usage constraints of the TENSORFLOW
API, introducing API misuses.

Figure 1 shows a TENSORFLOW API misuse and
related fix, which was discussed in the StackOver-
flow question #38589255. The API misuse is calling
train_data.eval() without calling the TENSORFLOW API
tf.train.start_queue_runners(sess) before. This is a
violation of an implicit usage constraint of the API, which
requires that (for this particular input pipeline) developers
specify when TENSORFLOW should start fetching the records
into the buffers. Without the call at line 4, the buffers remain
empty and the API call eval() at line 5 hangs indefinitely.

c

1 sess = tf.InteractiveSession()
2 train_data,train_labels = inputs(False,"data",6000)
3 print (train_data,train_labels)
4 tf.train.start_queue_runners(sess) +++
5 train_data = train_data.eval()
6 train_labels = train_labels.eval()
7 print(train_data)
8 print(train_labels)
9 sess.close()

fix

API	misuse
“without	start_queue_runners the	buffers	
remain	empty	and eval hangs	indefinitely”

Fig. 1. TENSORFLOW API misuse - https://stackoverflow.com/q/38589255

TENSORFLOW users introduce these kind of bugs when they
do not fully understand the assumptions made by the APIs [5],
[7], [8]. Surprisingly, even popular and well-maintained DL
programs suffer from TENSORFLOW API misuses [5], [7],
[9]. Zhang et al.’s bug characteristic study classifies 175
TENSORFLOW program bugs collected from StackOverflow and
GitHub. The results show that TENSORFLOW API misuses is a
common type of TENSORFLOW bugs [5]. Further reinforcing
this, Islam et al.’s study reports that most of the non-model
related TENSORFLOW bugs are due to API misuses [9].

Recently, the empirical study of Humbatova et al. [7]
indicates that DL users recognize several TENSORFLOW API
misuses to be common misconceptions. This is confirmed
by the high community engagement of those StackOverflow
posts that discuss TENSORFLOW API misuses [7]. This
brings the opportunity to identify common TENSORFLOW API
misuses from StackOverflow and GitHub to define patterns
for the automated detection and fix of the misuses. Although
there are static bug detectors for Python [10]–[13], including
TENSORFLOW-specific static bug detectors [14], [15], none of
these techniques target TENSORFLOW API misuses nor aim
to fix or dynamically verify the detected bugs.

This paper presents the early research achievement
TensorFlow API misuses Detector And Fixer (TADAF), the first
technique to automatically detect, fix, and verify TENSORFLOW
API misuses. TADAF is grounded by 11 common API misuses
patterns and related fixes that we mainly extracted from Stack-
Overflow posts. TADAF statically analyses a TENSORFLOW
program to identify instances of such patterns and automatically
fix them. Then, it employs differential testing [16] to verify
that the fixed version works properly and that there are indeed
behavioural differences between the original and fixed versions.
The API misuse in Figure 1 is an example of a misuse that
TADAF successfully detects, fixes, and verifies. We evaluated
our proposed approach on five GitHub projects, showing
that TADAF correctly detected and fixed all misuses and
successfully exposed behavioural differences in four projects.
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TABLE I
11 PATTERNS OF TENSORFLOW API MISUSES CURRENTLY IMPLEMENTED IN TADAF

ID Category API misuse Related fix

P1 Low
Effectiveness Call decode_jpeg() passing a png file as an argument Replace the decode_jpeg() API call with the more inclusive

decode_image() API call

P2 Low
Effectiveness

Same as P1 but the code contains image.resize() API call,
which has to be adjusted as well

Same fix as P1 plus replace image.resize() with
image.resize_image_with_crop_or_pad()

P3 Deprecated
API Error Use of deprecated API call tf.merge_summary() Replace it with the working version of the same API call

tf.summary.merge()

P4 Deprecated
API Error Use of deprecated API call tf.merge_all_summaries() Replace it with the working version of the same API call

tf.summary.merge_all()

P5 Deprecated
API Error Use of deprecated API call tf.train.SummaryWriter() Replace it with the working version of the same API call

tf.summary.FileWriter()

P6 Error
Use of binary class mode but the final dense layer is
set to a value which is not 2. For example, Dense(3,
activation=’softmax’)

Find the last dense layer and change the value to 2. For example,
Dense(2, activation=’softmax’)

P7 Low
Efficiency

Use of tf.nn.softmax() in conjunction with a cross entropy
formula leads to slowdowns

Combine both parts into a single function call tf.nn.softmax
_cross_entropy_with_logits()

P8 Low
Efficiency

Calling @tf.function many times in a for loop leads to
slowdowns

Ensure that the parameters passed to the API are assigned using the
tf.range() method as well as casting it using tf.cast()

P9 Deprecated
API Error Use of deprecated API call tf.histogram_summary() Update to working version of same API call

tf.summary.histogram()

P10 Deprecated
API Error Use of deprecated API call tf.scalar_summary() Update to working version of same API call

tf.summary.scalar()

P11 Low
Efficiency

Calling the eval() API before calling tf.train
.start_queue_runners(x) leads to hangs

Insert a call to tf.train start_queue_runners(x)
before eval() and after the most recent assignment of variable x

II. TENSORFLOW API MISUSES PATTERNS

This section presents our methodology to identify an initial
set of 11 TENSORFLOW API misuses patterns and related fixes.
An important future work is to expand such a set to further
improve the completeness of TADAF.

To obtain a relevant set of initial patterns, we aimed at having
at least one pattern for each type of bugs that can occur from
TENSORFLOW API misuses. Zhang et al.’s study classifies the
root causes of TENSORFLOW program bugs (including API
misuses) into three categories [5]:
- Error: Any bug that causes the program to crash often raising

an exception while doing so.
- Low Effectiveness: Any bug that negatively affects the

accuracy of the model or reduces the quality of the result.
- Low Efficiency: Any bug that causes the training or testing

phase to take a considerably longer time than expected. This
includes bugs that lead to infinite executions.
Any TENSORFLOW API misuses that has a behavioral effect

on a DL programs must fall into these three categories [5], [9].
We also considered an additional sub-category of error bugs:
- Deprecated API Error: Errors bugs that are documented by

TENSORFLOW as there exists a documentation on the change
as well as warnings leading up to the change.
In the context of API misuses, we thought it was best

to separate deprecated API errors from general ones since
TENSORFLOW developers already specified in the API docu-
mentation how to detect and fix the API misuses.

We used the following process to find at least one API
misuse for each of the four categories:

First, we examined what TENSORFLOW API misuses had
been studied before. For this, we looked to the Zhang et

al.’s [5] and Humbatova et al.’s [7] studies and listed down
every API misuses that they identified, which were collections
of StackOverflow posts or GitHub issues. This totalled 15
bugs. From there, we selected those involving TENSORFLOW,
narrowing the number of API misuses from 15 to 7.

Then, we turned to searching StackOverflow for collecting
additional TENSORFLOW API misuses. We retrieved all the
questions with the tag [tensorflow] and then sorted in terms
of views with the idea that the most commonly experienced
bugs would have the highest number of views. We then
inspected the search results and took care to note: (i) if it was
a TENSORFLOW API misuse and which of the four categories
it falls into by reading the comments and fitting the behaviour
of the bug based on the category definitions posed above, (ii)
when the original question was asked (to ensure relevancy in
terms of time), and (iii) number of answers (another measure
of community engagement).

We then selected the most popular TENSORFLOW API
misuses in each of the categories based on our labelling of the
data obtained in above (i). We only accepted those with at least
one popular answer (5+ upvotes) and a minimum number of
5,000 views to the post. We found these thresholds by looking
at all 14 TENSORFLOW bugs that were located and choosing
the bugs in descending order based on number of views, number
of upvotes and popular answers. We used the publish date of
the StackOverflow question to help understand popularity lines.
If two posts had the same number of views then the post with
the earliest date would have higher popularity since the new
post has accumulated more views in a shorter time.

After inspecting the collected API misuses we defined 11
TENSORFLOW API misuses patterns. Table I summarizes the
pattern with a description of the misuse and its related fix.



III. TADAF
TADAF aims at automatically detect and fix TENSORFLOW

APIs misuses. Figure 2 overviews the logical architecture
of our proposed approach. TADAF takes as input a Python
TENSORFLOW program that implements a DL pipeline, and
a dataset for training and testing the generated DL model. If
TADAF detects API misuses, it outputs the fixed version of
the program and a report of the behavioral differences between
the fixed and original versions.

TADAF has three main components: FINDER, FIXER, and
VERIFIER. The FINDER statically analyses the program to
identify instances of the 11 API misuse patterns. Then, the
FIXER works together with the FINDER to take those found
instances and apply a common fix to the detected misuses
creating a fixed version of the program. Finally, the VERIFIER
performs differential testing using the dataset in input to verify
that the fixed version works properly and that behavioural
differences exist between the original and fixed versions.

A. FINDER

The FINDER component statically analyses the Abstract
Syntax Trees (AST) [17] representation of the Python TEN-
SORFLOW program in input, to identify instances of any of
the API misuse patterns. By analyzing the AST, TADAF can
unambiguously identify language constructs (e.g., function calls,
method arguments), and thus precisely detect API misuses.
We implemented each pattern of Table I as a dedicated AST
analysis that takes the AST source tree of the program and
returns a list of faulty AST nodes that contain all the relevant
information needed to perform the fix. Going back to the
example of Figure 1, we can break down how FINDER detects
the API misuse (P11 in Table I) step-by-step.

As APIs are all interacted through function calls, the first step
to detect a pattern is to find every instance of a specific function.
In the case of the motivating example, it is important to know
all locations of the eval() and start_queue_runners()
function calls. This is achieved through utility methods which
“walk” through the nodes in the AST and return all nodes
that match the right node type (AST.Call) and name (target
function as a String).

Further analysis of the nodes is done to determine if they
meet the criteria for the pattern. This could include comparing
the order of certain functions or the type of information being
passed as their arguments. For our example, FINDER checks
if there is an AST eval() function node and there are no
start_queue_runners() function nodes before.

Finally, some extra information may be needed for the FIXER
component to successfully make the fix. This could include
locations of assignment nodes for certain variables or values
given in arguments. The process for collecting this information
is similar as above but instead focuses on detecting certain as-
signment nodes in the AST. For our example, we need to know
where is the most recent assignment of the session variable
(sess defined at line 1 in Figure 1). The FIXER needs such
a variable to call tf.train.start_queue_runners(sess)
and fix the misuse.

TF	program
(original)

Input

FINDER FIXER

Output

VERIFIER

11	TensorFlow API	misuses	patterns

TADAF

step	1 step	2

step	3

TF	program
(fixed)

report	
behavior	diff.

Dataset
(train &	test)

API	misuse

original fixed

Fig. 2. Logical architecture of TADAF

B. FIXER

The FIXER component goes through the list of API misuses
that FINDER identified. For each fix pattern in Table I, we
implemented a function that takes the AST of the program
and the faulty node and returns the transformed AST. We
considered three different AST transformations: (i) alter an
existing node of the AST, (ii) remove an existing node of the
AST, and (iii) add a new constructed node to the AST. Each
of these transformations can be used in different combinations
as many times that is needed to fix an API misuse.

In the example in Figure 1, The FIXER component
creates a new AST.Call node that invokes the function
tf.train.start_queue_runners(sess) and inserts the
node in the AST right before the faulty node. TADAF
automatically converts the transformed AST into Python source
code, creating a fixed version of the TENSORFLOW program.

C. VERIFIER

The VERIFIER component checks that the fixed version
works correctly and that the detected/fixed API misuses are
real TENSORFLOW bugs that negatively affect the performance
of the original program. We achieve this with differential

testing [16], [18], which compares metrics before and after the
fix. These comparison metrics are changes in accuracy of the
model, changes in training/testing time, and any changes to the
presence of exceptions/time-outs. TADAF collects these metrics
by running the original and fixed version of the TENSORFLOW
program on the same training and test dataset.

In the example of Figure 1, the call eval() hangs forever
in the original version. TADAF reports either a time-out or an
infinite training time depending on the underlying system.

IV. PRELIMINARY EVALUATION

To evaluate our proposed approach, we implemented a
prototype tool in Python that relies on the ast module [17] to
analyze and transform ASTs. We collected evaluation subjects
by searching on GitHub for Python projects with the following
characteristics: (i) it uses the TENSORFLOW framework to
define, train, and test a DL model; (ii) there is at least one
targeted misuse in the current or past versions; and (iii) it
contains a dataset for training and testing the DL model. We
used as search query the API calls related to the misuses, or
a natural language description of the misuses. We found five
projects that meet the requirements, covering seven unique



TABLE II
EVALUATION RESULTS OF TADAF

ID FINDER FIXER VERIFIER (original version) VERIFIER (fixed version)
# Misuses Category Time (ms) Time (ms) # Crashes Time (s) Accuracy # Crashes Time (s) Accuracy

S1 1 (P1) Low Effe. 2 21 0 6,869 low 0 7,094 high
S2 4 (P3, P5, P9) Deprecated 12 3 4 - - 0 <1 92%
S3 1 (P7) Low Effi. 3 1 0 30 99% 0 28 99%
S4 1 (P11) Low Effi. 8 7 0 1 - 0 ⇠1 98%
S5 1 (P6) Error 3 6 1 - - 0 5 78%

misuse patterns. Subject S2 contains four misuses, while other
subjects one each. For S2 we considered four distinct copies
of the program, each with a single misuse. To provide more
information about the subjects and to facilitate future work in
this area, we release our experimental data [19].

We then run TADAF on each of these five projects. It is
important to mention that the VERIFIER component is still
in the initial prototyping phase. It needs manual intervention
to launch the original and fixed programs and to collect the
performance metrics. Because most of our subjects contain
their own metrics for testing models, such as printing test
accuracy or saving outputted images, we decided to run and
compare the performance metrics manually. An important future
work is to make the VERIFIER fully automated. Also, we ran
the VERIFIER one time only. To handle non-deterministic DL
programs [3], the VERIFIER should run multiple times and
report median results. We run our experiments on a NVIDIA
RTX6000 GPU, AMD 3990X CPU, with 256GB RAM.

Table II shows the results. Column “FINDER” indicates the
number of misuses detected and the corresponding patterns,
their category, and the time taken by the FINDER component.
Notably, we report the time to search on all the Python files of
the projects. Column “FIXER” gives the time taken to create
the fixed version of the faulty TENSORFLOW program. In
just a few milliseconds, the FINDER and FIXER components
successfully detected and fixed all the expected misuses.

Columns “VERIFIER (original version)” and “VERIFIER
(fixed version)” show the behavioral differences between the
executions of the original and fixed versions. We show three
key performance metrics: the number of runtime exceptions,
the training and testing time, and the accuracy results on the
test set. Notably, we do not report the accuracy for the subjects
S2, S4, S5 as the TENSORFLOW programs either crash or hang
indefinitely. Subject S1 is a generative adversarial network that
generates images. Developers did not compute any accuracy
metric. As such, we report a qualitative judgment on the images:
we observe that the fixed version leads to clearer images.

The results show that for all except one subject (S3), TADAF
successfully confirmed that the detected misuse has a negative
impact on the performance and functional correctness of the
DL program. In such cases, VERIFIER exposed the expected
category of the TENSORFLOW bug as documented in Table I.
For S3, while TADAF does not expose any clear behavioral
difference, we believe this could be due to the small size of the
dataset. There may not have been enough time for differences
in efficiency to show clearly in our results.

V. RELATED WORK

Research on exposing DL program bugs mostly focuses
on testing [3], [20]–[22], while static bug detection for DL
programs remains an understudied problem [3]. Python is the
de facto language for implementing DL programs. Being a
dynamically-type language, there are several challenges when
statically analyzing Python code [15], [23]. In the context of
static detection of TENSORFLOW API misuses, our evaluation
results suggest that many of such challenges do not affect the
precision and completeness of TADAF.

There are several static bug detectors to detect general
Python bugs: MYPY [10], PYLINT [11], PYFLAKES [12],
and PYTYPE [13]. Although these tools can find bugs in
TENSORFLOW programs, they cannot detect TENSORFLOW
API misuses but only generic Python bugs.

Static bug detection of TENSORFLOW-specific program bugs
is limited to TENSORFLOW shape-related bugs [14], [15].
ARIADNE [14] is a static shape analysis for TENSORFLOW,
which relies on WALA for statically analyzing Python programs.
PYTHIA [15] relies on datalog-based static analysis to identify
TENSORFLOW shape-related bugs. Differently, TADAF targets
the detection of generic TENSORFLOW API misuses. Moreover,
ARIADNE and PYTHIA do not aim to fix and dynamically
verify the detected TENSORFLOW bugs.

Although Zhang et al. study [5] does not provide a solution
for fixing TENSORFLOW program bugs, the approach they
used for fixing the bugs manually is very similar to the
approach that TADAF automatically implements. They mention
in the discussion of their paper that “analysing the root

causes could be useful for further developing automated repair

approaches” [5]. However, it should be noted that they targeted
more broadly with TENSORFLOW program bugs whereas
we have specifically targeted TENSORFLOW API misuses.
Automatic Program Repair (APR) [24] for DL programs is
still an unexplored issue (interested readers can refer to the
recent study of Islam et al. [25]). TADAF automatically fixes
a common and critical type of DL bugs, and thus making the
first steps towards APR for DL programs.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented TADAF, the first technique to auto-
matically detect, fix, and verify TENSORFLOW API misuses.
We implemented TADAF in a prototype tool for Python
programs that use TENSORFLOW, and evaluated it on five
open-source programs found in GitHub. Our preliminary results



are promising, giving evidence of the TADAF’s effectiveness.
In the future, we will conduct a rigorous evaluation to give
more evidence of the effectiveness of our proposed approach.

TADAF is still at an early stage of inception. There are
several promising future works and novel research directions
that will likely turn TADAF into a fully-fledged automated
static bug finder and fixer for TENSORFLOW programs.
I. While the FINDER and FIXER components of TADAF are
already fully automated, the VERIFIER requires some manual
intervention. More specifically, the VERIFIER relies on logging
statements in the analyzed TENSORFLOW program to collect
behavioral information (e.g., classification accuracy, execution
time) when running the DL pipeline. At the moment, these
statements are manually added. In the future, they should be
automatically added by TADAF.
II. Once the VERIFIER is fully automated, we could au-
tomatically discover new API misuse patterns by mining
TENSORFLOW programs from GitHub. In particular, given a
commit that changes TENSORFLOW APIs calls, the VERIFIER
could automatically recognize if the program versions before
and after the commit manifest behavioral differences. Statistical
analysis on many of such commits might help to distinguish
common API misuses from project-specific faults.
III. Each API misuse pattern is unique. Thus, we had
to implement a dedicated AST analysis for detecting and
fixing each pattern. However, we noticed that the different
implementations share common operations on the ASTs. For
example, searching for an API call, checking the values of
parameters, ensure the presence of certain statements. This
brings an important opportunity: creating a domain specific
language to represent patterns and related fixes [26]. Given such
a representation, TADAF could automatically map language
constructs to parameterized ASTs operations. This will facilitate
the definition of new API patterns and avoid the manual cost
of implementing new patterns into TADAF.
IV. Currently, TADAF assumes that a train and test dataset is
both available and adequate to verify the detected API misuses
and related fixes. This might not be the case. An important
future work is to study data generation [27] and adequacy
criteria [28] in the context of TENSORFLOW API misuses.
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