arXiv:2312.15302v3 [cs.SE] 5 Jun 2024

GENMORPH: Automatically Generating

Metamorphic Relations via Genetic Programming

Jon Ayerdi, Valerio Terragni, Gunel Jahangirova, Aitor Arrieta, and Paolo Tonella

Abstract—Metamorphic testing is a popular approach that aims to alleviate the oracle problem in software testing. At the core of this
approach are Metamorphic Relations (MRs), specifying properties that hold among multiple test inputs and corresponding outputs.
Deriving MRs is mostly a manual activity, since their automated generation is a challenging and largely unexplored problem.

This paper presents GENMORPH, a technique to automatically generate MRs for Java methods that involve inputs and outputs that are
boolean, numerical, or ordered sequences. GENMORPH uses an evolutionary algorithm to search for effective test oracles, i.e., oracles
that trigger no false alarms and expose software faults in the method under test. The proposed search algorithm is guided by two fitness
functions that measure the number of false alarms and the number of missed faults for the generated MRs. Our results show that
GENMORPH generates effective MRs for 18 out of 23 methods (mutation score >20%). Furthermore, it can increase RANDOOP’s fault
detection capability in 7 out of 23 methods, and EVOSUITE’s in 14 out of 23 methods. When compared with AUTOMR, a state-of-the-art

MR generator, GENMORPH also outperformed its fault detection capability in 9 out of 10 methods.

Index Terms—metamorphic testing, oracle problem, metamorphic relations, genetic programming, mutation analysis

1 INTRODUCTION

The increasing complexity of software systems makes soft-
ware test automation both increasingly important and chal-
lenging. One of the main issues in this domain is the automa-
tion of the test oracle problem, the problem of distinguishing
between correct and incorrect test executions [[1]. While recent
years have witnessed significant advances in automated test
input generation [2], [3]], [4], [5], [6], the oracle problem
remains one of the main bottlenecks to achieve full test
automation [7].

Metamorphic Testing (MT) [8] aims at alleviating the
oracle problem. It is based on the intuition that even if
we cannot automatically determine the correctness of the
output for an individual input, it may still be possible to use
relations among the expected outputs of multiple related
inputs as oracles [9]]. Existing research on metamorphic
testing has proven that such relations, called Metamorphic
Relations (MRs), exist in virtually any non-trivial software
system [10].

For example, consider a program f that computes the
square of a number. We cannot determine the correctness
of £(5) without knowing that the expected value is 25.
However, a mathematical property of the square function is
x? = (—x)?. This property can be represented as an MR that
verifies that the square functions of two numbers (one the
negation of the other) are identical. If two inputs violate this
MR, we have found a fault in the implementation of £.

The key advantage of MT is that a single MR can
be applied to multiple test inputs. This is generally not

o] Ayerdi and A. Arrieta are with the Department of Electrical and
Computer Engineering, Mondragon University, Spain.
E-mail: jayerdi@mondragon.edu

o V. Terragine is with Auckland University, New Zealand

o G. Jahangirova is with the King’s College London, United Kingdom

o P Tonella is with the Universita della Svizzera italiana (USI), Switzerland

true for canonical test assertions that often predicate
on specific test inputs. For example, the test assertion
assertEquals (16, £ (4)) is specific to the input 4. Man-
ually deriving assertions for thousands of automatically
generated test inputs is infeasible. Indeed, test generators
often need many test inputs to be effective [11]. Conversely,
a single MR can be applied to different test inputs, as long
as they satisfy the input relation.

With the rapid advance of test input generators, the pop-
ularity of metamorphic testing has drastically increased [9],
[10], [12]. Recently, large companies such as META [13],
GOOGLE [14], ADOBE [15], and NASA [16] are leveraging
MT for testing their software systems. While the usefulness
of MT is well recognized among both researchers and the
industry [12], identifying MRs largely remains a costly
manual activity that requires domain knowledge [17]. The
automated discovery of MRs is an important research topic
in MT, as it would reduce the human cost associated with
metamorphic testing and enable full test automation [9], [10],
[12]. Unfortunately, it is a challenging problem that remains
largely unexplored [9], [10], [12], [18], [19].

This paper presents GENMORPH (Generator of
Metamorphic Relations) a technique to automatically discover
MRs for Java methods. GENMORPH relies on search-based
software engineering (in particular, genetic programming)
to explore the space of candidate solutions, driven by a
fitness function that rewards MRs with fewer false positives
and false negatives. In the context of test oracles [20], false
positives represent correct program executions in which the
oracle fails but should pass, and false negatives represent
incorrect program executions in which the oracle passes but
should fail [20], [21], [22]. Correspondingly, a high-quality
MR is one with no false alarms (zero false positives) that is
useful to expose software faults (few false negatives).

We evaluated GENMORPH on 23 Java methods from

three different open-source libraries. The results show that
GENMORPH generates effective MRs for 18 of these subjects.
Furthermore, the generated MRs increase the fault detection
capability of automatically generated regression test suites
for 14 subjects. Compared with AUTOMR, a state-of-the-art
MR generation tool, GENMORPH achieved a higher fault
detection capability with 9 out of 10 subject methods. In
summary, this paper makes the following contributions:

o It proposes GENMORPH, a novel technique to automati-
cally generate valid and effective MRs for functions with
numerical, Boolean, array, List and String inputs and
outputs.

o It describes a framework to automatically evaluate MRs
with automated test generation and mutation analysis.

o It presents an empirical evaluation of GENMORPH
involving 23 functions from three open-source libraries.

o It releases a replication package to facilitate future
work [23], including the source code of GENMORPHﬂ
and the results from our experiments.

2 PROBLEM FORMULATION

This section gives the background of this work and formu-
lates the problem of generating effective MRs. We follow the
seminal definition of MRs by Chen et al. [8], [9]:

Definition 1. Let f be a target function or algorithm. A
Metamorphic Relation (MR) is a necessary property
of f over a sequence of inputs (x1,--- ,x,) where n > 2,
and their corresponding outputs (f(z1), - , f(zn)).

In this work, we focus on the subset of MRs that can be
represented as a logical implication (=) between a relation
R; defined over the sequence of inputs, and a relation
R, defined over the corresponding sequence of outputs.
Furthermore, we focus on MRs involving pairs of inputs and
corresponding outputs (n = 2), which characterize most of
the MRs presented in the literature [10].

Ri(w1,22) = Ro(f(21), f(x2))

Whenever a given input relation R;(z1,x2) holds be-
tween the two inputs z; and z3, a corresponding output
relation R,(f(x1), f(z2)) is expected to hold between the
outputs.

Referring to the square function example discussed in the
introduction, the presented metamorphic relation is defined
as:

(1 = —x2) = (f(21) = f(22))

A MR can be used as a metamorphic test oracle: an
executable Boolean expression that reports an invariant
violation if the input relation is satisfied (true), but the output
relation is not (false).

Typically, metamorphic test cases are generated by first
obtaining an initial test input (by applying any regular test
generation strategy), and then applying a transformation to
it (~) such that the input relation will be satisfied. In such
cases, the initially generated test input is called the source
test input (or source test case), and the one derived from it
to satisfy the input relation is called the follow-up test input
(or follow-up test case). Formally, given an MR, we call a

1. https:/ / github.com /jonayerdi/genmorph

2

(metamorphic) input transformation [24] a transformation
of the inputs 1 ~~ 7 that satisfies R;(x1, z2).

Referring to the square function example, an input
transformation for its MR is x; ~» —1 - x;. For example,
given the source test 1 = 4, its follow-up is 3 = —4.

Given a single MR, MT can generate an arbitrary number
of source test inputs and use the input transformation to
automatically create the corresponding follow-up test inputs.
MT executes the function under test on each pair of inputs
and reports an oracle violation if the output relation is false.

Clearly, the effectiveness of metamorphic testing highly
depends on the specific MRs that are used. Thus, designing
effective MRs is a critical step when applying MT [9], [10],
[12]. However, discovering effective MRs is labor-intensive
and usually requires advanced domain expertise [8], [9], [10].

Given a function f and its implementation P, GENMORPH
aims at automatically generating one or more MRs that are
“effective” at exposing faults in P. We measure effectiveness
in terms of false positives (FP) and false negatives (FN) of a
test oracle [20], [21]].

Jahangirova et al. [20] define a FP as a correct program
execution in which the oracle fails but should pass, and a FN
as an incorrect program execution in which the oracle passes
but should fail. However, these definitions are ill-suited for
MT because metamorphic oracles predicate on multiple test
executions. As such, we modify them as follows:

Definition 2. Let P be an implementation of a target function
or algorithm f. A false positive (FP) of a metamorphic
oracle MR is a pair of inputs z; and xy such that
both P(z1) and P(x5) are correct and [R;(z1,72) =
RO(P($1),P(.’I?2))} = false (i.e., Ri($1,x2) = true and
R,(P(z1), P(xz2)) = false).

Definition 3. Let P be an implementation of a target function
or algorithm f. A false negative (FN) of a metamorphic
oracle MR is a tuple (z1,x2, uP), where z1 and 2 is
a pair of inputs and pP is an incorrect version of P
(e.g., seeded fault) such that [P (z1) # P(x1) or pP(x2) #
P(z2)] and [[Ri(z1,z2) = Ro(pP(z1), pP(x2))] = true].

In Definition 2} the condition that both P(z1) and P(z2)
are correct can be assumed to hold in a regression context,
where we are interested in modeling the implemented
behavior using a metamorphic oracle that can be adopted
later for regression purposes. In Definition 3} the condition
[uP(x1) # P(x1) or pP(x2) # P(x2)] checks that executing
the mutant pP with at least one of the inputs (z; or z2)
corrupts the output value. If not, the metamorphic oracle has
no means to expose the seeded fault.

Problem Definition: Given a function f and its implemen-
tation P, automatically generate one or more MRs that have
zero false positives and the fewest false negatives.

There are two important considerations to make: First,
differently from program assertions [25] and pre/post con-
ditions [26], a single MR usually does not predicate on all
possible program inputs and thus can hardly achieve zero
FNs. An MR only predicates on those inputs that satisfy the
input relation. For this reason, outputting multiple MRs with
different input relations is useful as they might complement
each other on the types of faults they can detect. Conversely,

https://github.com/jonayerdi/genmorph

3

input Isource Inputs 3 Input
Generation | — source test Transformations
ﬁ N / Ev=Suite inputs (x)
= source and
Java follow-up pairs
method \ |2 Mutants 7 Colectomor
Generation —> k mutants or ron:CEtlon °t_ I
Major UPy, Py, - uP, ogram Executions

correct/incorrect executions

Ri GENMORPH " output
Input v Ri=R
relation |5 Generation of MRs ! O |6 Filtering MRs

5=

MRs

(evolutionary algorithm)

o8

filter if FPs >0

O repeat foreach
input relation ¢

Fig. 1: Logical architecture of GENMORPH for the automated generation of MRs

aiming at zero FPs is highly desirable because of the high
cost of manually inspecting false alarms.

Second, same as Terragni et al. [25] and Molina et al. [26],
we are considering the implemented program behavior for
false positives, which might differ from the intended one.
As such, GENMORPH might need a manual validation of
the generated MRs to ensure that they capture the intended
program behavior.

3 GENMORPH

GENMORPH takes as inputs the implementation P of a
function (method in Java) and a time budget. It explores the
space of possible MRs for P, and when the budget expires, it
returns the most “effective” MRs explored so far. GENMORPH
explores the space of possible MRs with an evolutionary
algorithm driven by fitness functions that reward MRs with
fewer false positives (FPs) and false negatives (FNs). Figure
overviews GENMORPH, which generates MRs in six steps:

1) Source Inputs Generation. GENMORPH needs a set of
input pairs (source and follow-up tests) to discover and
evaluate MRs. Our current implementation for Java methods
employs EVOSUITE [2] to generate a diverse set of source
test inputs. EVOSUITE generates test inputs driven by branch
coverage, which guarantees that the generated tests cover
diverse execution paths of the method under analysis [27].
Since the input relation is still unknown at this stage, GEN-
MORPH uses these generated tests as source test inputs only.
Note that one could also add manually-written test inputs.

2) Mutants Generation. To obtain a dataset of incorrect test
executions, GENMORPH executes the generated test inputs on
faulty versions of the method under test. To obtain such faulty
versions, our current implementation employs MAJOR [28],
which seeds artificial faults into the method under test,
creating a set of k mutants of P: uPy, uPs, - uPy. Note
that one could also add real faulty versions of P to the set of
mutants.

3) Input Transformations. GENMORPH generates a set of
input relations by relying on predefined templates that
specify canonical input transformations [29]. These input
relations are necessary for generating the follow-up inputs
for Step 4.

4) Collection of Program Executions. GENMORPH instru-
ments and executes each pair of source and follow-up inputs
(x1,22) to capture at run-time the output values P(z1),
P(x3) (correct executions) and pP;(x1), uP;(x2) for each
mutant Vi 1,2,---k (incorrect executions). Collecting
and caching such values is paramount to avoid the cost
of re-executing all the tests when computing the FPs and
FNs for each explored MR. Indeed, the evolutionary algo-
rithm of GENMORPH might explore thousands of candidate

MRs. GENMORPH filters redundant correct and incorrect
executions, as well as those incorrect executions that are
equivalent to the correct ones obtained with the same input
(i-e., it filters puP;(z1) and pP;(z2) if uPi(z1) = P(z1) and
pPi(x2) = P(x2)).

5) Generation of MRs. GENMORPH implements an evolu-
tionary algorithm that, given an input relation and a set
of correct/incorrect executions, explores candidate output
relations to generate new ones, possibly with zero FP and the
fewest FNs. The resulting input and output relations form a
complete MR.

6) Filtering MRs. Step 5) outputs MRs with zero FPs with
respect to the observed correct executions. Those MRs might
fail for some other correct executions. To filter such MRs,
GENMORPH has a filtering process that uses the test input
generator RANDOOP [3] and the oracle assessor OASIS [20].

Until the time budget is reached, GENMORPH repeats
steps 3) to 6) every time considering a different initial input
relation.

4 RUNNING EXAMPLE

This section describes a running example of MR generation

using GENMORPH, based on the pow function. We consider

the implementation of the pow method from the Apache

Commons Math library for Java [30] (see Listing : pow(k, e).

This method accepts two integers, k and e, and returns k°.
One of the MRs generated by GENMORPH iiﬂ

(kg = ko) A ey = es — 1)) = (pow(ky, ef) = L28Ece)) (1)

Here, 1 = (ks,es) denotes the source input, and x5
(kr,er) the follow-up input. In mathematical notation, this
MR captures the following property of the pow function:
ke =ke k.

Listing[T| shows a simplified version of the pow method.
For this example, we will use one of the mutants generated by
MAJOR, which we will refer to as pow, ,. This mutant removes
the k2p *= k2p; statement at line 12, resulting in some
incorrect results. The code also shows the instrumentation
added by GENMORPH to extract the method inputs and
outputs (lines 2 and 15). Listing 2] shows a JUnit test case for
pow generated by EVOSUITE. To collect correct test executions,
GENMORPH executes the JUnit test cases generated by
EVOSUITE with the instrumented pow method (without
mutations). To collect incorrect test executions, GENMORPH
executes the same JUnit test cases with the pow mutants
generated by MAJOR (which are also instrumented in the
same way). Listing |3| shows the data generated by the
instrumentation after executing the test case in Listing 2

2. Slightly simplified for clarity and readability

1

1

14

2 public void test100 ()

public static int pow(final int k,
GenMorph.savelInputValues (k, e)
if (e < 0) {

throw new NotPositiveException();

long e) {
// instrumentation

}

int result = 1;
int k2p = k;
while (e != 0) {
if ((e & 0x1) != 0) {

result x= k2p;
}
k2p *= k2p; // Mutation:
e >>= 1;

Remove line

}
GenMorph.saveOutputValues (result) //
return result;

instrumentation

}
Listing 1: Apache Commons Math - pow method (simplified)

@Test (timeout = 4000)

throws Throwable {

int int0 = ArithmeticUtils.pow(-128, 2);

}
Listing 2: Test input for pow generated by EVOSUITE

on the instrumented pow method. This is the format for
correct and incorrect test executions that GENMORPH uses.
Let us consider the input relation ((ky = ks) A (ef =
es—1)). Given the source input (k = —128, ¢ = 2) (Listing2),
the follow-up input is (k; = —128, ey = 1). Executing the
original pow (Listing [1) with these source and follow-up
inputs yields respectively the following (correct) outputs:

pow(—128,2) = 16384 pow(—128,1) = —128

Executing the faulty version generated with MAJOR (pow,)
with the same inputs yields the following outputs:

pow,, (—128,2) = —128 pow,,(—128,1) = —128

If we consider these correct and incorrect executions,
GENMORPH infers that the generated MR shown in Eq/l]
correctly classifies these executions. This MR identifies pow
as faulty since the input relation is satisfied, but the output
relation is violated. At the same time, the original pow
satisfies the MR.

Obviously, there are too few test executions used in this
example to capture the behavior of pow, so other (invalid)
MRs could also be inferred from the considered executions,
such as:

((ky = ks) A ey = es = 1)) = (pow(ky, ef) # pow(ks, es)) (2)

This MR is incorrect because it yields FPs when £ = O or k =
1. Consider the following input and output pair, generated
with the same mutant: pow,,(2,8) = 2 pow,,(2,7) = 8.
The invalid MR (Equation would pass, whereas our
example MR (EquationT) would correctly identify this faulty
execution.

This example shows that intermediate MRs might have
both FPs and FNs. That is why GENMORPH uses genetic

"systemId": "pow@original", "testId": "testl1l00"
"variables": { "inputs": { "k": -128.0, "e": 2.0},
"outputs": {"return": 16384.0} }

Listing 3: GenMorph (correct) execution by executing Listing

4

programming (GP) to improve candidate MRs until they
have no FPs and fewer FNs.

5 INPUT TRANSFORMATIONS

GENMORPH starts the generation of MRs from the input
relations. From a set of predefined transformation tem-
plates, GENMORPH selects a series of (metamorphic) input
transformations compatible with the given method under
test. For each selected transformation and source test input,
GENMORPH generates a follow-up test input. Furthermore,
it also generates a canonical input relation from each selected
transformation. Such input relation is the most strict interpre-
tation of the applied transformation: Given the values of the
source test inputs, there is only a single possible value of the
follow-up inputs that satisfies the canonical input relation.

These transformation templates are similar to what the
MR literature refers to as metamorphic relation input patterns
(MRIPs): An abstraction that characterizes the relations
among the source and follow-up inputs of a set of MRs [24].
Our templates, however, define not only the input relations,
but also the corresponding transformations from the source
to the follow-up inputs.

Currently, GENMORPH implements the following trans-
formation templates. We derived such templates by referring
to the recent study of Duque et al. [29] that reports MRs
commonly used in the literature (e.g., [31]], [32]).

PermuteParameters. It permutes two of the input parameters
of the method. It can be applied to any pair of method
parameters, as long as they have the same type. For example,
there is one possible instantiation for pow, in which the
follow-up for pow(k,e) is pow(e, k). In this example, the
canonical input relation would be: (ky = e;) A (ef = k).

BooleanFlip. It flips the value of a Boolean parameter from
true to false or vice versa. This transformation cannot be
applied to pow because both of its parameters are numeric.
Although the study of Duque et al. [29] does not mention
this relation, we add it to support input relations of Boolean
parameters.

NumericAddition(Number). It adds a constant number
(positive or negative) to a single numeric parameter. For
pow, we could apply NumericAddition (-1) to its second
parameter to generate the follow-up input pow(k,e — 1).
This is the transformation template used by GENMORPH to
generate the MR discussed in Section 4] The corresponding
canonical input relation would be: (kf = k) A (ef = es —1).

NumericMultiplication(Number). This transformation mul-
tiplies a single numeric parameter by a constant num-
ber (positive or negative). For pow, we can apply
NumericMultiplication(2) to its first parameter and
generate the follow-up input pow(k - 2,). The corresponding
input relation would be: (ky =k, - 2) A (ef = es).
SequenceRemove(Number). It removes a single element
from a Sequence parameter. The numeric parameter of this
template indicates the index to be removed, with negative
indices being allowed for backwards indexing (like Python
list indexing). If the index is out of bounds, this operation is a
no-op. This transformation cannot be applied to pow because
both of its parameters are numeric.

SequenceFlip. It inverts the order of the elements from a
Sequence parameter. This transformation cannot be applied
to pow because both of its parameters are numeric. Although
the study of Duque et al. [29] does not mention this relation
directly, it is conceptually similar to permuting parameters,
and has been applied in various MRs throughout the
literature.

Except for trivial functions (e.g., those that have a single
Boolean parameter), there are many possible applicable
input transformations to a given function (using the above
templates). Indeed, the parameterized transformation tem-
plates (i.e., NumericAddition and NumericMultiplication) have
a myriad of possible instantiations, as their parameter can be
any number.

Because of this, it is necessary to sample a meaningful set
of values for the parameterized transformation templates. To
this aim, GENMORPH collects a pool of constants, consisting
of the predefined values -1 and 1, plus all the constant values
appearing in the method under test. GENMORPH extracts the
constant values by instrumenting all the variable accesses
and literal expressions of the method under test. Then it
executes all the source inputs generated by EVOSUITE in Step
1, and identifies all the values logged by the instrumentation
that remain the same in all executions. Such constants are
likely to represent meaningful values for the method under
test that might lead to semantically meaningful MRs. GEN-
MORPH randomly samples the constant values to use with
parameterized transformations (prioritizing constants that
appeared more often).

6 GENERATION OF MRs

GENMORPH explores the space of possible MRs to find one
that accurately classifies correct and incorrect test executions.
Unfortunately, the space of possible MRs is enormous. As
such, GENMORPH employs GP [33] to guide the search.

Similarly to GASSERT [25], GENMORPH implements a
co-evolutionary algorithm that evolves two populations of
MRs in parallel, with three competing objectives: (i) min-
imizing the FPs, (ii) minimizing the FNs, (iii) minimizing
the size of the MR. Each population uses a different fitness
function. The fitness function used in the first population
(¢pp) rewards MRs with fewer FPs, while the function of
the second population (¢ry) those with fewer FNs. Both
populations consider the remaining two objectives only in tie
cases. Periodically, the two populations exchange their best
individuals to provide good genetic material to improve the
secondary objectives.

Fitness Functions. Let FP(MR) and FN(MR) denote the
false positive and false negative rate of an individual MR
(with respect to the given correct and incorrect executions),
and let |[MR| be the size of the MR (i.e., the number of
syntactic elements in its predicate). The multi-objective
fitness functions ¢rp and ¢py [25] are defined using the
concept of dominance (<) [34]:

Definition 4. FP-fitness (¢rp). Given two metamorphic rela-
tions M R; and M Ry, M Ry dominatespp M Ry (M R,
<rp M Ry) if any of the following conditions is satisfied:

- FP(MR,) < FP(MRo)
— FP(MR1) = FP(MR2), FN(MR1) < FN(M Rz2)
- FP(MR1) = FP(MRQ),FN(MR1) = FN(MRQ), |MR1|<‘MR2‘

Algorithm 1:
GENMORPH CO-EVOLUTIONARY ALGORITHM
input : R;: canonical input relation
correct £ and incorrect £~ test executions
output: MR a set of the best metamorphic relations
1 function MR-GENERATION
Popul®? «+— GET-INITIAL-RANDOM-POPULATION(R;)
Popul™ + GET-INITIAL-RANDOM-POPULATION(R;)
gen <0
repeat
gen < gen + 1
do in parallel
Popul" P« SELECT+REPRODUCE(Popul™”, ¢pp, gen)
Popul™«SELECT+REPRODUCE(Popul™, ¢ry, gen)

10 if gen % FREQ_MIGRATION = 0 then

1 add GET-BEST-MRS(Popul™, ¢py) to Popult™”
12 add GET-BEST-MRS(Popul'™, ¢rp) to Popul™
13 until time budget is expired

14 | return GET-BEST-MRS ({Popul™ U Popul™}, ¢rp)

© ® N U R W N

15 function SELECT-+-REPRODUCE

16 Popul < COMPUTE-FITNESS(Popul, ¢, £, E7)

17 Populygw < GET-BEST-MRS (Popul, ¢) // elitism

18 repeat

19 (MRp1, MRp2) <SELECT-PARENTS(Popul, ¢)

20 (MRo1, MRo2)4—CROSSOVER+MUTATION(MRy1, MRp2)
add (MR,1, MR2) to Populyew

21 until Populygw is full

22 | return Populyew

Definition 5. FN-fitness (¢py). Given two metamorphic
relations M R; and M Ry, M R; dominatespn M Ro
(MRy <pgn M Ry) if any of the following conditions is
satisfied:

- FN(MR;1) < FN(MR3)
— FN(MR1) = FN(MR2),FP(MR1) < FP(MR2)
- FN(MR1) = FN(MR3),FP(MR;) = FP(MR2),|MR1|<|M R2|

In tie cases, FP(M Ry)=FP(MR) and
FN(MR:)=FN(MR:), ¢rp and ¢py favor smaller MRs,
which are easier to understand.

Function MR-GENERATION of Algorithm |1| describes
our co-evolutionary approach. First, GENMORPH initializes
two distinct populations (Popul™” and Popul™) with MRs
composed of the given input relation (R;) and randomly
generated output relations (R,) (linesand. Then, until the
time budget is expired, GENMORPH evolves each population
in parallel (Function SELECT+REPRODUCE). PopulF P uses ¢rp
to select the individuals, while PopulF N uses ¢rn. Periodically,
the two populations exchange their best individuals (lines

to [12).

6.1

Function SELECT+REPRODUCE of Algorithm|I|describes how
each generation of GENMORPH evolves a population of MRs
(Popul into Populygw). First, it computes the fitness of each
(new) individual in the population (Line . This amounts
to counting the number of FPs, FNs, and computing the
size of the MRs. Second, GENMORPH initializes the new
population Populygw with the best individuals (elitism) to
ensure that they will not be lost (Line . Then, Function
SELECT+REPRODUCE applies Selection, Crossover, and Mu-
tation. The Selection step selects two parent individuals
(MRp1, MRy2) based on the given fitness function, ¢y for
Popul™ and ¢rp for Popul™ (Line . The Crossover step
combines the genetic materials (portions of MRs in our case)

Selection, Crossover, and Mutation

TABLE 1: Operators considered by GENMORPH

Operands Output Function

(number, number) number +, —, %, / (protected division)
(number) number ABS

(number, number) Boolean ==, #<,>,<,>
(number) sequence toStrin

(Boolean, Boolean) Boolean AND, OR, XOR, iff, implies
(Boolean) Boolean NOT

(sequence) number length, sum

(sequence) boolean ==,

(sequence) sequence flip

(sequence, number) sequence remove, truncate

of the selected individuals and produces two new MRs (off-
spring) (MR,1, MR2) (Line R0). Finally, the Mutation step
mutates (with a certain probability) the obtained offspring
(Line 0) and adds them to the new population. It repeats
these three steps until the new population is full.

6.1.1 Selection

GENMORPH implements two different selection criteria, and
chooses between them with a given probability.

Tournament Selection [35] runs two “tournaments” among
K random individuals. The winner of each tournament (the
one with the highest fitness) is selected as a parent. We chose
K = 2, as it mitigates the local optima problem [36].

Best-match Selection [25] is a selection criterion specific for
test oracles. It selects the first parent randomly and selects the
second parent with a higher probability if it maximizes the
collective number of covered correct and incorrect executions.

6.1.2 Crossover and Mutation

GENMORPH represents output relations as rooted binary
trees, where nodes can be operators, constant values, or
variables. Table [I| shows the operators supported by GEN-
MORPH. All numeric values are treated as real numbers
(with floating point, fixed precision representation), and the
numeric constants can have any real value in the range
[—100, 100]. On the other hand, true and false are Boolean
constants, and there are no sequence-type constants. As for
the variables, the output relation can contain any input or
output variable from the source or the follow-up inputs.

Crossover. GENMORPH relies on the classical tree-based
crossover [33]. It selects a random crossover point in the
output relations of each parent and creates two trees by
swapping the subtrees rooted at each point.

Mutation. GENMORPH relies on three tree-based mutation
operators (chosen randomly with a given prob.).

Node Mutation changes a single node in the tree [37].
Given a tree and one of its leaf nodes n, the new tree has
n replaced with a new node of the same type (generated
randomly).

Subtree Mutation replaces a subtree in the tree [37]. Given
a tree and one of its inner nodes n, it returns a new tree
obtained by substituting the subtree rooted at n with a
randomly generated subtree of the same type.

Constant Value Mutation changes the value of a numeric
constant node. It takes a tree as its only input, and returns a
new tree obtained by randomly selecting a numeric constant
node and adding a random number, chosen from {—A, A}.
Here, A should be small (we use 0.1 in our experiments) so
that the constant values change in small increments.

6.2 Constraints

GENMORPH constrains the generated MRs. If an individual
violates one or more of these constraints, it is dropped
immediately, without evaluating its fitness. Currently, the
output relations have a configurable complexity limit, which
is the maximum number of nodes that its tree can have, and
any individual which surpasses this limit will not be added
to the population.

Furthermore, we also implemented a “soft” constraint,
which is required for an individual to be considered for
the elite set or as the best individual, but not for being
added to the population. This constraint is that the output
relation must contain both the source and the follow-up
variables for at least one of the method outputs. This filters
out expressions that are not truly MRs, as MRs are supposed
to check the outputs from both the source and the follow-up
test cases. Although individuals that violate this constraint
are not MRs, they are allowed into the population because
they may contain useful genetic material.

Finally, we also added uniqueness constraints for elitism.
Specifically, an individual must satisfy two requirements to
be included in the elite population, on top of its fitness. First,
there must not be another individual with an identical output
relation already in the population. Second, there must not
be another individual with an identical set of FNs already
in the population. These constraints prevent semantically
equivalent individuals from taking multiple spots in the elite
population. Notably, the second constraint is needed because
simple mutations can easily bypass the first constraint and
generate semantically equivalent individuals. For instance:
ASSERTION may become (ASSERTION A true).

7 MR FILTERING

GENMORPH performs a final filtering process to avoid
reporting invalid MRs to the user. The validity of an MR is
determined by the lack of FPs after a 2-step filtering process.

The first step validates the MRs with new automatically-
generated test inputs unseen by the evolutionary algorithm.
We use the random test generator RANDOOP [3]] to generate
the new source inputs. Then, GENMORPH can simply gener-
ate the corresponding follow-up inputs using the template-
based input transformation corresponding with the input
relation of each MR.

For each MR under analysis, GENMORPH creates a JUnit
test suite with a test case for each source and follow-up input
pair generated with RANDOOP and the input transformation
for the MR. Listing [4] shows a JUnit test case generated for
the example MR shown in Eq. [1} Each failing test would be a
FP for the analyzed MR.

The second step relies on OASIs [20], [21], [22], an
oracle assessor designed to detect FPs and FNs in program
assertions. To detect FPs, it negates the assertion and creates a
new branch at the assertion point with the negated condition.
It then employs search-based test generation to find test cases
that cover that branch, which would represent FPs of the
assertion.

To adapt OASIs” functionality to MRs, we changed its
original implementation. Given an MR, OASIs creates a new
method that, similarly to Listing[4} has an if statement with
the input relation as its condition and an assert statement

1

@Test

public void testOfollowup () {
int k_s = -128, e_s = 2; // source input
int k_f = -128, e_f = 1; // follow-up input
int o_s = pow(k_s, e_s); // run source test input
int o_f = pow(k_£f, e_f); // run follow-up test input
if ((k_f == k_s) && (e_f == e_s - 1)) {//Ri is true

assertTrue(o_f == (o_s / k_s)); // check Ro

}
}

Listing 4: GENMORPH-generated executable MR of Eq. (1)

with the output relation as its body. However, unlike List-
ing 4} the generated method is not input specific, but takes
the source and follow-up inputs as parameters. This new
branch becomes the target of the search-based test generation
of OASIs. This enables the detection of FPs, as the inputs
that make the assert statement fail will need to satisfy the
input relation first.

Note that the filtering step ignores the FNs of MRs. As
discussed in Section [2 FNs are inevitable in MRs, while
ensuring absence of FPs is crucial to avoid false alarms.

8 EVALUATION

Our evaluation aims to answer three research questions

(RQs).

RQ1: Effectiveness Is GENMORPH effective at synthesizing
valid and useful metamorphic relations automatically?

RQ2: Test Case Oracle Enhancement How much does
GENMORPH increase the fault detection capability
of automatically generated test inputs and test case
oracles?

RQ3: AutoMR Comparison How do the results from GEN-
MORPH compare with those obtained by AUTOMR [18]?

RQ4: Filtering Is the filtering process of GENMORPH effec-
tive at detecting invalid metamorphic relations?

RQ1 focuses on the main objective of GENMORPH, which
is the generation of oracles that do not trigger false alarms
on the original code (valid oracles), while being effective at
exposing faults injected by mutation analysis (useful oracles).
To be effective, metamorphic oracles should also pass the
OASIs filter, which excludes metamorphic oracles for which
evidence of false alarms can be automatically generated.
RQ2 compares the fault detection capability of GENMORPH
with that of test generators that produce test cases with
assertions on the observed execution output for specific test
inputs (henceforth referred to as test case oracles). Similarly
to the regression oracles generated by GENMORPH, which
capture universal properties, these test case oracles can be
useful to expose faults in a regression testing context. RQ3
compares GENMORPH with AUTOMR [18], a state-of-the-art
MR generation tool that can generate polynomial MRs for
programs with numeric inputs and outputs. RQ4 focuses on
the usefulness of the the proposed filtering process, which
uses automated test generation to find evidence of false
positives and to filter out the corresponding metamorphic
oracles.

8.1

Experimental Subjects. We evaluated GENMORPH on three
different open-source Java libraries: (1) Apache Commons

Experimental Setup

7

Math 3 [38], (2) Apache Commons Lang 3 [39], and (3)
Google Guava 31 [40]. We randomly selected the methods
from the ones in the libraries that fulfill the following
criteria: (1) it contains at least 8 lines of code. The methods
we selected contain between 8 and 93 LOC; (2) it is a
static method (since GENMORPH does not currently con-
sider the this object state); (3) all the method parameters
are currently supported by GENMORPH. The supported
types include Java primitives (e.g., boolean, int) and
their corresponding wrappers (e.g., java.lang.Boolean,
java.lang.Integer), or types which we consider se-
quences in our implementation (arrays, java.lang.List
implementations, or java.lang.String); (4) it does not
use I/O or non-deterministic operations (e.g., reading/writ-
ing files, using random numbers). The 23 selected methods
span 13 different classes from the three different libraries.
The first four columns of Table E] show their library, name,
signature, LOC, # of mutants.

Setup. We now describe the evaluation setup for GEN-
MORPH.

Step 1) Source Input Generation. For each subject, we ran
EVOSUITE [2] (v. 1.1.0) to generate the source test inputs. We
configured EVOSUITE with the branch coverage criterion,
minimization enabled, and a time budget of 5 minutes.
We performed ten runs with different random seeds and
aggregated all the test cases to obtain a diverse and large set
of test inputs.

Step 2) Mutants Generation. For each subject, we ran
MAJOR [28] (v. 2.0.0) enabling all types of supported mutants.
We automatically filtered the mutants by mutated lines of
code, keeping only those that directly affect the method
under test.

Step 3) Input Transformation. In order to keep the MR
generation at a reasonable cost, we configure GENMORPH to
select four instantiations of our templates for each run.

Step 4) Collection of Program Executions. Since the cost
of evaluating the fitness of an MR grows linearly with the
number of correct and incorrect executions, we enforced
a limit of 9,000 unique correct and 9,000 unique incorrect
executions. If more are obtained, the executions are randomly
sampled.

Step 5) Generation of MRs. Table[3|shows the configuration
of Algorithm

For each subject method and strategy, we used a time
budget of 30 minutes and we generated four different MRs.
We repeated each run 12 times due to the stochasticity of the
approaches.

Step 6) Filtering MRs. For each subject, we ran RAN-
DOOP [3] (v. 4.3.0) with 12 different random seeds. In order
to limit the run-time of the experiments to a reasonable cost,
we sampled 100 RANDOOP test cases for each run. We ran
OASIs [20] multiple times (due to its stochastic nature) with
an overall budget of 10 minutes, giving each run a budget of
150 seconds. We stop OASIs when we find the first FP.

We ran the experiments on four VMs with a 6-core AMD
Zen 3.2 GHz CPU and 12 GB of RAM.

8.2 RQ1: Effectiveness

RQ1 evaluates the effectiveness of GENMORPH at synthesiz-
ing effective MRs using Mutation Score (MS) (i.e., the ratio of

8

TABLE 2: Evaluation results (average) (MS = Mutation Score, PZ = Ratio of MRs without FPs, PZO = Ratio of MRs without
FPs with OASIs, AMS = GENMORPH’s MS over mutants missed by RANDOOP [3] (AMSg), EVOSUITE [2] (AMSE) or

AUTOMR [18] (AMS 4)).

library method signature # mutants Randoop | Evosuite | AutoMR GENMORPH

MS MS MS MS AMSp AMSg AMS, PZ PZO
Math nextPrime int (int) 20 0.80 0.90 0.2810.78 0.75 0.46 0.72 0.70 0.97
Math isPrime bool (int) 25 0.52 0.92 0.2810.29 0.67 0.06 0.17 0.32 1.00
Math gcd int (int, int) 25 0.50 0.83 0.00 | 0.63 0.59 0.05 0.63 090 1.00
Math pow int (int, int) 10 0.70 1.00 0.00 | 0.69 0.00 - 0.69 0.78 1.00
Math stirling long (int, int) 46 0.28 0.56 0.00 |0.31 0.24 0.20 0.31 0.69 0.79
Math acos double (double) 76 0.93 0.50 0.00 | 0.09 0.02 0.08 0.09 0.05 0.71
Math logl0 double (double) 15 1.00 0.60 0.00 | 0.06 - 0.00 0.06 0.03 0.32
Math sin double (double) 26 0.71 0.73 0.410.60 0.00 0.00 036 0.70 0.97
Math sinh double (double) 123 0.89 0.41 0.23/0.21 0.00 0.10 0.20 0.25 0.55
Math tan double (double) 37 0.76 0.70 0.3210.38 0.00 0.01 0.25 0.56 0.79
Lang abbreviate string(string,string,int,int) 39 0.85 0.30 -1041 0.01 0.13 - 0.53 0.96
Lang capitalize string(string) 10 0.90 0.41 -10.28 0.00 0.00 - 013 1.00
Lang center string(string, int, string) 12 0.83 0.25 -10.53 0.00 0.28 - 064 094
Lang difference string(string, string) 6 0.67 0.36 -10.24 0.00 0.50 - 019 0.90
Lang isSorted bool (int[]) 11 0.90 0.37 -10.18 0.25 0.25 - 011 0.80
Guava indexOf int (bool[],bool[]) 12 1.00 1.00 -10.14 - - - 0.04 0.40
Guava join string(string,bool[]) 5 0.80 0.80 -10.13 0.00 0.00 - 0.06 1.00
Guava meanOf double (int[]) 12 0.96 1.00 -10.83 0.00 - - 0.88 1.00
Guava min int (int[]) 9 0.89 0.89 -10.55 0.00 0.00 - 047 0.74
Guava padStart string(string,int,char) 7 0.86 0.83 -10.64 0.00 0.16 - 035 0.85
Guava repeat string(string, int) 18 0.94 0.81 -10.86 0.00 0.69 - 0.67 097
Guava sort void (bytel[],int, int) 8 0.95 0.88 -10.58 0.00 0.00 - 051 0.83
Guava truncate string(string, int, string) 10 1.00 0.78 -10.28 - 0.18 - 023 0.80

killed mutants). For each MR returned by Step 5, we ran the
2-step filtering process (RANDOOP, and OASIS, see Section[7).
If the filtering process did not find FPs, we passed each of
the 12 test suites derived from the RANDOOP test inputs and
the generated MR to PIT [41] (v. 1.7.4) for computing the MS.
This results in 12 different MS measures for each MR. If the
2-step filtering process found FPs, we considered the MS to
be zero. Note that during MR generation, GENMORPH relies
on completely separate tools (i.e., EVOSUITE and MAJOR)
to obtain the incorrect executions. In the empirical study,
using different test inputs and mutants to compute the MS is
important to properly separate the training phase from the
evaluation phase.

Table [2|shows the average MS (Mutation Score) obtained
with the MRs generated by GENMORPH for each subject
method. Such average MS ranges between 6% and 86%.
Furthermore, GENMORPH achieves an average MS higher
than 20% in 18 out of the 23 methods and higher than 50% in
10 out of the 23 methods. Since the MRs generated by GEN-
MORPH are reusable properties of the methods that can be
integrated into any existing test suite, or even implemented
as runtime checks, we consider an MS of 20% to be effective
enough, and 50% to be very effective.

Table] shows that the PZ (ratio of MRs without FPs)
ranges between 3% and 90%. For 15 out of the 23 methods, PZ
was no less than 25%, which indicates that at least one valid
MR is generated on average in a single run of GENMORPH
with our configuration. Generally, all the methods where
GENMORPH achieves a low MS are explained by a similarly

TABLE 3: Configuration Parameters of Algorithm

Value

30 | prob. of crossover 90%
max correct executions 9,000 | prob. of mutation 30%
max incorrect executions 9,000 | frequency of migration (every X gen) 10
bound on the size of R, 16 |number of individuals for elitism 10
size of each of the populations 1,000 |number of individuals to migrate 160

Parameter Description Value | Parameter Description

time budget (minutes)

low PZ, which might indicate that the dataset of correct test
executions used for generating MRs for those methods was
not comprehensive enough.

RQ1 - In summary: GENMORPH generated valid and
effective MRs for the majority of the subject methods.

8.3 RQ2: Test Case Oracle Enhancement

RQ2 evaluates the degree to which the generated MRs can
improve the fault detection capability of test inputs and
test case oracles generated by RANDOOP and EVOSUITE. To
achieve this, we ran RANDOOP and EVOSUITE 12 times with
assertions enabled, using the same configuration we used to
generate test suites for the MRs with RANDOOP. Columns
RANDOOP MS and EVOSUITE MS in Table 2 show the
mean mutation score (MS) obtained by the RANDOOP and
EVOSUITE test suites.

Automated test generators like RANDOOP produce test
case oracles that capture the observed behavior of the
generated test inputs to expose regression faults as the
software evolves. However, test case oracles only capture
the expected behavior for a specific input. Differently, MRs
represent universal invariants that can be used to enhance
any test suite.

We can notice that the MS values in Table [2| are often
comparable, with a tendency of test case assertions to achieve
higher MS values. However, the MS values of RANDOOP
and EVOSUITE are obtained by substantially different types
of oracles w.r.t. GENMORPH, the former being test case
assertions that predicate on single executions, and the latter
metamorphic relations that hold for all program executions.
To assess the degree of complementarity of these different
types of oracles, we considered the mutants missed by
RANDOOP or EVOSUITE and checked whether they are killed
by GENMORPH.

Specifically, we automatically enhanced the test suites
generated by RANDOOP and EVOSUITE by adding all the
MRs generated by GENMORPH. Each MR takes a source
input produced by the test generation tools, generates
the corresponding follow-up test input, and checks if the
output relation is satisfied. In Table 2} columns GENMORPH
AMSpr and GENMORPH AMSg show the percentage of
the survived mutants (i.e., those not killed by RANDOOP
or EVOSUITE test inputs and oracles) that are killed by
the enhanced test suite. We can notice that GENMORPH’s
MRs are highly complementary to the test case assertions
generated by RANDOOP and EVOSUITE, as respectively in
7 out of 23 and in 14 out of 23 cases the inclusion of
GENMORPH’s MRs produce a mutation score improvement
(AMS > 0).

Let us consider a few examples. For nextPrime, RAN-
DOOP test suites alone kill 80% of the mutants. When this test
suite is enhanced with the MRs generated by GENMORPH,
the mutation score is 95%, which means that the enhanced
test suites kill 75% of the remaining mutants, i.e., AMSR =
75% = (28020).

The results show a great improvement of the RANDOOP
MS for nextPrime, isPrime and gcd (AMSg between
59% and 75%), as well as a significant improvement for
stirlings and isSorted (AMSg of 24% and 25%) and a
small improvement for acos and abbreviate (AMSg of
2% and 1%). Although the MRs do not kill any additional mu-
tants for the remaining methods, RANDOOP’s MS is already
100% for 10g10, indexOf and truncate, so improvement
is not possible for those methods.

As for EVOSUITE, the results show a great improvement
for the nextPrime, difference and repeat methods
(AMSE of 46%, 50% and 69%, respectively), as well as a
significant improvement for seven other methods (AMSg
between 10% and 28%) and a small improvement for four
other methods (AMSg between 1% and 8%). EVOSUITE’s MS
is 100% for pow, indexOf and meanOf, making it impossible
any improvement in those methods.

RQ2 - In summary: GENMORPH generated MRs that
enhance the fault detection capability of both RANDOOP
and EVOSUITE-generated regression test inputs. This
shows the complementarity between GENMORPH’s MRs
and RANDOOP and EVOSUITE's test case assertions.

8.4 RQ3: AutoMR Comparison

RQ3 compares GENMORPH with the AUTOMR [18] numeric
MR generation tool.

AUTOMR [18] is based on MRI [19], a search-based
approach to automatically generate polynomial MRs. MRI
supports MRs in which the input relation is a linear function,
and the output relation is either linear or quadratic. MRI
calculates the optimal coefficients of the linear and quadratic
equations using particle swarm optimization [42].

MRI uses 1,000 randomly-generated test inputs to filter
the MRs that fail for a non-negligible percentage of those
inputs. AUTOMR [18] addresses several limitations of MRI:
MRI does not support MRs with (i) inequality, (ii) more than
one input, and (iii) relations of higher degrees than quadratic.

Like MRI, AUTOMR uses particle swarm optimization
to search for the MR parameters. Similar to GENMORPH,

9

AUTOMR generates MRs as pairs of input and output
relations, although the latter defines both as arbitrary-degree
polynomial relations, and parameterizes both within the
same search process. Since AUTOMR is an improvement of
the approach used by MRI, we compare the effectiveness of
GENMORPH against AUTOMR only.

We employ the code implemented by the AUTOMR
authoreﬂ in our evaluation. Since this tool is implemented
in Python, we implemented a remote function call protoco]ﬁ]
in order to allow this tool to call the experimental subjects,
which are Java methods. Since AUTOMR calls the subject
methods during the search (whereas GENMORPH calls them
before) and the remote function call protocol introduces
some additional overhead, we did not implement a fixed
time budget as with GENMORPH, but instead employed the
same configuration used by the AUTOMR authors: 3 PSO
runs with maximum iterations of 350 for each experiment.

AUTOMR has several additional parameters to select for
the generated MR, namely: (1) Number of inputs involved,
(2) mode of input relation (equality, greater-than, less-than),
(3) mode of output relation, (4) degree of input relation
(linear, quadratic, etc.), and (5) degree of output relation. We
employ the 13 different parameterizations that were defined
in the settings from the AUTOMR codebase, and also left
other configurations unchanged. Same as for GENMORPH,
we repeated each run 12 times with different random seeds
due to the stochasticity of AUTOMR.

As for the experimental subjects, we ran AUTOMR on the
10 methods from the Apache Commons Math 3 library. The
reason why we evaluated only these methods is that they are
purely numeric and contain no variable-length parameters, as
it is unclear how AUTOMR would be applied to methods that
do not fulfill this criteria. In order to convert these subject
methods to purely numeric ones, Boolean values (output
of the isPrime method) were converted to 0 (false) and 1
(true), and Java Exceptions were converted to 0 outputs.

To evaluate the MRs generated by AUTOMR, we per-
formed the same PIT runs that we used for GENMORPH,
with the same seed inputs. In order to avoid potential
implementation issues with the MR evaluation, the AUTOMR
test suites employed a remote protocol to compute the
verdicts in Python, where code derived from AUTOMR was
used to provide a pass or fail result. Our verdict function
employs the same formulas used by AUTOMR for evaluating
the output relations:

Routput : | Bv| < 0.05 (AutoMR equality OR)

(AutoMR greater-than OR)
(AutoMR less-than OR)

]Routput :Bv > O
Routput :Bv <0

Column AUTOMR MS of Tablelshows that GENMORPH
achieves a higher mutation score in 9 out of the 10 subject
methods for which AUTOMR was run. Furthermore, the dif-
ference in the method where GENMORPH was outperformed
(sinh) is very small, with MSs of 21% for GENMORPH and
23% for AUTOMR. Note that AUTOMR produced no output
for 5 out of the 10 subject methods, as all the generated MRs

3. https:/ / github.com /bolzzzz/ AutoMR
4. https:/ / github.com/jonayerdi/JavaPythonBridge

https://github.com/bolzzzz/AutoMR
https://github.com/jonayerdi/JavaPythonBridge

were filtered out during the final redundant MR removal
phase, hence the 0.00 values in the AUTOMR MS column.

Column GENMORPH AMS 4 shows the percentage of
the survived mutants (i.e., those not killed by AUTOMR MRs)
that are killed by GENMORPH MRs. These results show that
GENMORPH MRs could identify several additional mutants
that could not be detected with AUTOMR in all the subject
methods, with AMS4 values ranging between 17% and 72%
for the subject methods where both tools produced effective
MRs.

RQ3 - In summary: GENMORPH generated MRs that
achieved a higher mutation score than those generated
by AUTOMR for 9 out of 10 subject methods. The MRs
generated by GENMORPH kill more mutants than the
MRs generated by AUTOMR in all subject methods.

8.5 RQ4: Filtering

RQ4 evaluates the effectiveness of the filtering process in
detecting invalid MRs.

Table [2|shows that the PZ values are not greater than 86%
for any of the methods, so at least 14% of the generated MRs
are always filtered. In fact, more than 50% of the MRs are
filtered in 13 out of 23 methods. On the one hand, we observe
that the PZ is particularly low in methods involving boolean
inputs or outputs. This might indicate that methods with
boolean inputs or outputs can hold properties that seem valid
for a large variety of inputs, but do not actually generalize
for all possible inputs. Furthermore, since booleans only have
two possible values, GENMORPH may generate more specific
output relations, which are more prone to FPs. On the other
hand, we also noticed that the filtering process eliminated
most MRs for the acos and 10g10 methods, which involve
floating-point arithmetic. A possible reason could be that
floating-point arithmetic has special values such as NaN or
Infinity, which may invalidate some MRs which would be
valid for the cases where all inputs and outputs are finite
values.

To provide more insights on the contribution of OASIs
for identifying invalid MRs, Table 2] also shows the PZO

metric, the ratio of MRs for which OASIs does not find FPs.

Note that only the MRs which yield no FPs with all the
Randoop-generated test inputs are passed to OASIs, hence
PZO is a ratio calculated over the MRs which already passed
the Randoop filter. The results shows that OASIs can identify
additional FPs not found by Randoop in 17 of the 23 subject
methods. For 10910, sinh and index0f, OASIs identified
FPs in more than 40% of the MRs that passed the Randoop
filter, indicating that Randoop regression test suites alone
may be insufficient to discard invalid MRs in some cases.

RQ4 - In summary: GENMORPH’s filtering process is
effective in filtering MRs that do not generalize well
on unseen inputs, and OASIs can successfully identify
invalid MRs that are not identified with Randoop alone.

8.6 Threats to Validity

External validity. An external threat in our evaluation
relates to the generalization of the results. We mitigated this
threat by selecting 23 diverse functions from three different

10

codebases. Moreover, we evaluated GENMORPH with unseen
test inputs and seeded faults generated with different tools
from the ones used to generate the MRs.

Internal validity. Internal validity threats arise from errors
in the measurements or the implementation of GENMORPH.
We mitigate this threat by manually inspecting the output
and internal behavior of GENMORPH for a few sample runs.
Conclusion validity. The approach and evaluation methods
are inherently stochastic. To account for this, we ran each
technique 12 times and evaluated each generated MR with
12 different test suites, resulting in 12 x 12 = 144 samples.

9 RELATED WORK

Automatic test generation. Test generators are often meant
for regression testing scenarios, and therefore capture the
implemented behavior of the software under test in order
to expose new faults as the software evolves [2], [3], [11],
[43]. Similarly, GENMORPH also captures the implemented
behavior of the system. In fact, GENMORPH’s FN-based
guidance is effectively very similar to the mutation-guided
assertion generation used by Evosuite [2], since the states
used to compute FNs in GENMORPH are obtained with mu-
tation testing. Unlike test generators, however, GENMORPH
produces universal properties of the system (MRs) that can
be tested for any input, instead of input-specific assertions.

Metamorphic Testing. Most metamorphic testing approaches
assume the availability of MRs [[10]. For instance, much work
has been done to predict whether an MR picked from a
predefined list is suitable for a given program (e.g., [29], [44],
[45], [46], [47], [48], [49]). Differently, GENMORPH aims to
automatically generate new MRs for a given program, which
remains a less studied problem [9], [10], [50]. We now discuss
the most related work to the generation of new MRs.

ML-based approaches. Researchers investigated the use of
machine-learning to predict whether specific types of
MRs [51]] hold for a given method [46], [52], [53]. These
approaches only predict whether pre-defined types of MRs
hold for a method. Developers are expected to derive
an executable MR using this information [52]]. Conversely,
GENMORPH automatically generates executable MRs.

NLP-based approaches. MEMO [54] automatically derives
equivalence MRs from the JavaDoc. The quality of derived
MRs, by design, strictly depend on the completeness and
correctness of the available documentation. Differently, GEN-
MORPH does not rely on documentation and it is not limited
to MRs expressed as equivalences.

Search-based approaches. MRI [19] and AUTOMR [18] are
search-based approaches which employ particle-swarm opti-
mization [42] to parameterize polynomial input and output
relations.

Same as GENMORPH, MRI and AUTOMR use search-
based algorithms to generate MRs for numerical programs.
However, the fithess functions of MRI and AUTOMR take
into account only the number of FPs. GENMORPH’s fitness
functions also consider the number of FNs, which is crucial
to obtain MRs that are effective at exposing software faults.
Moreover, GENMORPH is not limited to polynomial MRs, but
can also operate on logical predicates and ordered sequences.
We have conducted a comparison between AUTOMR and

GENMORPH with numerical subject methods only, since non-
numeric functions are not supported by AUTOMR.

GASSERT [25] and EVOSPEX [26] generate oracles with
evolutionary algorithms driven by both FPs and FNs.
However, they target program assertions and invariants,
respectively, and they cannot be easily adapted to target
MRs. Moreover, their representation of FPs and FNs is
ill-suited for MRs as discussed in Section 2. Ayerdi et al.
proposed GASSERTMRS [55], which adapts GASSERT [25],
[56] for generating MRs for CPS, considering, in particular,
an industrial system of elevators as case study. However,
GASSERTMRS supports domain-specific, system-level MRs
that relate configuration variables for system level test
scenarios (e.g., the number of elevators or passengers in
each floor) with system level quality metrics (e.g., average
waiting time). On the contrary, GENMORPH operates at the
unit level and generates MRs that predicate on local variables
of the method under test.

10 CONCLUSIONS AND FUTURE WORK

This paper presented GENMORPH, the first generator of
metamorphic relations capable of minimizing at the same
time the false positive rate (associated with false alarms)
and the false negative rate (associated with missed faults). It
includes a filtering phase that further eliminates MR oracles
prone to residual false positives.

Our empirical results show that our evolutionary ap-
proach generates useful and non-trivial MRs, which can
expose faults simulated by mutants in the majority of the
analyzed subjects. The metamorphic oracle produced by
GENMORPH has been shown to be highly complementary
to the test case assertions automatically generated by test
generators like RANDOOP and EVOSUITE. In fact, when the
MRs generated by GENMORPH are added to RANDOOP
and EVOSUITE's test cases, they increase the fault detection
capability of the latter tools by a substantial amount. We
have also evaluated the usefulness of the filtering phase,
showing in particular that the oracle validator OASIs gives
a fundamental contribution to the elimination of candidate
oracles that trigger false alarms.

Future works aim at increasing the effectiveness and
applicability of GENMORPH. We discuss the most promising
ones.

Extending GENMORPH to handle complex types. While
the general design of GENMORPH allows for arbitrarily
complex expressions and type systems, our current imple-
mentation for Java methods only supports Boolean, numeric
and ordered-sequence types for variables and operations.
More research is needed to support complex types (e.g. user-
defined classes) and their operations in the generated MRs.

Improving MRs readability. We found that several MRs
generated by GENMORPH could be simplified to increase
their readability. For example, by removing tautologies,
reordering the variables, or replacing sub-expressions with
equivalent but shorter ones. An important future work
is to investigate post-processing analyses to simplify the
generated MRs.

11
ACKNOWLEDGMENTS

This work was partially founded by the Basque Government
through their Elkartek program (EGIA project, ref. KK-
2022/00119). Jon Ayerdi and Aitor Arrieta are part of
the Software and Systems Engineering research group of
Mondragon Unibertsitatea (IT1519-22), supported by the
Department of Education, Universities and Research of
the Basque Country. This work was partially supported
by the H2020 project PRECRIME, funded under the ERC
Advanced Grant 2017 Program (ERC Grant Agreement n.
787703). Gunel Jahangirova has been partially supported
by the UKRI Trustworthy Autonomous Systems Node in
Verifiability, Grant Award Reference EP/V026801/2.

REFERENCES

[1] E.T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE transactions on
software engineering, vol. 41, no. 5, pp. 507-525, 2014.

[2] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation
for object-oriented software,” in Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering, 2011, pp. 416-419.

[3] C.Pacheco,S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in 29th International Conference on Software
Engineering (ICSE’07). 1EEE, 2007, pp. 75-84.

[4] S. Lukasczyk, F. Kroif3, and G. Fraser, “Automated unit test
generation for python,” in International Symposium on Search Based
Software Engineering. Springer, 2020, pp. 9-24.

[5] P.McMinn, “Search-based software test data generation: a survey,”
Software testing, Verification and reliability, vol. 14, no. 2, pp. 105-156,
2004.

[6] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case
generation as a many-objective optimisation problem with dynamic
selection of the targets,” IEEE Transactions on Software Engineering,
vol. 44, no. 2, pp. 122-158, 2017.

[7] M.Harman, P. McMinn, M. Shahbaz, and S. Yoo, “A comprehensive
survey of trends in oracles for software testing,” University of
Sheffield, Department of Computer Science, Tech. Rep. C5-13-01, 2013.

[8] T.Y. Chen,S. C. Cheung, and S. M. Yiu, “Metamorphic testing:
A new approach for generating next test cases,” Technical Report
HKUST-CS98-01, Department of Computer Science, The Hong
Kong University of Science and Technology, Tech. Rep., 1998.

[9] T.Y.Chen, E-C. Kuo, H. Liu, P-L. Poon, D. Towey, T. H. Tse, and

Z. Q. Zhou, “Metamorphic testing: A review of challenges and

opportunities,” ACM Computing Surveys, vol. 51, no. 1, pp. 4:1-4:27,

Jan. 2018.

S. Segura, G. Fraser, A. Sanchez, and A. Ruiz-Cortés, “A survey

on metamorphic testing,” IEEE Transactions on Software Engineering,

vol. 42, no. 9, pp. 805-824, Sept 2016.

S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and

A. Arcuri, “Do automatically generated unit tests find real faults?

an empirical study of effectiveness and challenges,” in Proceedings

of the 30th IEEE/ACM International Conference on Automated Software

Engineering, ser. ASE "15. 1EEE Press, 2015, p. 201-211. [Online].

Available: https://doi.org/10.1109/ASE.2015.86

T. Y. Chen and T. Tse, “New visions on metamorphic testing after

a quarter of a century of inception,” in Proceedings of the 29th

ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, 2021, pp. 1487-

1490.

J. Ahlgren, M. E. Berezin, K. Bojarczuk, E. Dulskyte, I. Dvortsova,

J. George, N. Gucevska, M. Harman, M. Lomeli, E. Meijer et al.,

“Testing web enabled simulation at scale using metamorphic

testing,” in Proceedings of the 43rd International Conference on Software

Engineering, 2021.

Google, “graphicsfuzz,” https://github.com/google/graphicsfuzz,

2022.

[10]

(1]

[12]

[13]

[14]
[15] D.C.Jarman, Z. Q. Zhou, and T. Y. Chen, “Metamorphic testing for
adobe data analytics software,” in 2017 IEEE/ACM 2nd International
Workshop on Metamorphic Testing (MET), May 2017, pp. 21-27.

https://doi.org/10.1109/ASE.2015.86
https://github.com/google/graphicsfuzz

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

M. Lindvall, D. Ganesan, R. Ardal, and R. Wiegand, “Metamorphic
model-based testing applied on nasa dat — an experience report,” in
Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International
Conference on, vol. 2, May 2015, pp. 129-138.

T. Y. Chen, “Metamorphic testing: A simple approach to alleviate
the oracle problem,” in Fifth IEEE International Symposium on Service
Oriented System Engineering (SOSE), 2010, June 2010, pp. 1-2.

B. Zhang, H. Zhang, J. Chen, D. Hao, and P. Moscato, “Automatic
discovery and cleansing of numerical metamorphic relations,” in
2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2019, pp. 235-245.

J. Zhang,]J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, and
H. Mei, “Search-based inference of polynomial metamorphic
relations,” in Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE '14. New
York, NY, USA: ACM, 2014, pp. 701-712. [Online]. Available:
http://doi.acm.org/10.1145/2642937.2642994

G. Jahangirova, D. Clark, M. Harman, and P. Tonella, “Test
oracle assessment and improvement,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ISSTA 2016,
Saarbriicken, Germany, July 18-20, 2016. ACM, 2016, pp. 247-258.
G. Jahangirova, D. Clark, M. Harman, and P. Tonella, “An empirical
validation of oracle improvement,” IEEE Transactions on Software
Engineering, 2019.

G. Jahangirova, D. Clark, M. Harman, and P. Tonella, “Oasis: oracle
assessment and improvement tool,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018, F. Tip and
E. Bodden, Eds. ACM, 2018, pp. 368-371.

J. Ayerdi, V. Terragni, G. Jahangirova, A. Arrieta, and P. Tonella,
“Replication package,” https://doi.org/10.5281/zenodo.10067096,
2023, last access: Nov 2023.

Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey, “Metamorphic
relations for enhancing system understanding and use,” IEEE
Transactions on Software Engineering, 2018. [Online]. Available:
https://doi.org/10.1109/TSE.2018.2876433

V. Terragni, G. Jahangirova, P. Tonella, and M. Pezz¢, “Evolutionary
improvement of assertion oracles,” in ESEC/FSE '20: 28th ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Virtual Event, USA, November
8-13,2020. ACM, 2020, pp. 1178-1189.

F. Molina, P. Ponzio, N. Aguirre, and M. Frias, “Evospex: An
evolutionary algorithm for learning postconditions,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 1223-1235.

G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE
Transactions on Software Engineering, vol. 39, no. 2, pp. 276-291,
2012.

R. Just, “The major mutation framework: Efficient and scalable
mutation analysis for java,” in Proceedings of the 2014 international
symposium on software testing and analysis, 2014, pp. 433—-436.

A. Duque-Torres, D. Pfahl, R. Ramler, and C. Klammer, “A
replication study on predicting metamorphic relations at unit
testing level,” in 2022 IEEE 29th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2022, pp.
698-708.

Apache, “Apache Commons Math - pow method,”
https://commons.apache.org/proper/commons-math/javadocs/
api-3.6.1/org/apache/commons/math3/util/ ArithmeticUtils.
html#pow (int, %20int), 2023.

U. Kanewala and J. M. Bieman, “Using machine learning techniques
to detect metamorphic relations for programs without test oracles,”
in 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE). 1EEE, 2013, pp. 1-10.

U. Kanewala, “Techniques for automatic detection of metamorphic
relations,” in 2014 IEEE Seventh International Conference on Software
Testing, Verification and Validation Workshops. 1EEE, 2014, pp. 237-
238.

J. R. Koza and J. R. Koza, Genetic Programming: On the Programming
of Computers by Means of Natural Selection. MIT press, 1992, vol. 1.
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182-197, 2002.

B. L. Miller, B. L. Miller, D. E. Goldberg, and D. E. Goldberg,
“Genetic algorithms, tournament selection, and the effects of noise,”
Complex Systems, vol. 9, no. 3, pp. 193-212, 1995.

[36]

(37]

[38]
[39]

[40]
[41]

[42]

[43]

(44]

(45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

[53]

[54]

[55]

[56]

12

D. Whitley, “A Genetic Algorithm Tutorial,” Statistics and Comput-
ing, vol. 4, no. 2, pp. 65-85, 1994.

M. E Brameier and W. Banzhaf, “A comparison with tree-based
genetic programming,” Linear Genetic Programming, pp. 173192,
2007.

Apache, “Apache Commons Math,” https://commons.apache.org/
proper/commons-math/, 2022.

, “Apache Commons Lang,” https://commons.apache.org/
proper/commons-lang/| 2022.

Google, “Google Guava,” https://guava.dev/| 2022.

H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque,
“Pit: a practical mutation testing tool for java,” in Proceedings of the
25th international symposium on software testing and analysis, 2016, pp.
449-452.

R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”
Swarm intelligence, vol. 1, no. 1, pp. 33-57, 2007.

W. Jin, A. Orso, and T. Xie, “Automated behavioral regression
testing,” in 2010 Third international conference on software testing,
verification and validation. 1EEE, 2010, pp. 137-146.

B. Hardin and U. Kanewala, “Using semi-supervised learning
for predicting metamorphic relations,” in 2018 IEEE/ACM 3rd
International Workshop on Metamorphic Testing (MET). 1EEE, 2018,
pp- 14-17.

K. Rahman and U. Kanewala, “Predicting metamorphic relations
for matrix calculation programs,” in 2018 IEEE/ACM 3rd Interna-
tional Workshop on Metamorphic Testing (MET). IEEE, 2018, pp.
10-13.

P. Zhang, X. Zhou, P. Pelliccione, and H. Leung, “Rbf-mlmr: A
multi-label metamorphic relation prediction approach using rbf
neural network,” IEEE access, vol. 5, pp. 21791-21 805, 2017.

K. Rahman, I. Kahanda, and U. Kanewala, “Mrpredt: Using text
mining for metamorphic relation prediction,” in Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering
Workshops, 2020, pp. 420-424.

A. Dwarakanath, M. Ahuja, S. Sikand, R. M. Rao, R.]J. C. Bose,
N. Dubash, and S. Podder, “Identifying implementation bugs
in machine learning based image classifiers using metamorphic
testing,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2018, pp. 118-128.

A. Nair, K. Meinke, and S. Eldh, “Leveraging mutants for automatic
prediction of metamorphic relations using machine learning,” in
Proceedings of the 3rd ACM SIGSOFT International Workshop on
Machine Learning Techniques for Software Quality Evaluation, 2019, pp.
1-6.

Z. Hui and S. Huang, “Achievements and challenges of meta-
morphic testing,” in Fourth World Congress on Software Engineering
(WCSE), 2013, Dec 2013, pp. 73-77.

C. Murphy, G. E. Kaiser, and L. Hu, “Properties of machine learning
applications for use in metamorphic testing,” 2008.

U. Kanewala and J. M. Bieman, “Using machine learning tech-
niques to detect metamorphic relations for programs without test
oracles,” in IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE), 2013, Nov 2013, pp. 1-10.

U. Kanewala,]. M. Bieman, and A. Ben-Hur, “Predicting
metamorphic relations for testing scientific software: a machine
learning approach using graph kernels,” Software Testing,
Verification and Reliability, 2015. [Online]. Available: http:
/ /dx.doi.org/10.1002/stvr.1594

A. Blasi, A. Gorla, M. D. Ernst, M. Pezze, and A. Carzaniga,
“Memo: Automatically identifying metamorphic relations in javadoc
comments for test automation,” J. Syst. Softw., vol. 181, p. 111041,
2021.

J. Ayerdi, V. Terragni, A. Arrieta, P. Tonella, G. Sagardui, and
M. Arratibel, “Generating metamorphic relations for cyber-physical
systems with genetic programming: An industrial case study,” in
Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 1264-1274. [Online]. Available:
https:/ /doi.org/10.1145/3468264.3473920

V. Terragni, G. Jahangirova, P. Tonella, and M. Pezze, “Gassert: A
fully automated tool to improve assertion oracles,” in Proceedings of
the 43nd IEEE/ACM International Conference on Software Engineering,
Demonstration Track ICSE-DEMO 2021, Virtual Event, Spain, 24 May —
1 June, 2021 (to appear), 2021.

http://doi.acm.org/10.1145/2642937.2642994
https://doi.org/10.5281/zenodo.10067096
https://doi.org/10.1109/TSE.2018.2876433
https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/util/ ArithmeticUtils.html#pow(int,%20int)
https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/util/ ArithmeticUtils.html#pow(int,%20int)
https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/util/ ArithmeticUtils.html#pow(int,%20int)
 https://commons.apache.org/proper/commons-math/
 https://commons.apache.org/proper/commons-math/
 https://commons.apache.org/proper/commons-lang/
 https://commons.apache.org/proper/commons-lang/
 https://guava.dev/
http://dx.doi.org/10.1002/stvr.1594
http://dx.doi.org/10.1002/stvr.1594
https://doi.org/10.1145/3468264.3473920

	Introduction
	Problem Formulation
	GenMorph
	Running Example
	Input Transformations
	Generation of MRs
	Selection, Crossover, and Mutation
	Selection
	Crossover and Mutation

	Constraints

	MR filtering
	Evaluation
	Experimental Setup
	RQ1: Effectiveness
	RQ2: Test Case Oracle Enhancement
	RQ3: AutoMR Comparison
	RQ4: Filtering
	Threats to Validity

	Related Work
	Conclusions and Future Work
	References

