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ABSTRACT

One of the major challenges in the verification of complex industrial
Cyber-Physical Systems is the difficulty of determining whether
a particular system output or behaviour is correct or not, the so-
called test oracle problem. Metamorphic testing alleviates the oracle
problem by reasoning on the relations that are expected to hold
among multiple executions of the system under test, which are
known asMetamorphic Relations (MRs). However, the development
of effective MRs is often challenging and requires the involvement
of domain experts. In this paper, we present a case study aiming at
automating this process. To this end, we implementedGAssertMRs,
a tool to automatically generate MRs with genetic programming.
We assess the cost-effectiveness of this tool in the context of an
industrial case study from the elevation domain. Our experimental
results show that in most casesGAssertMRs outperforms the other
baselines, including manually generated MRs developed with the
help of domain experts. We then describe the lessons learned from
our experiments and we outline the future work for the adoption
of this technique by industrial practitioners.

CCS CONCEPTS

• Computer systems organization → Embedded software; •
Theory of computation → Assertions; • Software and its en-

gineering → Software testing and debugging; • Computing

methodologies→ Genetic programming.
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1 INTRODUCTION

Cyber-Physical Systems (CPSs) are complex systems that integrate
both physical and software components [3, 8, 25]. While the con-
troller of a CPS may run discrete software, the physical layer is
composed of parallel physical processes running in continuous
time. These types of system are found in many domains, such as
aerospace, automotive, healthcare and consumer appliances [23].

The problem of determining whether a test outcome is correct
or not is known as the oracle problem [10]. The complexity of CPSs
and their requirements, combined with the uncertainty of their
interactions with the physical world (environmental conditions,
user behaviour, etc.), makes the definition of effective test oracles
especially challenging [22].

An example of complex CPSs is the traffic manager of a system
of elevators developed by Orona [30], one of the leading elevators
companies in Europe. Elevator installations are CPSs that must
satisfy vertical transportation demands while complying with spe-
cific customer requirements and providing the best possible user
experience. The compliance with these requirements can be deter-
mined by several Quality of Service (QoS) metrics that are measured
during the system’s operation. For instance, the Average Waiting
Time (AWT) for the passengers is known to be one of the most
important factors related with user satisfaction [9]. This type of
systems needs to pass a thorough verification and validation pro-
cess in order to ensure its compliance with both functional and
non-functional requirements, which involves the intervention of
domain experts at many points of the process. Unfortunately, it is
often difficult to determine the exact QoS measure that should be
expected from a test because the test executions are highly dynamic
and sensitive to the timing of physical events (e.g., pressing the
elevator call buttons) and communications between components.

Metamorphic testing [14, 35] alleviates the oracle problem by
checking whether multiple test executions fulfill certain necessary
properties called Metamorphic Relations (MRs) [14]. More specifi-
cally, instead of verifying the correctness of each individual execu-
tion of the program under test, metamorphic testing exploits known
input and output relations (called MRs) that should hold among
multiple executions of the program. Metamorphic testing has been
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used in many domains, such as machine learning, web services,
computer graphics, and compilers [16, 33]. Recently, Facebook has
adopted it for their simulation and testing infrastructure in order
to tackle the test oracle problem, as well as test flakiness [2].

Metamorphic Testing has also been successfully applied in the
domain of CPSs, e.g., for testing wireless sensor networks [13],
autonomous drones [26], or self-driving cars [42, 47]. Some re-
searchers have also investigated metamorphic testing in the con-
text of non-functional properties, such as performance or QoS
metrics [5, 11, 21, 36, 37].

Recently, Ayerdi et al. proposed an approach based on metamor-
phic testing that considered QoS metrics from the elevation domain
at Orona, showing promising results [5]. However, the definition
of effective MRs was possible only with in-depth knowledge of
the domain and the system under test [15, 33]. As a result, the
development and maintenance of effective MRs required a heavy
involvement of domain experts who have extensive experience
with the system, which is a high cost to pay.

A possible solution to reduce the cost of designing MRs is their
automatic generation based on samples of correct and incorrect ex-
ecution of the system under test. Such samples could be obtained
from a curated database of real test executions, possibly comple-
mented by mutation testing. Our goal is to automatically generate
metamorphic relations by minimizing the number of false positives
(FPs) over the correct samples and the number of false negatives
(FNs) over the incorrect ones, so as to obtain a metamorphic ora-
cle that can predict the correctness of an outcome as accurately
as possible. This solution was inspired by recent advances in the
automated improvement of program assertions [18, 40].

In this paper, we present an industrial experience report on au-
tomatically generating MRs. Towards this goal, we implemented
GAssertMRs, Genetic ASSERTion improvement for MRs, a
tool to generate MRs automatically with genetic programming.
GAssertMRs is an adaptation to metamorphic testing and CPSs
of GAssert [39–41], a technique for generating and improving
program assertions. GAssertMRs formulates the oracle generation
and improvement process as a multi-objective optimization prob-
lem [38] with three objectives: (i) minimizing the number of FPs,
(ii) minimizing the number of FNs, and (iii) minimizing the size of
the generated MRs. GAssertMRs prioritizes assertions with fewer
false positives, as manually removing them is an expensive activity.

In this experience paper, we evaluateGAssertMRs in the context
of an industrial case study from the elevator domain provided by
Orona. The study aims to assess the effectiveness of our approach
for generating MRs based on the QoS measures obtained during the
test executions. Our results show that the automatically generated
MRs are effective at detecting faults. Moreover, they are comparable
or even outperform manually-generated MRs in almost all cases. In
summary this paper makes the following contributions:

• reports an industrial experience of applying a prototype tool
to automatically generate MRs in the context of CPSs;

• presents GAssertMRs, an adaptation of GAssert to auto-
matically improve/generate MRs;

• discusses the challenges and lessons learned from the per-
spective of an industrial setting.

• releases the executable of the tool and the results [6]

2 INDUSTRIAL CASE STUDY

Our case study is a traffic manager of a system of elevators devel-
oped by Orona [30]. The traffic manager is composed of different
software modules. One of the most important ones is the Dispatch-
ing Algorithm. This algorithm decides which elevator should serve
an elevator call by considering different aspects, including the esti-
mated passengers’ Average Waiting Time (AWT).

Orona constantly adds new functionalities to the dispatching
algorithm to offer a solution that satisfies all customers’ demands,
such as reducing energy consumption or giving higher priority to
certain elevator calls during emergency situations (e.g., for critical
situations in hospitals). The dispatching algorithm is a critical com-
ponent in a system of elevators. Indeed, a wrong assignment of calls
can have a huge impact on the overall Quality of Service (QoS) [5].
Orona has developed a large corpus of dispatching algorithms,
making it necessary to employ cost-effective and automated testing
solutions for their verification and validation.

The dispatching algorithms of Orona are implemented in C/C++
and their tests are executed using simulation-based testing. Specif-
ically, in this paper we have considered tests at the Software-in-
the-Loop (SiL) test level, executed through a domain-specific tool
named Elevate.

A test for the dispatching algorithm in Elevate consists of (i) the
passenger list, and (ii) the building installation information. The
passenger list represents a list of passengers that arrive to a landing
floor, call an elevator, and request a destination. For each passenger,
information such as the arrival time, arrival floor, destination floor,
and weight of the passenger is provided in a file.

The building installation information is an XML file containing
data related to the building and to the elevators installation. Among
others, such information encompasses the number of floors of a
building and its population, number of elevators and their initial
positions, floors served by each of the elevators, and maximum
weight each elevator can lift.

For each test execution, Elevate returns the values of domain
specific QoS metrics (e.g., AWT, energy consumption). In our study,
we considered the three QoS metrics used in our previous work [5]:

1) Average Waiting Time (AWT), which refers to the average
time the passengers waited from the time they arrive to the calling
floor until the elevator arrived and opened the door. According
to the study of Barney and Lutfi [9], AWT is the most important
measure to determine whether a system of elevators performs well
or not from the perspective of the elevator passengers.

2) Total Distance (TD), which refers to the sum of the distances
traveled by all the elevators of the building, measured in floors [5].
This metric is relevant because an unexpected value may reveal
faulty behaviours like consistently not assigning elevators close to
the landing calls or unnecessarily dispatching multiple elevators to
a single call.

3) Total Movements (TM), which refers to the total number
of engine start-ups of all the elevators of the building [5]. Similar
to the previous metric, this QoS measure may reveal inefficient
dispatching or faulty behaviours.

Elevators dispatching algorithms are generally very complex, as
they need to consider several functionalities for a wide range and
types of elevators installations. In addition, these algorithms are
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highly configurable to accommodate all kinds of possibly unique
building installations. For example, each building has a unique
combination of number of elevators, number of floors, distance
between floors, elevator speed, and passenger capacity. Because of
this, and due to the dynamic nature of the environment in which
elevators operate, it is extremely difficult to determine the correct
output of a test. Hence, we resort to the QoS metrics mentioned
above to expose misbehaviours or suboptimal behaviours.

3 METAMORPHIC TESTING

Software testing aims at exposing software failures by executing
test cases. A test case consists of a test input, to exercise the pro-
gram under test, and a test oracle, to decide whether the test case
execution exposes a software failure. Often, test oracles compare
the actual output of the test case with the expected one [10]. To
define such test oracles, developers need to specify the expected
output for each test case, which can be difficult and error-prone, es-
pecially for programs with complex outputs. This problem is called
the oracle problem and it is recognised as one of the fundamental
challenges in software testing [10].

Metamorphic testing [14] is a technique aiming to alleviate
the oracle problem. It is based on the intuition that often it is
simpler to reason about relations between the inputs/outputs of
multiple, related test executions, rather than the relations between
inputs/outputs of each individual test execution.

Given two test cases defined by their respective inputs and out-
puts, 𝑇𝐶1 = ⟨𝐼1,𝑂1⟩, 𝑇𝐶2 = ⟨𝐼2,𝑂2⟩, whenever a given input re-
lation 𝑟𝐼 holds between the two inputs, a corresponding output
relation 𝑟𝑂 is expected to hold between the outputs. Hence, the
metamorphic oracle can be expressed as:

𝑟𝐼 (𝐼1, 𝐼2) ⇒ 𝑟𝑂 (𝑂1,𝑂2)
Any transformation 𝐼1 ⇝ 𝐼2 that satisfies 𝑟𝐼 (𝐼1, 𝐼2) is called a Meta-
morphic Relation Input Pattern (MRIP) [48].

Let us consider an example from the elevation domain. Given
a source test case 𝑇𝐶1 = ⟨𝐼1,𝑂1⟩, we can introduce a small al-
teration, so as to obtain a new test scenario (follow-up test case
𝑇𝐶2 = ⟨𝐼2,𝑂2⟩) that differs from the previous one only by the
addition of one extra passenger performing an elevator call (hence,
𝑟𝐼 prescribes that 𝐼1 and 𝐼2 differ by just one passenger call).

Then, to define the output relation 𝑟𝑂 we use the Total Dis-
tance (TD) metric, defined as the sum of the distances traversed
by all the elevators in the elevation system. The following output
relation 𝑟𝑂 is expected to hold when the input relation 𝑟𝐼 holds:

𝑇𝐷 𝑓 ≥ 𝑇𝐷𝑠 + 𝐷𝑤𝑎𝑖𝑡 + 𝐷𝑡𝑟𝑎𝑣𝑒𝑙 − 20.14

where 𝑇𝐷𝑠 and 𝑇𝐷 𝑓 are the 𝑇𝐷 values for the source and follow-
up test cases respectively, 𝐷𝑤𝑎𝑖𝑡 is the longest possible distance to
the calling floor of the additional call, and 𝐷𝑡𝑟𝑎𝑣𝑒𝑙 is the distance
from the calling floor to the destination floor of the additional
call. This particular output relation, including the constant 20.14,
was automatically generated by GAssertMRs and is part of the
evaluation results.

This automatically generated Metamorphic Relation (MR) speci-
fies that the 𝑇𝐷 of the follow-up test case (𝑇𝐷 𝑓 ) should be no less
than the 𝑇𝐷 of the source test case (𝑇𝐷𝑠 ) plus the worst-case dis-
tance to reach the calling floor and the distance between the calling

and the destination floor minus a constant factor that accounts for
the optimizations performed by the elevator scheduler. A violation
of this MR could indicate that 𝑇𝐷𝑠 is abnormally large wrt 𝑇𝐷 𝑓 ,
hinting at a possibly faulty behaviour by the system during the
source test case execution.

4 APPROACH

Recently, Terragni et al. proposed GAssert [40], a technique to
automatically improve assertion oracles. Assertion oracles (also
known as program assertions) are executable Boolean expressions
that predicate on the values of variables at specific program points.

An assertion oracle should pass (return true) for all correct exe-
cutions and fail (return false) for all incorrect executions. However,
because designing assertion oracles is difficult, they often suffer
from both false positives and false negatives [18].

Definition 1. A false positive (FP) of an assertion is a correct
program state in which the assertion fails (but should pass).

Definition 2. A false negative (FN) of an assertion is an incor-
rect program state in which the assertion passes (but should fail).

False positives and false negatives are problematic in assertion
oracles, as they trigger false alarms and ignore failures [18, 19].

The oracle improvement process of GAssert takes as an input
an assertion to improve, and an initial set of correct and incorrect
program states. It obtains the correct states by executing a test
suite on an instrumented version of the program under test that
collects the values of variables at the specified program point. It
obtains the incorrect states by executing the same test suite on a
series of mutated versions of the program under test with seeded
faults (i.e., mutations) [20]. GAssert then explores the space of
possible assertions with a co-evolutionary algorithm guided by
fitness functions that reward solutions with fewer FPs and FNs.

Evolutionary algorithms [7] are population-based meta-heu-
ristic optimization algorithms, inspired by the mechanisms of bi-
ological evolution: selection, reproduction, and mutation. Such
algorithms evolve a population of candidate solutions to the op-
timization problem. In GAssert, candidate solutions are Boolean
expressions composed of numerical and Boolean variables.

The algorithm returns an improved assertion with zero FPs and
the lowest number of FNs (with respect to the correct and incor-
rect states in input). GAssert favours assertions with zero false
positives, as false alarms are usually quite expensive to debug.

Given an improved assertion, the toolOASIs [18] obtains new FPs
and FNs for the improved assertion by combining test generation
and mutation testing. The resulting program states are added to
the sets of correct and incorrect states for the next iteration of
GAssert.

The oracle improvement process of GAssert terminates when
OASIs does not find new false positives and false negatives for the
improved assertion or the global time budget expires.

4.1 Extension to Metamorphic Testing

GAssert was demonstrated to be effective in improving assertion
oracles [40]. This motivated us to extend the GAssert approach to
generate effective metamorphic relations that minimize the number
of false positives and false negatives. Indeed, metamorphic relations
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Table 1: Features of Elevation Test Cases.

Feature Name Description

ElevatorsCount Count of elevators available

ElevatorsDistanceFloors Sum of the distances between the positions of each elevator
in the source and follow-up test cases (MRIP3 only)

ElevatorsDifferenceTime Aproximated time it takes to traverse
ElevatorsDistanceFloors (MRIP3 only)

PassengersCount Count of passenger calls

PassengersWaitFloors Maximum number of floors that must be traversed
to reach the calling floor of each call

PassengersWaitTime Approximated time it takes to traverse PassengersWaitFloors

PassengersTravelFloors Distance in floors from the calling floor to the destination
of each call

PassengersTravelTime Approximated time it takes to traverse PassengersTravelFloors

are a specific kind of Boolean expressions that predicate on the in-
put/output relations of test cases, instead of predicating on internal
variables like assertion oracles. We call this extension GAssertMRs.
This extension employs the same oracle generation/improvement
algorithm as GAssert, adapting it to the context of metamorphic
testing. We now describe in detail the differences between GAssert
and GAssertMRs, and how GAssertMRs generates MRs.

The first major difference is that GAssertMRs is not imple-
mented as a part of a MRs iterative improvement process. In other
words, there is no outer loop for oracle assessment, which generates
new test cases and mutations. While GAssert relies on OASIs [18]
for the assessment of assertion oracles, no equivalent tool has been
developed yet for MRs. This means that the MRIPs must have been
defined before running GAssertMRs, since GAssertMRs only au-
tomates the generation/improvement of the output relations.

The second major difference is that in this work we focus on
black-box testing of systems, in which oracles predicate on the
inputs and the outputs of the entire system. In contrast, GAssert
was originally developed for program assertions, which predicate
on the internal variables of a single unit under test [40].

Furthermore, one of the key differences betweenMRs and regular
assertions is that MRs are defined over the inputs and outputs of
two or more test cases. In fact, a MR oracle consists of a relation
between the outputs produced by the source and the follow-up test
cases. Because of this, the generated expressions should predicate
on the inputs and outputs of the source and follow-up test cases, as
opposed to predicating over the variables of an individual test case.

GAssert generates arbitrary Boolean expressions, which would
be inadequate in the context of MRs. This is because an arbitrary
Boolean expression might not define a relation between the outputs
of the source and the follow-up test cases, i.e., the result might
not be a MR. For this reason, we restrict GAssertMRs to generate
Boolean expressions with the following form:

𝑂 𝑓 [𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ] 𝐹 (𝑂𝑠 , 𝐼𝑠 , 𝐼𝑓 ) (MR Template)

where𝑂𝑠 and𝑂 𝑓 are the outputs obtained in the source and follow-
up test case executions; 𝐼𝑠 and 𝐼𝑓 are the inputs of the test cases;
𝐹 (𝑂𝑠 , 𝐼𝑠 , 𝐼𝑓 ) is a numerical expression; and, [𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ] is a rela-
tional operator (such as =, ≠, <, >, ≤ or ≥).

In our implementation of the tool, we assume that the inputs
and outputs all have numeric types. For cases where not all inputs
are numeric, which is also the case of our elevation case study, a
domain-specific function which extracts numeric features from the

inputs/outputs should be defined. Table 1 shows the features we
use for the test cases in the elevation domain, where the inputs
are a set of elevators and their positions and a passenger calls
list. Which features to include in the generated MR depends on
the inputs affected by the MRIP being used: if an MRIP does not
change a particular input, all the variables relatedwith that input are
redundant and can be safely ignored. For instance, there is no need
to include the count of passenger calls (feature PassengersCount)
for both the source and the follow-up test cases if the MRIP does
not change the passenger calls list.

The generated MRs use only a single output variable, which
must be numeric. Thus, to consider different output variables, a
separate execution of GAssertMRs is needed for each of them, and
a different MR will be generated for each output variable.

To enforce the template described above, when GAssertMRs
explores the space of possible MRs it only generates numerical
expressions in the form 𝐹 (𝑂𝑠 , 𝐼𝑠 , 𝐼𝑓 ), whereas the selected output
variable (𝑂𝑠 ) and relational operator ([𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ]) will be input pa-
rameters for the tool. In this way, each individual of the populations
of the evolutionary algorithm is a numeric expression 𝐹 (𝑂𝑠 , 𝐼𝑠 , 𝐼𝑓 ).
Every time GAssertMRs evaluates the fitness of an individual it
constructs the full Boolean expression 𝑂 𝑓 [𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ] 𝐹 (𝑂𝑠 , 𝐼𝑠 , 𝐼𝑓 ).

4.2 Co-Evolutionary Algorithm of

GAssertMRs

At the core of both GAssert and GAssertMRs is an evolutionary
algorithm that evolves a population 𝑃𝑖 to 𝑃𝑖+1 as follows: (1) Se-
lection: it selects from 𝑃𝑖 two individuals (parents) by means of
a fitness function that rewards fitter solutions. (2) Reproduction:
it combines the genetic material of the parents (portions of asser-
tions) obtaining two individuals (offspring) by means of crossover
operators. (3)Mutation: it mutates with a certain probability the
offspring by means of mutation operators, and adds the resulting
individual to 𝑃𝑖+1. The evolutionary algorithm repeats this process
until 𝑃𝑖+1 reaches the predefined size.

GAssert implements a co-evolutionary algorithm that evolves
two populations of assertions in parallel, with three competing
objectives: (i) minimizing the number of false positives, (ii) mini-
mizing the number of false negatives, (iii) minimizing the size of
the assertion. The fitness function used in the first population (𝜙FP)
rewards solutions with fewer false positives, while the function of
the second population (𝜙FN) those with fewer false negatives. Both
populations consider the remaining objectives only in tie cases.
Periodically, the two populations exchange their best individuals to
provide good genetic material to improve the secondary objectives.
Fitness Functions. Let FP(𝛼) denote the false positive rate of 𝛼 ,
and FN(𝛼) denote the false negative rate of 𝛼 . Both GAssert and
GAssertMRs define their multi-objective fitness functions 𝜙FP and
𝜙FN using the concept of dominance (≺) [17] among individuals:

Definition 3. FP-fitness (𝜙FP). Given two assertions 𝛼1 and 𝛼2,
𝛼1 dominatesFP 𝛼2 (𝛼1 ≺FP 𝛼2) if any of the following conditions is
satisfied:

– FP(𝛼1) < FP(𝛼2)
– FP(𝛼1) = FP(𝛼2) ∧ FN(𝛼1) < FN(𝛼2)
– FP(𝛼1) = FP(𝛼2) ∧ FN(𝛼1) = FN(𝛼2)
∧ size(𝛼1) < size(𝛼2)
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Definition 4. FN-fitness (𝜙FN). Given two assertions 𝛼1 and 𝛼2,
𝛼1 dominatesFN 𝛼2 (𝛼1 ≺FN 𝛼2) if any of the following conditions
is satisfied:

– FN(𝛼1) < FN(𝛼2)
– FN(𝛼1) = FN(𝛼2) ∧ FP(𝛼1) < FP(𝛼2)
– FN(𝛼1) = FN(𝛼2) ∧ FP(𝛼1) = FP(𝛼2)
∧ size(𝛼1) < size(𝛼2)

In tie cases, FP(𝛼1) = FP(𝛼2) and FN(𝛼1) = FN(𝛼2), both func-
tions favor smaller assertions. This is because smaller assertions
are generally easier to understand.

We now describe the selection, reproduction and mutation steps.
Selection. GAssertMRs implements two different selection cri-
teria, tournament and best-match selection, and chooses between
them with a given probability.

Tournament Selection [29] is one of the most popular GP se-
lection criterion [45]. The idea is to select the parents by running
two “tournaments” among 𝐾 randomly-chosen individuals. The
winner of each tournament (the one with the highest fitness) will be
selected [29]. Following the authors of GAssert, we chose 𝐾 = 2,
which is known to mitigate the local optima problem [45].

Best-match Selection is a new parent selection criterion pre-
sented by the authors of GAssert. This criterion selects the first
parent randomly, and selects the second parent according to its
"complementarity" with respect to the first parent. The concept
of "complementarity" is defined by the correct and incorrect ex-
ecutions that an assertion covers. An assertion covers a correct
execution if it evaluates to true on that execution, while it covers
an incorrect execution if it evaluates to false in that execution. The
best match selection criterion assigns to each assertion a "weight"
that expresses the number of executions that the assertion covers,
but are not covered by the first parent. It then selects the second
parent using a weighted random selection, where assertions with a
higher weight are more likely to be selected. Intuitively, this crite-
rion selects with higher probability two parents that “complement”
each other in terms of maximizing the collective number of covered
correct and incorrect executions. For the population with fitness
function 𝜙FP, GAssertMRs computes the weights based on the
correct executions, while it considers incorrect executions for 𝜙FN.
Reproduction exchanges genetic material between two parents
producing two offspring, which GAssertMRs mutates (with a
given probability). GAssertMRs relies on the canonical tree-based
crossover. Given two parents, it selects a random crossover point
in each parent, and creates two offspring by swapping the subtrees
rooted at each point in the corresponding tree [24].
Mutation The mutation step in the evolutionary algorithm of GAs-
sertMRs relies on three tree-based mutation operators (which are
chosen randomly with a given probability).

NodeMutation changes a single node in the tree [12]. It takes as
input a tree and one of its nodes 𝑛, and returns a new tree obtained
by replacing the node 𝑛 with a new node (chosen randomly).

Subtree Mutation replaces a subtree in the tree [12]. It takes as
input a tree and one of its nodes 𝑛, and returns a new tree obtained
by substituting the subtree rooted at 𝑛 with another randomly
generated subtree.

Constant value mutation changes the value of a single con-
stant within the tree. It takes a tree as its only input, and returns a

new tree obtained by randomly selecting a numeric constant node
and adding a random number, chosen from {−Δ,Δ}, to its value.
Here, Δ should be relatively small (we use 0.1 in our experiments) so
that the constant values change in small increments. This mutation
operator is not used in the original version of GAssert for asser-
tion oracles. We included this operator because in our experience
constants plays a crucial role in MRs.

Note that the original version of GAssert used additional crossover
and mutation operators that are inadequate for MRs, and thus are
not used by GAssertMRs.

4.3 Test Cases Classification

Just like its predecessor, GAssertMRs requires a dataset of correct
and incorrect behaviours, which are used to calculate the number
of false positives and false negatives of a given oracle. This dataset
can be used for evaluating the oracles and defining fitness functions
that guide the evolution towards oracles with fewer FPs and FNs.

Generally, a correct classification should indicate with high cer-
tainty that the test output is associated with a correct behaviour.
On the other hand, an incorrect classification should indicate with
high certainty that the output is associated with a failure.

In the context of black-box testing, the elements of this dataset
are tests, which include: (1) the test case inputs, (2) the execution
outputs, and (3) the classification (correct or incorrect). Furthermore,
for oracles consisting of MRs, these tests should actually be meta-
morphic tests, i.e., they should include the inputs and outputs from
both the source and the follow-up test case executions, as well as
their correct or incorrect classification.

We rely on mutation testing to produce possibly incorrect exe-
cutions. Hence, all of the test executions from the original system
are classified as correct, while the test executions from mutants that
have an output different from the original for the same test case are
classified as incorrect. The rest of the executions are left unclassified
and are removed from the dataset used for training.

For our elevation case study, we define additional constraints to
classify an execution from a mutant as incorrect. These constraints
define a minimum threshold for the difference between the test
execution outputs, so that mutant executions with small differences
from the original system are not considered incorrect. We do this to
avoid cases where output measures are so close that a test oracle
cannot be reasonably expected to distinguish between them. After
consulting with domain experts, we selected the following thresh-
olds for each of our metrics. For the AWT, at least 20% increase
AND at least 6 seconds increase. For TD at least 10% increase AND
at least 5 floors increase. Lastly, for TM at least 10% increase AND
at least 4 movements increase.

There is an additional issue when classifying metamorphic tests
from mutants. Each metamorphic test contains a source test case
and a follow-up test case, each of which will have its own classi-
fication. In this case, we rely on the domain-specific semantics of
the QoS metrics being used in order to determine the classification
for a test case pair.

For all the 3 QoS metrics that we use in the elevation case study,
an incorrect classification is always issued when their values are too
high. Considering this, we classify themetamorphic tests depending
on the relational operator being used for the MRs:
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When the source test case is unclassified and the follow-up test
case is incorrect, we classify the metamorphic test as incorrect for the
MRs with the < or ≤ operators. This is because those classifications
can be interpreted as the QoS metric value being too high in the
follow-up test case, but not in the source test case. Because of this,
assertions of the type𝑂 𝑓 ≤ 𝐹 (𝑂𝑠 , 𝐼𝑠 , 𝐼𝑓 ) can be expected to identify
that 𝑂 𝑓 is too high. Conversely, for the cases where the source is
incorrect and the follow-up is unclassified, the MRs with > or ≥
metrics are classified as incorrect. For QoS metrics that are better
when they have a higher value, the opposite classification would
be applied. For the rest of the cases, the metamorphic tests are
considered unclassified.

5 EMPIRICAL EVALUATION

To evaluate the proposed approach, we developed a prototype imple-
mentation of GAssertMRs, on top of the original implementation
of GAssert. We empirically assessed the effectiveness of the gener-
ated MRs in detecting failures in the Conventional Group Control
(CGC) elevator dispatching algorithm from Orona, using a tem-
plate configuration from a real building with 10 floors and up to 6
elevators.

5.1 Research Questions

Our experiments aim to answer the following four Research Ques-
tions (RQs):

RQ1 Is GAssertMRs effective at generating metamorphic rela-
tions?

RQ2 How does GAssertMRs compare with unguided search for
generating metamorphic relations?

RQ3 How does GAssertMRs perform when comparing with
human-defined metamorphic relations?

RQ4 How do generated metamorphic relations compare with
similarly generated regular assertions?

The effectiveness of GAssertMRs (RQ1) is determined by its
capability to generate metamorphic oracles with (ideally) no false
positives and few false negatives. RQ2 checks whether the fitness
functions provide useful guidance to generate better MRs. RQ3
compares the effectiveness of the MRs generated automatically by
our tool with manually developed MRs, to understand the extent
to which GAssertMRs has human-comparable capabilities. RQ4
compares the effectiveness of the automatically generatedMRs with
regular assertions generated automatically by a modified version
of GAssertMRs, which makes use of individual, instead of pairs,
of test cases. As for the template for the regular assertions, we
use:𝑀 ≤ 𝐹 (𝐼 ), where𝑀 is a QoS measure for the selected metric,
and 𝐹 (𝐼 ) is a function over the inputs of the test case. Just like in
GAssertMRs, only the numeric expression 𝐹 (𝐼 ) is generated by the
evolutionary algorithm. Furthermore, we also defined a mode for
“free form” assertions, where an entire Boolean expression can be
generated by the tool, similarly to GAssert [40]. For the Boolean
expressions, in addition to the regular elements in GAssertMRs
expressions, we enable Boolean literals and the following additional
operators: =, ≠, >, <, ≥, ≤, AND, OR, IMPLIES and IFF.

5.2 Experimental Setup

Test cases andmutants. We employed mutation testing for evalu-
ating the proposed approach. We used the same set of mutants and
test cases that were used for our previous work where the same
type of MRs were developed manually [5]. Tests were executed in a
domain-specific simulator, which is used by Orona for performing
analysis and verification tasks. The test cases were generated for 3
different MRIPs, which we describe below.

The 89 differentmutants in the dataset were generated by seeding
faults based on traditional arithmetic, logical and relational operator
mutations [1]. The faults were seeded manually by a domain expert
into the source code for the elevator dispatcher, which is written in
the C programming language.

As for the test cases, this dataset contains 1,340 different test
cases: 140 source test cases, 420 follow-up test cases for MRIP1,
360 follow-up test cases for MRIP2, and 420 follow-up test cases
for MRIP3. Each of these test cases were executed on the original
system and the 89 mutants, resulting in a total of 120,600 executions.

Follow-up test cases were generated by applying changes to
the input of source test cases, as described in the proposed MRIP,
namely:

• MRIP1: Additional calls. An additional random call is in-
serted to the passengers list.

• MRIP2: Additional elevators. The number of available el-
evators is increased, without changing the initial positions
of the originally available elevators.

• MRIP3: Initial position change. The initial positions of
all the elevators are shuffled, without changing the number
of available elevators.

Initial oracles. In order to generate the initial population for GAs-
sertMRs, we define a simple initial expression for each configura-
tion. For the MR oracles, the atomic numeric expression 𝑀𝑠 was
used for all cases as right hand side of Equation (MR Template),
where𝑀 is the QoS metric used in the configuration. For instance, a
configuration with the AWT metric as𝑀 and the ≤ operator would
start with 𝐴𝑊𝑇𝑓 ≤ 𝐴𝑊𝑇𝑠 as the initial assertion. The rationale for
this is that𝑀𝑠 is an element which is expected to always be present
on the right side of the MR for any non-trivial case. For regular
assertion oracles, we just used the constant 0 as the initial right-
side expression, resulting in initial assertions such as 𝐴𝑊𝑇 ≤ 0.
Finally, for regular assertions that do not have a fixed structure, we
used 𝑡𝑟𝑢𝑒 as the initial assertion. Half of the initial population for
GAssertMRs is generated by applying random mutations to the
initial assertion, and the remaining half is generated randomly.
Results validation. In order to validate the ability to generalize
from the training dataset, we employed 10-fold cross-validation for
all of the evaluations. The dataset was divided by tests (test case
pairs for MRs or individual test cases for the regular assertions),
which ensures that the training and testing datasets contain the
same proportion of correct and incorrect execution data. Each dif-
ferent configuration was executed 10 times, with each execution
using a different subsample as the testing set, and the remaining 9
subsamples as the training set. We used the same partitions for all of
the MR generation approaches, but regular assertions used different
partitions due to the samples being individual test cases rather than
test case pairs. For the manually developed MRs, the training set
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Table 2: GAssertMRs Configuration Parameters.

Parameter Description Value Parameter Description Value

bound on the size of the assertions 32 time budget (minutes) 15
size of each of the populations (N) 1,000 prob. of crossover 90%
minimum number of generations 100 prob. of mutation 30%
maximum number of generations 10,000 prob. of tournament selection 50%
frequency of elitism (every X gen) 1 prob. of best-match selection 50%
frequency of migration (every X gen) 10 prob. constant mutation min 5%
number of assertions for elitism 10 prob. constant mutation max 50%
number of assertions to migrate (M) 160 increase prob. const. mut. every gen. 0.45%

was not needed, we just used the testing sets for the evaluation and
comparison with GAssertMRs. Furthermore, in order to account
for the stochastic nature of GAssertMRs, we repeated each of the
experiments 12 times with different random seeds. In total, each
GAssertMRs configuration was executed 10 × 12 = 120 times.
Evaluation metrics. We evaluated the proposed approaches with
the following four metrics.

FP and FN refer to the percentage of false positives and false
negatives based on the classification provided to the evolutionary
algorithm. Hence, these are the final fitness results obtained by the
algorithm. Note that while FP directly represents the percentage
of actual false positives, there might be more detected faults than
FN suggests, since some of the mutant test cases were deemed
unclassified, rather than being classified as incorrect (see Section
4.3). Hence, they are not counted either as true positives or as false
negatives.

Detected failures (DF) refers to the number of failing verdicts
across mutant test executions. On the other hand, the mutation
score (MS) is the percentage of mutants detected out of the 89 mu-
tants in the dataset. A mutant is considered detected by an assertion
if the assertion returns false in at least one of the executions.

In the cases where a given assertion caused a false positive in
a test, the results from the rest of the mutant executions for that
test are not evaluated, i.e., the assertion is considered to detect 0
failures in that test. This means that all the instances classified as
incorrect for that test will count as FNs, and the results from the
test will not increase DF and MS. Furthermore, in the case of an
error occurring during the assertion evaluation (e.g. division by 0),
a failing verdict is assigned.
Configuration. Table 2 shows the parameter values used by GAs-
sertMRs and by its Regular Assertions variant used for RQ4. The
Unguided variant used for RQ2 also used the same parameter values,
except for the parent selection, which was 100% random instead,
and the elitism and migration parameters, which were irrelevant in
this case because elitism and migration were disabled.

These parameter values were taken from the previous GAssert
experiments [40]. One minor tweak that has been made is using
a dynamic value for the probabilities of either using or altering a
constant during mutation. This dynamic value increases linearly
with the generation number, starting from 5%, up to 50% at gen-
eration 100. The reason for the linear increase is to allow more
micro-optimizations of constant values towards the later genera-
tions.

We configured GAssertMRs with each of the 3 different MRIPs
used in our case study, combined with the 3 QoS metrics extracted,
and 2 relational operators (≥ and ≤). Hence, in total there are

18 different configurations of GAssertMRs (3 MRIPs × 3 metrics
× 2 operators). When generating regular assertions in free form
mode, we considered different configurations where each of the
QoS metrics is used individually, as well as an additional configura-
tion where all the available QoS metrics can be used in the same
assertion.

We executed the 12 random seeds of each configuration across 4
identical virtual machines (3 random seeds per machine) running on
a server. Each virtual machine had an 8-core 3.2GHz CPU and 16 GB
of RAM assigned. The total machine time of the experiments was
540 hours forGAssertMRs (12 seeds× 10 folds× 18 configurations),
another 540 hours for the Unguided variant, and 210 hours for the
Regular Assertions variant (12 seeds × 10 folds × 7 configurations).

5.3 Results

Table 3 shows the evaluation results for GAssertMRs, as well as
the ones for the Unguided and Manual MRs baselines. The reported
numbers are the median obtained on the testing dataset across each
fold and random seed. For fair comparison, the results of Manual
MRs were also calculated separately over the testing subsamples of
each of the 10 folds and the median results are reported.

Table 4 shows the evaluation results for the Regular Assertions
baseline, where every evaluation metric reported is again the me-
dian of the results obtained on the testing dataset across each of
the folds and random seeds.

Figure 1 shows the box plots of the FNs (percentage, from 0.00
to 1.00). Each of these box plots contains 120 data points for each
tool and configuration (12 random seeds × 10 folds).

RQ1: Effectiveness of GAssertMRs. Column GAssertMRs of
Table 3 shows the median results obtained by our proposed ap-
proach for each of the possible configurations. The results show
that GAssertMRs is able to generate non-trivial MRs which have
very few FPs and are capable of detecting some failures in the mu-
tant test cases. While the median of FPs is 0 and the mean was
always less than 1, there were actually some FPs in the testing
dataset.

On the other hand, we observe a very large percentage of FNs in
many configurations, which may indicate that the fitness function
is difficult to satisfy. Furthermore, the results show significantly
different performance across the different configurations, indicating
that some MRIP, QoS metric and operator combinations might be
easier to generate or have more potential effectiveness.

It is important to note that the results shown in Table 3 are
obtained with the testing dataset, which represents only 10% of the
test cases, and therefore themutation score is expected to be low. For
reference, the Manual MRs obtain an average mutation score of over
30%with the full test suite, with one of the configurations achieving
a mutation score of over 80%. Furthermore, we do not aggregate
the results from multiple random seeds, folds, or configurations.

RQ2: Comparison with Unguided Search. Comparing the re-
sults by GAssertMRs and Unguided in Table 3, we can see that
the former tends to obtain significantly better results for FN, DF
and MS in many cases, and similar results in the worst cases. There
is only a single instance where Unguided detected more failures,
and 2 instances where it obtained a better mutation score, and the
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Table 3: Evaluation Results for RQ1, RQ2 and RQ3 (median).

MRIP Metric Operator
GAssertMRs (RQ1) Unguided (RQ2) Manual MRs (RQ3)

FP FN DF MS FP FN DF MS FP FN DF MS

MRIP1

AWT ≥ 0.00% 95.99% 16.5 11.80% 0.00% 97.22% 9.0 7.87% 0.00% 92.13% 13.0 11.24%
≤ 0.00% 88.20% 28.0 14.61% 0.00% 90.00% 18.0 13.48% 0.00% 90.03% 14.0 14.61%

TD ≥ 0.00% 89.09% 12.0 12.36% 0.00% 89.77% 10.5 11.24% 0.00% 90.39% 12.5 13.48%
≤ 0.00% 92.50% 30.5 13.48% 0.00% 94.19% 19.0 8.99% 0.00% 98.93% 4.5 5.06%

TM ≥ 0.00% 66.67% 20.0 16.85% 0.00% 75.00% 12.0 11.24% 0.00% 88.13% 7.5 7.87%
≤ 0.00% 93.54% 9.0 4.49% 0.00% 92.00% 5.0 2.25% 0.00% 100.00% 0.0 0.00%

MRIP2

AWT ≥ 0.00% 93.56% 11.0 7.87% 0.00% 96.19% 4.0 4.49% 0.00% 100.00% 0.0 0.00%

≤ 0.00% 65.20% 74.0 19.10% 0.00% 62.77% 74.0 19.10% 0.00% 64.72% 74.0 18.54%

TD ≥ 0.00% 96.70% 9.0 8.43% 0.00% 98.59% 4.0 3.37% 0.00% 100.00% 0.5 0.56%

≤ 0.00% 82.29% 47.5 12.36% 0.00% 84.52% 51.0 15.73% 0.00% 96.57% 8.5 9.55%

TM ≥ 0.00% 100.00% 2.0 1.12% 0.00% 100.00% 0.0 0.00% 0.00% 96.56% 1.5 1.12%
≤ 0.00% 76.92% 22.0 8.99% 0.00% 83.87% 15.0 5.62% 0.00% 100.00% 2.0 2.25%

MRIP3

AWT ≥ 0.00% 90.57% 28.5 13.48% 0.00% 94.03% 18.0 8.43% 0.00% 98.51% 1.5 1.12%

≤ 0.00% 85.85% 50.0 19.10% 0.00% 88.62% 42.0 17.98% 0.00% 100.00% 0.0 0.00%

TD ≥ 0.00% 89.01% 58.0 17.98% 0.00% 94.19% 24.0 11.24% 0.00% 98.93% 1.5 1.69%

≤ 0.00% 89.35% 30.0 12.36% 0.00% 89.65% 30.0 12.92% 0.00% 99.57% 0.5 0.56%

TM ≥ 0.00% 80.00% 16.0 7.87% 0.00% 90.40% 5.0 2.25% 0.00% 100.00% 0.5 0.56%
≤ 0.00% 51.92% 19.0 2.25% 0.00% 54.17% 19.0 2.25% 0.00% 100.00% 0.0 0.00%
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Figure 1: False Negatives for GAssertMRs and Unguided (RQ1 and RQ2)

difference is minimal in most cases. Figure 1 provides a detailed
visualization of the FNs of GAssertMRs vs Unguided.

These results were further corroborated by means of statisti-
cal tests. After obtaining the experimental results, we applied the
Shapiro-Wilk test to assess how the data was distributed. Since the
data was not normally distributed, we employed the Mann-Whitney
U-test to assess the statistical significance of the differences. The
statistical significance threshold for the 𝑝-value was set to 0.05. In
addition, we assessed the effect size by employing the Vargha and
Delaney Â12 metric. As suggested in [32], we categorized the differ-
ence existing between GAssertMRs and Unguided as negligible if
𝑑 < 0.147, as small if 𝑑 < 0.33, as medium if 𝑑 < 0.474 and as large
if 𝑑 >= 0.474, where 𝑑 = 2|Â12 −0.5|.

For the mutation score, in 16 out of 18 combinations, the results
were in favor of GAssertMRs. Out of these 16 cases, the difference
was large twice, medium twice, small in 9 cases and negligible in 3

cases. Out of these 16 cases, 11 were statistically significant. Con-
versely, for 2 out of 18 combinations where Unguided performed
better, only in one of the cases Unguided did it with statistical
significance, and the difference was small. For the FNs, the Â12
was in favor of GAssertMRs with respect to Unguided in 17 out
of 18 cases, with 9 of them having statistical significance. For 7
cases out of the 17, the difference was negligible, for the other 7
small and for the remaining 3 medium. For the only case where
the Â12 value was not in favor of GAssertMRs, the difference was
negligible and the 𝑝-value was 0.91, which means that the results
were not distinguishable. As for the Â12 value for FPs, Unguided
showed better results than GAssertMRs in all cases, but the results
were statistically significant only in 6 out of 18 cases. The differ-
ence between the FPs of both techniques were negligible in 14 of
the cases and small in the remaining 4 cases. This overall means
that GAssertMRs has a slightly higher tendency to get FPs than
Unguided, also a significantly superior FN reduction capability.
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Table 4: Evaluation Results for RQ4 (median).

Metric Operator
GAssert (RQ4)

FP FN DF MS

All Free form 0.00% 97.40% 34.0 14.61%

AWT ≤ 0.00% 91.33% 83.0 21.35%
Free form 0.00% 96.08% 42.5 16.85%

TD ≤ 0.00% 95.91% 33.5 10.11%
Free form 0.00% 96.64% 28.0 8.99%

TM ≤ 0.00% 92.45% 8.5 3.37%
Free form 0.00% 93.94% 8.5 2.25%

RQ3: Comparison with Manual MRs. The original manually
generated MRs [5] were implemented in Python, following the
same QoS MR template as the MRs generated by GAssertMRs. We
use new versions of these MRs that solve incompatibilities with
GAssertMRs, which ensures that all them could be generated by
it. These new versions of the MRs either match or outperform the
older versions in both failure detection ratio and mutation score.
Furthermore, they also have 0 false positives in the full test case
dataset.

The results in Table 3 show that Manual MRs outperform the
failure detection counts or mutation scores of GAssertMRs in just
one instance each. Furthermore, Manual MRs only outperformGAs-
sertMRs by a narrow margin in both of these cases. On the other
hand, there are several configurations where GAssertMRs outper-
forms the results of Manual MRs by a very significant margin. This
indicates that GAssertMRs might be more effective at detecting a
higher number of diverse failures. On the other hand, Manual MRs
have other advantages over automatically generated MRs, such as:
(1) exactly 0 FPs on all evaluation tests; (2) lower complexity (max
6 for Manual vs 32 for GAssertMRs).

RQ4: Comparison with Regular Assertions. We compare the
GAssertMRs results from Table 3 with the results from its Regular
Assertions variant in Table 4. Here, we can see that there are sev-
eral configurations where GAssertMRs outperforms the Regular
Assertions variant in terms of DF and MS. We do not plot the dis-
tributions of the FNs, since they are not directly comparable with
the MRs.

In fact, for oracles based on the TD and TM QoS metrics, MRs
achieve better results (more failures detected and higher mutation
scores) with the best configurations of GAssertMRs than with the
best configurations of the Regular Assertions variant. However, the
configuration for Regular Assertions with the best results (AWT
with the ≤ operator) outperforms all of the results obtained by MRs
in both failure detection count and mutation score.

Moreover, as with the automatically generated MRs, the number
of FPs is not always 0 in all the configurations, but the average is
still less than 1, and the median is 0, as shown in Table 4.

It is important to note that the number of available tests is not
equal for MRs and Regular Assertions, since MRs employ test case
pairs for a specific MRIPs, whereas Regular Assertions use the
individual results from all the test case executions. In terms of
individual test cases, the configurations for MRIP1 and MRIP3 could
use 140+420 = 560 test cases, whereas the configurations for MRIP2

could use 140 + 360 = 500 test cases. In comparison, each Regular
Assertions run could use all of the 1340 different test cases.

The fact that each configuration for MRs can only use a smaller
subset of the test cases can be considered an inherent disadvan-
tage of using metamorphic oracles. On the other hand, this allows
generating more different MR oracles, because we can (and should)
generate different output relations for every MRIP. However, more
configurations also means that the effort needed for generating
these oracles is higher. In this case, we have 18 configurations
(rows in Table 3) for MRs, and 7 configurations (rows in Table 4) for
regular assertions, so the cost of generating all the MRs is 18

7 ≈ 2.57
times higher than the cost of generating all the regular assertions.

6 LESSONS LEARNED

We now discuss the lessons learned from this experience, and the
future work for the industrial adoption of this approach.

Lesson 1 – Automated generation of MRs is feasible with

GAssertMRs in practice: The industrial need to identify tech-
niques for automatically inferring metamorphic relations has been
acknowledged in a recent industry-relevant study [2]. In this paper
we demonstrate the advance over the state-of-the-practice in this
direction by extending GAssert [40] to accommodate the needs
of generating MRs in an industrial context. Despite its long his-
tory, the adoption of metamorphic testing by industrial companies
has started in the last few years in companies like Facebook [2],
Adobe [44], or Orona [5]. Nevertheless, the definition of MRs in all
these contexts has remained manual, relying on the domain knowl-
edge of experts. Our results show that GAssertMRs is competitive
with manually-defined MRs, outperforming them in some cases.

Besides its effectiveness, it is important to highlight that GAs-
sertMRs generates MRs automatically. According to the engineers
from Orona, GAssertMRs provides significant benefits because
it is able to find MRs that are otherwise difficult to be found by
engineers. In addition, elevation experts are not experienced in
software testing, which significantly increases the manual cost of
defining MRs.

The correct and incorrect executions needed by GAssertMRs
can be easily obtained. Indeed, manually validated field executions
are often available for industrial CPSs, so these can be used as
correct executions for GAssertMRs. They can then be mutated to
obtain the corresponding incorrect executions and fully automate
the MR generation process.

Lesson 2 – Small test suites are sufficient for the genera-

tion of MRs in an industrial context: The main difference be-
tween software-only applications and CPSs is the added difficulty
and cost of executing tests. For complex CPSs it may be infeasible
to generate a large dataset of test executions the same way GAs-
sert did for Java programs [40]. A small dataset might result in
the evolutionary algorithm generating poor quality MRs. In this
paper, we show that GAssertMRs can generate useful MRs with
a relatively small set of test executions that were generated at an
affordable cost. It is worth noting that simulated test executions
might not be an adequate solution for some types of systems, due
to excessive simulation costs or lack of accuracy in the simulations.
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An alternative approach is to maintain a database of real test execu-
tions (with manually identified correct and incorrect behaviours),
which can also be used to generate MRs with GAssertMRs.

Lesson 3 – Setting constraints on the generated MRs can

make the approachmore effective: The current implementation
of GAssertMRs relies on numerical inputs and outputs, since the
expression trees it generates only support this type of variables.
Although it would be possible to extend the current expression
tree and evaluator in order to support additional data types and
operations, this has not been considered necessary within the con-
text of the current case study. For CPSs, the input/output domains
consist of numerical variables in most cases [3]. For other cases,
which occurred also in our elevation case study, it is possible to
write user-defined functions that transform complex inputs into
numerical variables. Although defining these functions requires
some effort, this approach greatly reduces the cost of running the
tool in terms of execution time (simpler expressions result in a
smaller search space), and also results in more familiar MRs. More-
over, our experiments use a specific MR template, although it would
be possible to make the tool generate arbitrary expressions with
Boolean and numeric variables. The reasons for enforcing such a
template are (1) reducing the search space for GAssertMRs, and
(2) making it easier to interpret the generated MRs. We believe that
the use of the proposed template would make sense for many QoS
or performance CPS testing contexts.

Future work – Further steps required for adoption by in-

dustrial practitioners: In order to encourage the adoption of GAs-
sertMRs, further steps need to be taken. The current version of
GAssertMRs requires metamorphic input relations (or equiva-
lently, the transformations to apply to the inputs) and test cases.
The automated generation of input relations and test cases is out
of the scope of the current implementation. The development of a
Domain Specific Language (DSL) to support engineers in the def-
inition of input relations is envisioned to help the easy transfer
of the tool to practitioners. Given a user-defined input relation, it
should be possible for a tool to automatically generate new source
and follow-up test cases, similarly to how OASIs [18, 40] does for
GAssert. Mutant generation could also be automated, although
executing all test cases in all the new mutants may be too costly
in the context of CPSs. For an even more automated approach, it
would also be possible for the evolutionary algorithm to generate
and improve both the input and the output relations. The availabil-
ity of a generic tool which implements this approach would greatly
encourage the adoption by industrial practitioners.

7 THREATS TO VALIDITY

External validity. The main external validity threat relates to the
generalization of our results. Although we are reporting the results
of a single case study, it is important to highlight that it is a real
industrial case study that involve a complex CPS. Nevertheless, we
acknowledge that our results might not be representative of other
CPSs from other domains.

Internal validity. Another potential threat to the validity of our
empirical evaluation is the use of mutation testing, which might
have introduced a bias in our results. Mutation testing introduces a
bias when the mutants are too few or there are many equivalent

mutants [31]. To mitigate this threat, we generated an amount of
mutants comparable to other related works that use simulation-
based mutation testing [4, 27, 28]. Furthermore, we also checked
these mutants to identify and filter out equivalent mutants, as
recommended by Papadakis et al. [31].

Construct validity. To ensure that our evaluation supports our
conclusions, we generate multiple configurations of GAssertMRs,
and compare the results with multiple baselines.

8 RELATEDWORK

Metamorphic testing for CPSs.Metamorphic testing has already
been used for testing CPSs in order to mitigate the oracle problem.
Lindvall et al. combined metamorphic testing and model based
testing approaches in order to perform simulation-based testing
of autonomous drones [26]. Other techniques have also applied
metamorphic testing to verify autonomous self-driving cars [42, 47].
However, those works do not focus on the generation of MRs, but
the application of them.

MR generation. Several semi-automatic and automatic MR iden-
tification approaches have already been explored in the existing
literature. Many publications have suggested reusing abstract pat-
terns in the input or the output relations in order to derive concrete
MRs for a particular system [34, 48]. In this work, we reuse the same,
manually defined, Metamorphic Relation Input Patterns (MRIPs)
to generate different MRs. Troya et al. proposed an approach for
automatically inferring MRs for model transformations based on
a catalogue of metamorphic relation patterns which may apply to
any model transformation [43]. Zhang et al. proposed a machine
learning approach which infers MRs with polynomial input and
output relations based on program executions [46]. In contrast,GAs-
sertMRs generates MRs following a template for output relations
specifically designed for QoS metrics.

9 CONCLUSION

In this paper, we investigate the automated generation of Meta-
morphic Relations (MRs) in an industrial setting. Towards this goal,
we implemented GAssertMRs, a tool to automatically generate
MRs. GAssertMRs implements an evolutionary algorithm which
attempts to minimize the false positive and false negative rates of
the generated MRs. We define a generic output relation template
for quality of service testing and various domain-specific input
relations for elevators, and we employ random test generation and
seeded faults in order to generate a dataset of correct and incorrect
test executions.

Our study shows that the generated metamorphic relations can
be effective in the context of an industrial CPS, enabling the au-
tomation of a significant part of the testing process at an affordable
cost. Future work will explore the complete automation of the meta-
morphic relations generation, including the definition of the MRIPs
and the mutant generation. On the other hand, GAssertMRs will
also have to be evaluated with other CPSs in order to assess its
usefulness in different application domains.
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